summaryrefslogtreecommitdiff
path: root/source/use_case/kws_asr/src/UseCaseHandler.cc
diff options
context:
space:
mode:
Diffstat (limited to 'source/use_case/kws_asr/src/UseCaseHandler.cc')
-rw-r--r--source/use_case/kws_asr/src/UseCaseHandler.cc707
1 files changed, 707 insertions, 0 deletions
diff --git a/source/use_case/kws_asr/src/UseCaseHandler.cc b/source/use_case/kws_asr/src/UseCaseHandler.cc
new file mode 100644
index 0000000..c50796f
--- /dev/null
+++ b/source/use_case/kws_asr/src/UseCaseHandler.cc
@@ -0,0 +1,707 @@
+/*
+ * Copyright (c) 2021 Arm Limited. All rights reserved.
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "UseCaseHandler.hpp"
+
+#include "hal.h"
+#include "InputFiles.hpp"
+#include "AudioUtils.hpp"
+#include "UseCaseCommonUtils.hpp"
+#include "DsCnnModel.hpp"
+#include "DsCnnMfcc.hpp"
+#include "Classifier.hpp"
+#include "KwsResult.hpp"
+#include "Wav2LetterMfcc.hpp"
+#include "Wav2LetterPreprocess.hpp"
+#include "Wav2LetterPostprocess.hpp"
+#include "AsrResult.hpp"
+#include "AsrClassifier.hpp"
+#include "OutputDecode.hpp"
+
+
+using KwsClassifier = arm::app::Classifier;
+
+namespace arm {
+namespace app {
+
+ enum AsrOutputReductionAxis {
+ AxisRow = 1,
+ AxisCol = 2
+ };
+
+ struct KWSOutput {
+ bool executionSuccess = false;
+ const int16_t* asrAudioStart = nullptr;
+ int32_t asrAudioSamples = 0;
+ };
+
+ /**
+ * @brief Helper function to increment current audio clip index
+ * @param[in,out] ctx pointer to the application context object
+ **/
+ static void _IncrementAppCtxClipIdx(ApplicationContext& ctx);
+
+ /**
+ * @brief Helper function to increment current audio clip index
+ * @param[in,out] ctx pointer to the application context object
+ **/
+ static void _IncrementAppCtxClipIdx(ApplicationContext& ctx);
+
+ /**
+ * @brief Helper function to set the audio clip index
+ * @param[in,out] ctx pointer to the application context object
+ * @param[in] idx value to be set
+ * @return true if index is set, false otherwise
+ **/
+ static bool _SetAppCtxClipIdx(ApplicationContext& ctx, uint32_t idx);
+
+ /**
+ * @brief Presents kws inference results using the data presentation
+ * object.
+ * @param[in] platform reference to the hal platform object
+ * @param[in] results vector of classification results to be displayed
+ * @param[in] infTimeMs inference time in milliseconds, if available
+ * Otherwise, this can be passed in as 0.
+ * @return true if successful, false otherwise
+ **/
+ static bool _PresentInferenceResult(hal_platform& platform, std::vector<arm::app::kws::KwsResult>& results);
+
+ /**
+ * @brief Presents asr inference results using the data presentation
+ * object.
+ * @param[in] platform reference to the hal platform object
+ * @param[in] results vector of classification results to be displayed
+ * @param[in] infTimeMs inference time in milliseconds, if available
+ * Otherwise, this can be passed in as 0.
+ * @return true if successful, false otherwise
+ **/
+ static bool _PresentInferenceResult(hal_platform& platform, std::vector<arm::app::asr::AsrResult>& results);
+
+ /**
+ * @brief Returns a function to perform feature calculation and populates input tensor data with
+ * MFCC data.
+ *
+ * Input tensor data type check is performed to choose correct MFCC feature data type.
+ * If tensor has an integer data type then original features are quantised.
+ *
+ * Warning: mfcc calculator provided as input must have the same life scope as returned function.
+ *
+ * @param[in] mfcc MFCC feature calculator.
+ * @param[in,out] inputTensor Input tensor pointer to store calculated features.
+ * @param[in] cacheSize Size of the feture vectors cache (number of feature vectors).
+ *
+ * @return function function to be called providing audio sample and sliding window index.
+ **/
+ static std::function<void (std::vector<int16_t>&, int, bool, size_t)>
+ GetFeatureCalculator(audio::DsCnnMFCC& mfcc,
+ TfLiteTensor* inputTensor,
+ size_t cacheSize);
+
+ /**
+ * @brief Performs the KWS pipeline.
+ * @param[in,out] ctx pointer to the application context object
+ *
+ * @return KWSOutput struct containing pointer to audio data where ASR should begin
+ * and how much data to process.
+ */
+ static KWSOutput doKws(ApplicationContext& ctx) {
+ constexpr uint32_t dataPsnTxtInfStartX = 20;
+ constexpr uint32_t dataPsnTxtInfStartY = 40;
+
+ constexpr int minTensorDims = static_cast<int>(
+ (arm::app::DsCnnModel::ms_inputRowsIdx > arm::app::DsCnnModel::ms_inputColsIdx)?
+ arm::app::DsCnnModel::ms_inputRowsIdx : arm::app::DsCnnModel::ms_inputColsIdx);
+
+ KWSOutput output;
+
+ auto& kwsModel = ctx.Get<Model&>("kwsmodel");
+ if (!kwsModel.IsInited()) {
+ printf_err("KWS model has not been initialised\n");
+ return output;
+ }
+
+ const int kwsFrameLength = ctx.Get<int>("kwsframeLength");
+ const int kwsFrameStride = ctx.Get<int>("kwsframeStride");
+ const float kwsScoreThreshold = ctx.Get<float>("kwsscoreThreshold");
+
+ TfLiteTensor* kwsOutputTensor = kwsModel.GetOutputTensor(0);
+ TfLiteTensor* kwsInputTensor = kwsModel.GetInputTensor(0);
+
+ if (!kwsInputTensor->dims) {
+ printf_err("Invalid input tensor dims\n");
+ return output;
+ } else if (kwsInputTensor->dims->size < minTensorDims) {
+ printf_err("Input tensor dimension should be >= %d\n", minTensorDims);
+ return output;
+ }
+
+ const uint32_t kwsNumMfccFeats = ctx.Get<uint32_t>("kwsNumMfcc");
+ const uint32_t kwsNumAudioWindows = ctx.Get<uint32_t>("kwsNumAudioWins");
+
+ audio::DsCnnMFCC kwsMfcc = audio::DsCnnMFCC(kwsNumMfccFeats, kwsFrameLength);
+ kwsMfcc.Init();
+
+ /* Deduce the data length required for 1 KWS inference from the network parameters. */
+ auto kwsAudioDataWindowSize = kwsNumAudioWindows * kwsFrameStride +
+ (kwsFrameLength - kwsFrameStride);
+ auto kwsMfccWindowSize = kwsFrameLength;
+ auto kwsMfccWindowStride = kwsFrameStride;
+
+ /* We are choosing to move by half the window size => for a 1 second window size,
+ * this means an overlap of 0.5 seconds. */
+ auto kwsAudioDataStride = kwsAudioDataWindowSize / 2;
+
+ info("KWS audio data window size %u\n", kwsAudioDataWindowSize);
+
+ /* Stride must be multiple of mfcc features window stride to re-use features. */
+ if (0 != kwsAudioDataStride % kwsMfccWindowStride) {
+ kwsAudioDataStride -= kwsAudioDataStride % kwsMfccWindowStride;
+ }
+
+ auto kwsMfccVectorsInAudioStride = kwsAudioDataStride/kwsMfccWindowStride;
+
+ /* We expect to be sampling 1 second worth of data at a time
+ * NOTE: This is only used for time stamp calculation. */
+ const float kwsAudioParamsSecondsPerSample = 1.0/audio::DsCnnMFCC::ms_defaultSamplingFreq;
+
+ auto currentIndex = ctx.Get<uint32_t>("clipIndex");
+
+ /* Creating a mfcc features sliding window for the data required for 1 inference. */
+ auto kwsAudioMFCCWindowSlider = audio::SlidingWindow<const int16_t>(
+ get_audio_array(currentIndex),
+ kwsAudioDataWindowSize, kwsMfccWindowSize,
+ kwsMfccWindowStride);
+
+ /* Creating a sliding window through the whole audio clip. */
+ auto audioDataSlider = audio::SlidingWindow<const int16_t>(
+ get_audio_array(currentIndex),
+ get_audio_array_size(currentIndex),
+ kwsAudioDataWindowSize, kwsAudioDataStride);
+
+ /* Calculate number of the feature vectors in the window overlap region.
+ * These feature vectors will be reused.*/
+ size_t numberOfReusedFeatureVectors = kwsAudioMFCCWindowSlider.TotalStrides() + 1
+ - kwsMfccVectorsInAudioStride;
+
+ auto kwsMfccFeatureCalc = GetFeatureCalculator(kwsMfcc, kwsInputTensor,
+ numberOfReusedFeatureVectors);
+
+ if (!kwsMfccFeatureCalc){
+ return output;
+ }
+
+ /* Container for KWS results. */
+ std::vector<arm::app::kws::KwsResult> kwsResults;
+
+ /* Display message on the LCD - inference running. */
+ auto& platform = ctx.Get<hal_platform&>("platform");
+ std::string str_inf{"Running KWS inference... "};
+ platform.data_psn->present_data_text(
+ str_inf.c_str(), str_inf.size(),
+ dataPsnTxtInfStartX, dataPsnTxtInfStartY, 0);
+
+ info("Running KWS inference on audio clip %u => %s\n",
+ currentIndex, get_filename(currentIndex));
+
+ /* Start sliding through audio clip. */
+ while (audioDataSlider.HasNext()) {
+ const int16_t* inferenceWindow = audioDataSlider.Next();
+
+ /* We moved to the next window - set the features sliding to the new address. */
+ kwsAudioMFCCWindowSlider.Reset(inferenceWindow);
+
+ /* The first window does not have cache ready. */
+ bool useCache = audioDataSlider.Index() > 0 && numberOfReusedFeatureVectors > 0;
+
+ /* Start calculating features inside one audio sliding window. */
+ while (kwsAudioMFCCWindowSlider.HasNext()) {
+ const int16_t* kwsMfccWindow = kwsAudioMFCCWindowSlider.Next();
+ std::vector<int16_t> kwsMfccAudioData =
+ std::vector<int16_t>(kwsMfccWindow, kwsMfccWindow + kwsMfccWindowSize);
+
+ /* Compute features for this window and write them to input tensor. */
+ kwsMfccFeatureCalc(kwsMfccAudioData,
+ kwsAudioMFCCWindowSlider.Index(),
+ useCache,
+ kwsMfccVectorsInAudioStride);
+ }
+
+ info("Inference %zu/%zu\n", audioDataSlider.Index() + 1,
+ audioDataSlider.TotalStrides() + 1);
+
+ /* Run inference over this audio clip sliding window. */
+ arm::app::RunInference(platform, kwsModel);
+
+ std::vector<ClassificationResult> kwsClassificationResult;
+ auto& kwsClassifier = ctx.Get<KwsClassifier&>("kwsclassifier");
+
+ kwsClassifier.GetClassificationResults(
+ kwsOutputTensor, kwsClassificationResult,
+ ctx.Get<std::vector<std::string>&>("kwslabels"), 1);
+
+ kwsResults.emplace_back(
+ kws::KwsResult(
+ kwsClassificationResult,
+ audioDataSlider.Index() * kwsAudioParamsSecondsPerSample * kwsAudioDataStride,
+ audioDataSlider.Index(), kwsScoreThreshold)
+ );
+
+ /* Keyword detected. */
+ if (kwsClassificationResult[0].m_labelIdx == ctx.Get<uint32_t>("keywordindex")) {
+ output.asrAudioStart = inferenceWindow + kwsAudioDataWindowSize;
+ output.asrAudioSamples = get_audio_array_size(currentIndex) -
+ (audioDataSlider.NextWindowStartIndex() -
+ kwsAudioDataStride + kwsAudioDataWindowSize);
+ break;
+ }
+
+#if VERIFY_TEST_OUTPUT
+ arm::app::DumpTensor(kwsOutputTensor);
+#endif /* VERIFY_TEST_OUTPUT */
+
+ } /* while (audioDataSlider.HasNext()) */
+
+ /* Erase. */
+ str_inf = std::string(str_inf.size(), ' ');
+ platform.data_psn->present_data_text(
+ str_inf.c_str(), str_inf.size(),
+ dataPsnTxtInfStartX, dataPsnTxtInfStartY, 0);
+
+ if (!_PresentInferenceResult(platform, kwsResults)) {
+ return output;
+ }
+
+ output.executionSuccess = true;
+ return output;
+ }
+
+ /**
+ * @brief Performs the ASR pipeline.
+ *
+ * @param ctx[in/out] pointer to the application context object
+ * @param kwsOutput[in] struct containing pointer to audio data where ASR should begin
+ * and how much data to process
+ * @return bool true if pipeline executed without failure
+ */
+ static bool doAsr(ApplicationContext& ctx, const KWSOutput& kwsOutput) {
+ constexpr uint32_t dataPsnTxtInfStartX = 20;
+ constexpr uint32_t dataPsnTxtInfStartY = 40;
+
+ auto& platform = ctx.Get<hal_platform&>("platform");
+ platform.data_psn->clear(COLOR_BLACK);
+
+ /* Get model reference. */
+ auto& asrModel = ctx.Get<Model&>("asrmodel");
+ if (!asrModel.IsInited()) {
+ printf_err("ASR model has not been initialised\n");
+ return false;
+ }
+
+ /* Get score threshold to be applied for the classifier (post-inference). */
+ auto asrScoreThreshold = ctx.Get<float>("asrscoreThreshold");
+
+ /* Dimensions of the tensor should have been verified by the callee. */
+ TfLiteTensor* asrInputTensor = asrModel.GetInputTensor(0);
+ TfLiteTensor* asrOutputTensor = asrModel.GetOutputTensor(0);
+ const uint32_t asrInputRows = asrInputTensor->dims->data[arm::app::Wav2LetterModel::ms_inputRowsIdx];
+
+ /* Populate ASR MFCC related parameters. */
+ auto asrMfccParamsWinLen = ctx.Get<uint32_t>("asrframeLength");
+ auto asrMfccParamsWinStride = ctx.Get<uint32_t>("asrframeStride");
+
+ /* Populate ASR inference context and inner lengths for input. */
+ auto asrInputCtxLen = ctx.Get<uint32_t>("ctxLen");
+ const uint32_t asrInputInnerLen = asrInputRows - (2 * asrInputCtxLen);
+
+ /* Make sure the input tensor supports the above context and inner lengths. */
+ if (asrInputRows <= 2 * asrInputCtxLen || asrInputRows <= asrInputInnerLen) {
+ printf_err("ASR input rows not compatible with ctx length %u\n", asrInputCtxLen);
+ return false;
+ }
+
+ /* Audio data stride corresponds to inputInnerLen feature vectors. */
+ const uint32_t asrAudioParamsWinLen = (asrInputRows - 1) *
+ asrMfccParamsWinStride + (asrMfccParamsWinLen);
+ const uint32_t asrAudioParamsWinStride = asrInputInnerLen * asrMfccParamsWinStride;
+ const float asrAudioParamsSecondsPerSample =
+ (1.0/audio::Wav2LetterMFCC::ms_defaultSamplingFreq);
+
+ /* Get pre/post-processing objects */
+ auto& asrPrep = ctx.Get<audio::asr::Preprocess&>("preprocess");
+ auto& asrPostp = ctx.Get<audio::asr::Postprocess&>("postprocess");
+
+ /* Set default reduction axis for post-processing. */
+ const uint32_t reductionAxis = arm::app::Wav2LetterModel::ms_outputRowsIdx;
+
+ /* Get the remaining audio buffer and respective size from KWS results. */
+ const int16_t* audioArr = kwsOutput.asrAudioStart;
+ const uint32_t audioArrSize = kwsOutput.asrAudioSamples;
+
+ /* Audio clip must have enough samples to produce 1 MFCC feature. */
+ std::vector<int16_t> audioBuffer = std::vector<int16_t>(audioArr, audioArr + audioArrSize);
+ if (audioArrSize < asrMfccParamsWinLen) {
+ printf_err("Not enough audio samples, minimum needed is %u\n", asrMfccParamsWinLen);
+ return false;
+ }
+
+ /* Initialise an audio slider. */
+ auto audioDataSlider = audio::ASRSlidingWindow<const int16_t>(
+ audioBuffer.data(),
+ audioBuffer.size(),
+ asrAudioParamsWinLen,
+ asrAudioParamsWinStride);
+
+ /* Declare a container for results. */
+ std::vector<arm::app::asr::AsrResult> asrResults;
+
+ /* Display message on the LCD - inference running. */
+ std::string str_inf{"Running ASR inference... "};
+ platform.data_psn->present_data_text(
+ str_inf.c_str(), str_inf.size(),
+ dataPsnTxtInfStartX, dataPsnTxtInfStartY, 0);
+
+ size_t asrInferenceWindowLen = asrAudioParamsWinLen;
+
+ /* Start sliding through audio clip. */
+ while (audioDataSlider.HasNext()) {
+
+ /* If not enough audio see how much can be sent for processing. */
+ size_t nextStartIndex = audioDataSlider.NextWindowStartIndex();
+ if (nextStartIndex + asrAudioParamsWinLen > audioBuffer.size()) {
+ asrInferenceWindowLen = audioBuffer.size() - nextStartIndex;
+ }
+
+ const int16_t* asrInferenceWindow = audioDataSlider.Next();
+
+ info("Inference %zu/%zu\n", audioDataSlider.Index() + 1,
+ static_cast<size_t>(ceilf(audioDataSlider.FractionalTotalStrides() + 1)));
+
+ Profiler prepProfiler{&platform, "pre-processing"};
+ prepProfiler.StartProfiling();
+
+ /* Calculate MFCCs, deltas and populate the input tensor. */
+ asrPrep.Invoke(asrInferenceWindow, asrInferenceWindowLen, asrInputTensor);
+
+ prepProfiler.StopProfiling();
+ std::string prepProfileResults = prepProfiler.GetResultsAndReset();
+ info("%s\n", prepProfileResults.c_str());
+
+ /* Run inference over this audio clip sliding window. */
+ arm::app::RunInference(platform, asrModel);
+
+ /* Post-process. */
+ asrPostp.Invoke(asrOutputTensor, reductionAxis, !audioDataSlider.HasNext());
+
+ /* Get results. */
+ std::vector<ClassificationResult> asrClassificationResult;
+ auto& asrClassifier = ctx.Get<AsrClassifier&>("asrclassifier");
+ asrClassifier.GetClassificationResults(
+ asrOutputTensor, asrClassificationResult,
+ ctx.Get<std::vector<std::string>&>("asrlabels"), 1);
+
+ asrResults.emplace_back(asr::AsrResult(asrClassificationResult,
+ (audioDataSlider.Index() *
+ asrAudioParamsSecondsPerSample *
+ asrAudioParamsWinStride),
+ audioDataSlider.Index(), asrScoreThreshold));
+
+#if VERIFY_TEST_OUTPUT
+ arm::app::DumpTensor(asrOutputTensor, asrOutputTensor->dims->data[arm::app::Wav2LetterModel::ms_outputColsIdx]);
+#endif /* VERIFY_TEST_OUTPUT */
+
+ /* Erase */
+ str_inf = std::string(str_inf.size(), ' ');
+ platform.data_psn->present_data_text(
+ str_inf.c_str(), str_inf.size(),
+ dataPsnTxtInfStartX, dataPsnTxtInfStartY, false);
+ }
+ if (!_PresentInferenceResult(platform, asrResults)) {
+ return false;
+ }
+
+ return true;
+ }
+
+ /* Audio inference classification handler. */
+ bool ClassifyAudioHandler(ApplicationContext& ctx, uint32_t clipIndex, bool runAll)
+ {
+ auto& platform = ctx.Get<hal_platform&>("platform");
+ platform.data_psn->clear(COLOR_BLACK);
+
+ /* If the request has a valid size, set the audio index. */
+ if (clipIndex < NUMBER_OF_FILES) {
+ if (!_SetAppCtxClipIdx(ctx, clipIndex)) {
+ return false;
+ }
+ }
+
+ auto startClipIdx = ctx.Get<uint32_t>("clipIndex");
+
+ do {
+ KWSOutput kwsOutput = doKws(ctx);
+ if (!kwsOutput.executionSuccess) {
+ return false;
+ }
+
+ if (kwsOutput.asrAudioStart != nullptr && kwsOutput.asrAudioSamples > 0) {
+ info("Keyword spotted\n");
+ if(!doAsr(ctx, kwsOutput)) {
+ printf_err("ASR failed");
+ return false;
+ }
+ }
+
+ _IncrementAppCtxClipIdx(ctx);
+
+ } while (runAll && ctx.Get<uint32_t>("clipIndex") != startClipIdx);
+
+ return true;
+ }
+
+ static void _IncrementAppCtxClipIdx(ApplicationContext& ctx)
+ {
+ auto curAudioIdx = ctx.Get<uint32_t>("clipIndex");
+
+ if (curAudioIdx + 1 >= NUMBER_OF_FILES) {
+ ctx.Set<uint32_t>("clipIndex", 0);
+ return;
+ }
+ ++curAudioIdx;
+ ctx.Set<uint32_t>("clipIndex", curAudioIdx);
+ }
+
+ static bool _SetAppCtxClipIdx(ApplicationContext& ctx, const uint32_t idx)
+ {
+ if (idx >= NUMBER_OF_FILES) {
+ printf_err("Invalid idx %u (expected less than %u)\n",
+ idx, NUMBER_OF_FILES);
+ return false;
+ }
+ ctx.Set<uint32_t>("clipIndex", idx);
+ return true;
+ }
+
+ static bool _PresentInferenceResult(hal_platform& platform,
+ std::vector<arm::app::kws::KwsResult>& results)
+ {
+ constexpr uint32_t dataPsnTxtStartX1 = 20;
+ constexpr uint32_t dataPsnTxtStartY1 = 30;
+ constexpr uint32_t dataPsnTxtYIncr = 16; /* Row index increment. */
+
+ platform.data_psn->set_text_color(COLOR_GREEN);
+
+ /* Display each result. */
+ uint32_t rowIdx1 = dataPsnTxtStartY1 + 2 * dataPsnTxtYIncr;
+
+ for (uint32_t i = 0; i < results.size(); ++i) {
+
+ std::string topKeyword{"<none>"};
+ float score = 0.f;
+
+ if (results[i].m_resultVec.size()) {
+ topKeyword = results[i].m_resultVec[0].m_label;
+ score = results[i].m_resultVec[0].m_normalisedVal;
+ }
+
+ std::string resultStr =
+ std::string{"@"} + std::to_string(results[i].m_timeStamp) +
+ std::string{"s: "} + topKeyword + std::string{" ("} +
+ std::to_string(static_cast<int>(score * 100)) + std::string{"%)"};
+
+ platform.data_psn->present_data_text(
+ resultStr.c_str(), resultStr.size(),
+ dataPsnTxtStartX1, rowIdx1, 0);
+ rowIdx1 += dataPsnTxtYIncr;
+
+ info("For timestamp: %f (inference #: %u); threshold: %f\n",
+ results[i].m_timeStamp, results[i].m_inferenceNumber,
+ results[i].m_threshold);
+ for (uint32_t j = 0; j < results[i].m_resultVec.size(); ++j) {
+ info("\t\tlabel @ %u: %s, score: %f\n", j,
+ results[i].m_resultVec[j].m_label.c_str(),
+ results[i].m_resultVec[j].m_normalisedVal);
+ }
+ }
+
+ return true;
+ }
+
+ static bool _PresentInferenceResult(hal_platform& platform, std::vector<arm::app::asr::AsrResult>& results)
+ {
+ constexpr uint32_t dataPsnTxtStartX1 = 20;
+ constexpr uint32_t dataPsnTxtStartY1 = 80;
+ constexpr bool allow_multiple_lines = true;
+
+ platform.data_psn->set_text_color(COLOR_GREEN);
+
+ /* Results from multiple inferences should be combined before processing. */
+ std::vector<arm::app::ClassificationResult> combinedResults;
+ for (auto& result : results) {
+ combinedResults.insert(combinedResults.end(),
+ result.m_resultVec.begin(),
+ result.m_resultVec.end());
+ }
+
+ for (auto& result : results) {
+ /* Get the final result string using the decoder. */
+ std::string infResultStr = audio::asr::DecodeOutput(result.m_resultVec);
+
+ info("Result for inf %u: %s\n", result.m_inferenceNumber,
+ infResultStr.c_str());
+ }
+
+ std::string finalResultStr = audio::asr::DecodeOutput(combinedResults);
+
+ platform.data_psn->present_data_text(
+ finalResultStr.c_str(), finalResultStr.size(),
+ dataPsnTxtStartX1, dataPsnTxtStartY1, allow_multiple_lines);
+
+ info("Final result: %s\n", finalResultStr.c_str());
+ return true;
+ }
+
+ /**
+ * @brief Generic feature calculator factory.
+ *
+ * Returns lambda function to compute features using features cache.
+ * Real features math is done by a lambda function provided as a parameter.
+ * Features are written to input tensor memory.
+ *
+ * @tparam T feature vector type.
+ * @param inputTensor model input tensor pointer.
+ * @param cacheSize number of feature vectors to cache. Defined by the sliding window overlap.
+ * @param compute features calculator function.
+ * @return lambda function to compute features.
+ **/
+ template<class T>
+ std::function<void (std::vector<int16_t>&, size_t, bool, size_t)>
+ _FeatureCalc(TfLiteTensor* inputTensor, size_t cacheSize,
+ std::function<std::vector<T> (std::vector<int16_t>& )> compute)
+ {
+ /* Feature cache to be captured by lambda function. */
+ static std::vector<std::vector<T>> featureCache = std::vector<std::vector<T>>(cacheSize);
+
+ return [=](std::vector<int16_t>& audioDataWindow,
+ size_t index,
+ bool useCache,
+ size_t featuresOverlapIndex)
+ {
+ T* tensorData = tflite::GetTensorData<T>(inputTensor);
+ std::vector<T> features;
+
+ /* Reuse features from cache if cache is ready and sliding windows overlap.
+ * Overlap is in the beginning of sliding window with a size of a feature cache.
+ */
+ if (useCache && index < featureCache.size()) {
+ features = std::move(featureCache[index]);
+ } else {
+ features = std::move(compute(audioDataWindow));
+ }
+ auto size = features.size();
+ auto sizeBytes = sizeof(T) * size;
+ std::memcpy(tensorData + (index * size), features.data(), sizeBytes);
+
+ /* Start renewing cache as soon iteration goes out of the windows overlap. */
+ if (index >= featuresOverlapIndex) {
+ featureCache[index - featuresOverlapIndex] = std::move(features);
+ }
+ };
+ }
+
+ template std::function<void (std::vector<int16_t>&, size_t , bool, size_t)>
+ _FeatureCalc<int8_t>(TfLiteTensor* inputTensor,
+ size_t cacheSize,
+ std::function<std::vector<int8_t> (std::vector<int16_t>& )> compute);
+
+ template std::function<void (std::vector<int16_t>&, size_t , bool, size_t)>
+ _FeatureCalc<uint8_t>(TfLiteTensor* inputTensor,
+ size_t cacheSize,
+ std::function<std::vector<uint8_t> (std::vector<int16_t>& )> compute);
+
+ template std::function<void (std::vector<int16_t>&, size_t , bool, size_t)>
+ _FeatureCalc<int16_t>(TfLiteTensor* inputTensor,
+ size_t cacheSize,
+ std::function<std::vector<int16_t> (std::vector<int16_t>& )> compute);
+
+ template std::function<void(std::vector<int16_t>&, size_t, bool, size_t)>
+ _FeatureCalc<float>(TfLiteTensor* inputTensor,
+ size_t cacheSize,
+ std::function<std::vector<float>(std::vector<int16_t>&)> compute);
+
+
+ static std::function<void (std::vector<int16_t>&, int, bool, size_t)>
+ GetFeatureCalculator(audio::DsCnnMFCC& mfcc, TfLiteTensor* inputTensor, size_t cacheSize)
+ {
+ std::function<void (std::vector<int16_t>&, size_t, bool, size_t)> mfccFeatureCalc;
+
+ TfLiteQuantization quant = inputTensor->quantization;
+
+ if (kTfLiteAffineQuantization == quant.type) {
+
+ auto* quantParams = (TfLiteAffineQuantization*) quant.params;
+ const float quantScale = quantParams->scale->data[0];
+ const int quantOffset = quantParams->zero_point->data[0];
+
+ switch (inputTensor->type) {
+ case kTfLiteInt8: {
+ mfccFeatureCalc = _FeatureCalc<int8_t>(inputTensor,
+ cacheSize,
+ [=, &mfcc](std::vector<int16_t>& audioDataWindow) {
+ return mfcc.MfccComputeQuant<int8_t>(audioDataWindow,
+ quantScale,
+ quantOffset);
+ }
+ );
+ break;
+ }
+ case kTfLiteUInt8: {
+ mfccFeatureCalc = _FeatureCalc<uint8_t>(inputTensor,
+ cacheSize,
+ [=, &mfcc](std::vector<int16_t>& audioDataWindow) {
+ return mfcc.MfccComputeQuant<uint8_t>(audioDataWindow,
+ quantScale,
+ quantOffset);
+ }
+ );
+ break;
+ }
+ case kTfLiteInt16: {
+ mfccFeatureCalc = _FeatureCalc<int16_t>(inputTensor,
+ cacheSize,
+ [=, &mfcc](std::vector<int16_t>& audioDataWindow) {
+ return mfcc.MfccComputeQuant<int16_t>(audioDataWindow,
+ quantScale,
+ quantOffset);
+ }
+ );
+ break;
+ }
+ default:
+ printf_err("Tensor type %s not supported\n", TfLiteTypeGetName(inputTensor->type));
+ }
+
+
+ } else {
+ mfccFeatureCalc = mfccFeatureCalc = _FeatureCalc<float>(inputTensor,
+ cacheSize,
+ [&mfcc](std::vector<int16_t>& audioDataWindow) {
+ return mfcc.MfccCompute(audioDataWindow);
+ });
+ }
+ return mfccFeatureCalc;
+ }
+} /* namespace app */
+} /* namespace arm */ \ No newline at end of file