aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/tflite_supported_operators.py
blob: ad61fcab68566b3577065bfad8b4657bf750a1a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
# SPDX-FileCopyrightText: Copyright 2020-2024 Arm Limited and/or its affiliates <open-source-office@arm.com>
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Description:
# The TFLiteSupportedOperators class which is a collection of all TFLite supported operators and parameter checks.
from collections import defaultdict

import numpy as np

from .data_type import DataType
from .numeric_util import full_shape
from .operation import Op
from .operation import Padding
from .supported_operators_util import docstring_format_args
from .supported_operators_util import list_formatter
from .tensor import check_quantized_tens_scaling_equal
from .tflite_mapping import BUILTIN_OPERATOR_UNKNOWN
from .tflite_mapping import optype_to_builtintype
from .utils import calc_resize_factor


def _optype_formatter(op_list):
    # Convert internal op types to external names
    output = map(optype_to_builtintype, op_list)
    # Remove UNKNOWNs
    output = (x for x in output if x is not BUILTIN_OPERATOR_UNKNOWN)
    return list_formatter(output)


class TFLiteSupportedOperators:
    # Categorised lists of supported operators
    npu_pre_ops = set(
        (
            Op.SplitSliceRead,
            Op.Shape,
        )
    )
    convolution_ops = set(
        (
            Op.Conv2DBias,
            Op.Conv2D,
            Op.QuantizedConv2D,
        )
    )
    depthwise_convolution_ops = set((Op.DepthwiseConv2DBias,))
    transpose_convolution_ops = set((Op.Conv2DBackpropInput,))
    convolution_like_ops = convolution_ops | depthwise_convolution_ops | transpose_convolution_ops
    max_pooling_ops = Op.op_set(Op.is_maxpool_op)
    avg_pooling_ops = Op.op_set(Op.is_avgpool_op)
    pooling_ops = set((Op.ReduceSum,)) | max_pooling_ops | avg_pooling_ops
    resizing_ops = Op.op_set(Op.is_resize_op)
    fc_vector_products = set(
        (
            Op.QuantizedMatMul,
            Op.MatMul,
            Op.FullyConnected,
        )
    )
    mac_main_ops = (
        # LSTM
        set((Op.UnidirectionalSequenceLstm,))
        # conv/depthwiseconv/transposeconv
        | convolution_like_ops
        # pooling
        | pooling_ops
        # resizing/upscaling
        | resizing_ops
        # FC layers
        | fc_vector_products
        # Mean (converts to depthwise conv)
        | set((Op.Mean,))
        # ArgMax (converts to depthwise conv and maxpool)
        | set((Op.ArgMax,))
    )
    unary_elem_wise_main_ops = Op.op_set(Op.is_unary_elementwise_op)
    binary_elem_wise_min_max_ops = set(
        (
            Op.Minimum,
            Op.Maximum,
        )
    )
    binary_elem_wise_shift_ops = set(
        (
            Op.SHL,
            Op.SHR,
        )
    )
    binary_elem_wise_add_mul_sub = set(
        (
            Op.Add,
            Op.Mul,
            Op.Sub,
        )
    )
    binary_elem_wise_main_ops = binary_elem_wise_min_max_ops | binary_elem_wise_add_mul_sub | binary_elem_wise_shift_ops

    elem_wise_main_ops = binary_elem_wise_main_ops | unary_elem_wise_main_ops | set((Op.SquaredDifference,))
    pad_ops = set(
        (
            Op.Pad,
            Op.MirrorPad,
        )
    )

    supported_int32_tensor_ops = (
        set((Op.ReduceSum, Op.CLZ, Op.Shape, Op.ArgMax, Op.Transpose, Op.MirrorPad))
        | binary_elem_wise_add_mul_sub
        | binary_elem_wise_shift_ops
    )

    relu_ops = set(
        (
            Op.Relu,
            Op.Relu6,
            Op.ReluN1To1,
            Op.Clip,
        )
    )
    activation_ops = relu_ops | set(
        (
            Op.Tanh,
            Op.Sigmoid,
            Op.Softmax,
            Op.HardSwish,
            Op.LeakyRelu,
            Op.Prelu,
        )
    )
    npu_post_ops = (
        # activation functions
        activation_ops
        # concatenation write direction
        | set((Op.ConcatSliceWrite,))
        # Quantization
        | set((Op.Quantize,))
    )
    split_ops = set(
        (
            Op.Split,
            Op.SplitV,
            Op.StridedSlice,
            Op.Slice,
            Op.UnpackReshaped,
            Op.Unpack,
        )
    )
    concat_ops = set(
        (
            Op.Concat,
            Op.ConcatTFLite,
            Op.PackReshaped,
            Op.Pack,
        )
    )
    memory_only_ops = (
        set(
            (
                Op.Reshape,
                Op.QuantizedReshape,
                Op.Squeeze,
                Op.ExpandDims,
                Op.Transpose,
            )
        )
        | concat_ops
        | split_ops
    )
    per_axis_quant_ops = convolution_like_ops  # per-axis/channel quantization only currently supported for conv ops
    supported_fused_activations = relu_ops | set(
        (
            Op.Tanh,
            Op.Sigmoid,
            Op.LUT,
        )
    )
    supported_operators = npu_pre_ops | mac_main_ops | elem_wise_main_ops | pad_ops | npu_post_ops | memory_only_ops
    # Supported data types
    supported_op_dtypes = set((DataType.uint8, DataType.int8, DataType.int16, DataType.int32))
    supported_faf_dtypes = set((DataType.uint8, DataType.int8, DataType.int16))
    supported_bias_dtypes = set((DataType.int32, DataType.int64))
    supported_pad_dtypes = set((DataType.int32, DataType.int64))
    # Defined ranges for allowed values:
    tens_dim_range = (1, 65535)
    stride_range = (1, 3)
    dilated_height_range = (1, 64)
    dilated_product_range = (1, 64 * 64)
    weights_limit = 127 * 65536
    filter_range = (1, 8)
    filter_height_range = (1, 256)
    filter_product_range = (1, 256 * 256)
    mean_reduced_axis_max_size = 64 * 64
    mean_kernel_product_int8 = 2 ** (24)
    mean_kernel_product_uint8 = 2 ** (23)
    mean_kernel_product_int16 = 2 ** (16)

    def __init__(self):
        # Setup the generic constraints. Note: the order matters
        self.generic_constraints = []
        self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_dtype)
        self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_int32_ops)
        self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_dimension)
        self.generic_constraints.append(TFLiteSupportedOperators.constraint_tens_quant_per_axis)
        self.generic_constraints.append(TFLiteSupportedOperators.constraint_batch_size)
        self.generic_constraints.append(TFLiteSupportedOperators.constraint_faf)
        self.generic_constraints.append(TFLiteSupportedOperators.constraint_faf_type)

        # Setup generic constraint exceptions
        self.generic_constraints_exceptions = defaultdict(list)
        self.generic_constraints_exceptions[Op.ArgMax].append(TFLiteSupportedOperators.constraint_tens_dtype)
        self.generic_constraints_exceptions[Op.FullyConnected].append(TFLiteSupportedOperators.constraint_batch_size)
        self.generic_constraints_exceptions[Op.Softmax].append(TFLiteSupportedOperators.constraint_batch_size)
        self.generic_constraints_exceptions[Op.Reshape].append(TFLiteSupportedOperators.constraint_batch_size)
        self.generic_constraints_exceptions[Op.Shape].append(TFLiteSupportedOperators.constraint_batch_size)
        self.generic_constraints_exceptions[Op.Squeeze].append(TFLiteSupportedOperators.constraint_batch_size)
        for op_type in TFLiteSupportedOperators.split_ops - set((Op.UnpackReshaped,)):
            self.generic_constraints_exceptions[op_type].append(TFLiteSupportedOperators.constraint_batch_size)

        # Setup specific constraints. Note: the order matters
        self.specific_constraints = defaultdict(list)

        # Conv specific ops:
        for op_type in TFLiteSupportedOperators.convolution_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_stride_width_no_upper_limit)

        # Conv-like checks:
        for op_type in TFLiteSupportedOperators.convolution_like_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_dilated_height_range)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_dilated_product_range)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_type)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_const)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_limit)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_shape)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_type)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_40bit)
        # Transpose Conv specific checks:
        for op_type in TFLiteSupportedOperators.transpose_convolution_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_tconv_stride)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_tconv_same)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_tconv_valid)
        # Depthwise Conv specific checks:
        for op_type in TFLiteSupportedOperators.depthwise_convolution_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_depthwise_conv_stride)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_depth_multiplier)

        # Pooling checks:
        for op_type in TFLiteSupportedOperators.pooling_ops - TFLiteSupportedOperators.avg_pooling_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_stride_range)
        # AVG pooling specific checks:
        for op_type in TFLiteSupportedOperators.avg_pooling_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_stride_width_no_upper_limit)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_stride_range_no_padding)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_range)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_height_range_valid_pad)
            self.specific_constraints[op_type].append(
                TFLiteSupportedOperators.constraint_filter_product_range_valid_pad
            )
        # MAX pooling specific checks:
        for op_type in TFLiteSupportedOperators.max_pooling_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_height_range)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_filter_product_range)

        # Resizing specific checks:
        for op_type in TFLiteSupportedOperators.resizing_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_resize)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_resize_size)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_resize_attrs)

        # Resize Bilinear specific checks:
        self.specific_constraints[Op.ResizeBilinear].append(
            TFLiteSupportedOperators.constraint_resizebi_half_pixel_centers_dims
        )

        # Vector Product specific checks:
        for op_type in TFLiteSupportedOperators.fc_vector_products:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_type)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_weights_const)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_shape)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_type)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_bias_40bit)

        # Element-wise checks
        # Binary Min/Max specific checks:
        for op_type in TFLiteSupportedOperators.binary_elem_wise_min_max_ops:
            self.specific_constraints[op_type].append(
                TFLiteSupportedOperators.constraint_matching_quantization_parameters
            )
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_broadcast_shapes)
        # Binary Add/Mul/Sub specific checks:
        for op_type in TFLiteSupportedOperators.binary_elem_wise_add_mul_sub:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_broadcast_shapes)
        # Binary Shift specific checks:
        for op_type in TFLiteSupportedOperators.binary_elem_wise_shift_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_inputs_int32)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_broadcast_shapes)

        # SHL specific checks:
        self.specific_constraints[Op.SHL].append(TFLiteSupportedOperators.constraint_output_int32)

        # CLZ specific checks:
        self.specific_constraints[Op.CLZ].append(TFLiteSupportedOperators.constraint_output_int32)

        # StridedSlice specific checks:
        self.specific_constraints[Op.StridedSlice].append(
            TFLiteSupportedOperators.constraint_stridedslice_stride_values
        )
        self.specific_constraints[Op.StridedSlice].append(TFLiteSupportedOperators.constraint_stridedslice_offset_false)

        # Pad specific checks:
        for op_type in TFLiteSupportedOperators.pad_ops:
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_pad_shape)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_padding_dimensions)
            self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_pad_type)

        # Mirror pad specific checks:
        self.specific_constraints[Op.MirrorPad].append(TFLiteSupportedOperators.constraint_mirror_pad_padding_values)

        # Mean specific checks:
        self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_mean_height_width_product)
        self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_mean_width)
        self.specific_constraints[Op.Mean].append(TFLiteSupportedOperators.constraint_mean_depth)

        # Reshape specific checks:
        self.specific_constraints[Op.Reshape].append(TFLiteSupportedOperators.constraint_reshape_shape_constant)

        # ArgMax specific checks:
        self.specific_constraints[Op.ArgMax].append(TFLiteSupportedOperators.constraint_argmax_axis)
        self.specific_constraints[Op.ArgMax].append(TFLiteSupportedOperators.constraint_argmax_depth)

        # UnidirectionalSequenceLstm specific checks:
        op_type = Op.UnidirectionalSequenceLstm
        self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_lstm_no_cifg)
        self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_lstm_no_peep_hole)
        self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_lstm_no_projection)
        self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_lstm_no_normalisation)
        self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_lstm_weights)
        self.specific_constraints[op_type].append(TFLiteSupportedOperators.constraint_lstm_weight_dimensions)

        # Rsqrt specific checks
        self.specific_constraints[Op.Rsqrt].append(TFLiteSupportedOperators.constraint_rsqrt_input_int8)

        # Slice specific checks:
        self.specific_constraints[Op.Slice].append(TFLiteSupportedOperators.constraint_slice_inputs_const)

        # Transpose specific checks:
        self.specific_constraints[Op.Transpose].append(TFLiteSupportedOperators.constraint_transpose)

    def is_operator_supported(self, op):
        ext_type = optype_to_builtintype(op.type)
        if op.type not in TFLiteSupportedOperators.supported_operators:
            if op.type not in (Op.Placeholder, Op.SubgraphInput, Op.Const):
                print(f"Info: {ext_type} '{op.name}' is a CPU only op")
            return False

        op_exceptions = self.generic_constraints_exceptions[op.type]
        generic_constraints = [constraint for constraint in self.generic_constraints if constraint not in op_exceptions]

        for constraint in generic_constraints + self.specific_constraints[op.type]:
            valid, extra = constraint(op)
            if not valid:
                print(f"Warning: {ext_type} '{op.name}' is not supported on the NPU. Placing on CPU instead")
                print(f" - {constraint.__doc__}")
                if extra:
                    print(f"   {extra}")
                return False

        return True

    @classmethod
    @docstring_format_args([list_formatter(supported_op_dtypes)])
    def constraint_tens_dtype(cls, op):
        "Tensors must be of type: {}"
        valid = True
        extra = []
        tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
        if not tensors:
            tensors = [tens for tens in op.inputs if tens]
        for tens in tensors:
            if tens.dtype not in cls.supported_op_dtypes:
                valid = False
                extra.append(f"Tensor '{tens.name}' has data type: {tens.dtype}")
        return valid, ", ".join(extra)

    @classmethod
    @docstring_format_args([_optype_formatter(supported_int32_tensor_ops)])
    def constraint_tens_int32_ops(cls, op):
        "Tensors which are int32 are only valid when op type is: {}"
        valid = True
        extra = []
        tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
        if not tensors:
            tensors = [tens for tens in op.inputs if tens]
        for tens in tensors:
            if (tens.dtype == DataType.int32) and (op.type not in cls.supported_int32_tensor_ops):
                valid = False
                extra.append(tens.name)
        extra = ", ".join(extra)
        return valid, f"Op has int32 tensor(s): {extra}"

    @classmethod
    @docstring_format_args(tens_dim_range)
    def constraint_tens_dimension(cls, op):
        "Tensor dimensions must be in the range [{}, {}]"
        tens_min, tens_max = cls.tens_dim_range
        valid = True
        extra = []
        tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
        if not tensors:
            tensors = [tens for tens in op.inputs if tens]
        for tens in tensors:
            if not all(tens_min <= dim <= tens_max for dim in tens.shape):
                valid = False
                extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}")
        return valid, ", ".join(extra)

    @classmethod
    @docstring_format_args([_optype_formatter(per_axis_quant_ops)])
    def constraint_tens_quant_per_axis(cls, op):
        "Per-axis quantization is only supported for the following op types: {}"
        valid = True
        extra = []
        if op.type not in cls.per_axis_quant_ops:
            tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
            for tens in tensors:
                if tens.quantization and tens.quantization.is_per_axis():
                    valid = False
                    extra.append(tens.name)
        return valid, "The following tensor(s) have per-axis quantization parameters: " + ", ".join(extra)

    @classmethod
    @docstring_format_args([_optype_formatter(supported_fused_activations)])
    def constraint_faf(cls, op):
        "The fused activation function (if present) must be one of type: {}"
        if op.activation is None:
            res = True, "Op has no fused activation function"
        else:
            faf = op.activation.op_type
            valid = faf in cls.supported_fused_activations
            res = valid, f"Op has its fused activation function as: {faf}"
        return res

    @classmethod
    @docstring_format_args([list_formatter(supported_faf_dtypes)])
    def constraint_faf_type(cls, op):
        "If a fused activation function is present, the Output tensor must be one of type: {}"
        if op.activation is None:
            res = True, "Op has no fused activation function"
        else:
            valid = op.ofm.dtype in cls.supported_faf_dtypes
            ext_type = optype_to_builtintype(op.activation.op_type)
            res = valid, f"Op has fused activation function {ext_type}, and Output tensor data type: {op.ofm.dtype}"
        return res

    @classmethod
    @docstring_format_args(stride_range)
    def constraint_stride_range(cls, op):
        "Stride values for both width and height must be in the range [{}, {}]"
        w, h = op.get_kernel_stride()
        stride_min, stride_max = cls.stride_range
        valid = (stride_min <= w <= stride_max) and (stride_min <= h <= stride_max)
        return valid, f"Op has stride WxH as: {w}x{h}"

    @classmethod
    @docstring_format_args(dilated_height_range)
    def constraint_dilated_height_range(cls, op):
        "Dilated kernel height must be in the range [{}, {}]"
        h = op.kernel.area_height()
        dilated_height_min, dilated_height_max = cls.dilated_height_range
        valid = dilated_height_min <= h <= dilated_height_max
        return valid, f"Op has dilated kernel height as: {h}"

    @classmethod
    @docstring_format_args(dilated_product_range)
    def constraint_dilated_product_range(cls, op):
        "Product of dilated kernel width and height must be in the range [{}, {}]"
        product = op.kernel.area_width() * op.kernel.area_height()
        dilated_product_min, dilated_product_max = cls.dilated_product_range
        valid = dilated_product_min <= product <= dilated_product_max
        return valid, f"Op has product of dilated kernel width and height as: {product}"

    @staticmethod
    def constraint_weights_type(op):
        "Weight tensor must be 8-bit"
        weights = op.weights
        valid = weights.element_size() == 1
        return valid, f"Tensor '{weights.name}' is {int(weights.element_size() * 8)}-bit"

    @staticmethod
    def constraint_weights_const(op):
        "Weight tensor must be constant"
        weights = op.weights
        valid = weights.values is not None
        return valid, f"Tensor '{weights.name}' has non-constant values"

    @classmethod
    @docstring_format_args([weights_limit])
    def constraint_weights_limit(cls, op):
        "The sum of the weights cannot exceed {}"
        weights = op.weights
        values = weights.values.astype(np.int64) - weights.quantization.zero_point
        limit = np.amax(np.sum(np.absolute(values), axis=(0, 1, 2)))
        valid = limit <= cls.weights_limit
        return valid, f"Tensor '{weights.name}' has the sum of weights: {limit}"

    @staticmethod
    def constraint_bias_shape(op):
        "Optional Bias tensor must be of shape: 1D"
        bias = op.bias
        if bias:
            valid = len(bias.shape) == 1
            return valid, f"Tensor '{bias.name}' has shape: {bias.shape}"
        return True, "Op has no bias tensor"

    @classmethod
    @docstring_format_args([list_formatter(supported_bias_dtypes)])
    def constraint_bias_type(cls, op):
        "Optional Bias tensor must be of type: {}"
        bias = op.bias
        if bias:
            valid = bias.dtype in cls.supported_bias_dtypes
            return valid, f"Tensor '{bias.name}' has data type: {bias.dtype}"
        return True, "Op has no bias tensor"

    @staticmethod
    def constraint_bias_40bit(op):
        "Optional Bias tensor values must fit within 40-bits"
        bias = op.bias
        if bias and bias.dtype == DataType.int64 and bias.values is not None:
            valid = all(len(bin(value)[2:]) <= 40 for value in bias.values)
            return valid, f"Tensor '{bias.name}' has values larger than 40-bits"
        return True, "Op has no bias tensor, or it fits in 40-bit"

    @staticmethod
    def constraint_batch_size(op):
        "IFM Tensor batch size must be 1"
        valid = True
        extra = []
        for tens in (op.ifm, op.ifm2):
            if tens is not None:
                batch_size = full_shape(4, tens.shape, 1)[0]
                if batch_size != 1:
                    valid = False
                    extra.append(f"Tensor '{tens.name}' has batch size: {batch_size}")
        extra = "\n   ".join(extra)
        return valid, extra

    @staticmethod
    def constraint_depth_multiplier(op):
        "For depth multipliers > 1, IFM channels must be 1 and OFM channels must be equal to the depth multiplier"
        depth_multiplier = op.attrs.get("depth_multiplier", 1)
        if depth_multiplier > 1:
            ifm_channels = op.ifm.shape[3]
            ofm_channels = op.ofm.shape[3]
            valid = (ifm_channels == 1) and (ofm_channels == depth_multiplier)
            extra = (
                f"Op has ifm_channels={ifm_channels}, ofm_channels={ofm_channels}"
                f" and depth_multiplier={depth_multiplier}"
            )
            return valid, extra
        return True, "Op has depth_multiplier=1"

    @staticmethod
    def constraint_stride_width_no_upper_limit(op):
        """Strides must fulfil the following criteria:
        - Stride h must be between 1 and 3 when ofm height is greater than 1
        - Stride w must be between 1 and 3 when ofm height is greater than 1 or
          stride w must be divisible by 2 or 3 and ifm width must be divisible
          by stride_w/2 or stride_w/3"""

        stride_w, stride_h = op.get_kernel_stride()
        stride_min = 1
        stride_max_h = 3
        ifm_width = op.ifm.shape[2]
        ofm_height = op.ofm.shape[1]
        ofm_width = op.ofm.shape[2]

        stride_h_valid = ofm_height == 1 or stride_min <= stride_h <= stride_max_h

        _, optimized_stride = calc_resize_factor(ifm_width, stride_w) if stride_w > 1 else (1, stride_w)
        # Optimized stride indicates the final Conv2D stride width after all optimizations are performed
        can_optimize_stride_width_gt_3 = optimized_stride <= 3

        stride_w_valid = ofm_width == 1 or ((stride_min <= stride_w) and can_optimize_stride_width_gt_3)

        return (
            stride_h_valid and stride_w_valid,
            f"Op has stride WxH as: {stride_w}x{stride_h}, ifm shape as: {op.ifm.shape}, ofm shape as: {op.ofm.shape}",
        )

    @staticmethod
    def constraint_stride_range_no_padding(op):
        """Stride width must be greater than or equal to 1.
        For stride width greater than 3, valid padding needs to be used."""
        w, _ = op.get_kernel_stride()
        valid, message = TFLiteSupportedOperators.constraint_stride_width_no_upper_limit(op)
        padding = op.attrs.get("padding", None)
        is_optimized_with_valid_padding = padding in (None, Padding.VALID) or w <= 3
        valid = valid and is_optimized_with_valid_padding
        return valid, f"{message}, padding: {padding}"

    @staticmethod
    def constraint_depthwise_conv_stride(op):
        "Stride values for both width and height must be between 1 and 3"
        w, h = op.get_kernel_stride()
        stride_min, stride_max = 1, 3
        valid = (stride_min <= w <= stride_max) and (stride_min <= h <= stride_max)
        return valid, f"Op has stride WxH as: {w}x{h}"

    @staticmethod
    def constraint_tconv_stride(op):
        """Stride values for width and height must match one of the following criteria:
        Stride values WxH must be 1x1 or 2x2
        Stride WxH 2x1 supported if ifm height and kernel height = 1"""
        s_w = op.kernel.stride.x
        s_h = op.kernel.stride.y
        k_h = op.kernel.height
        i_h = op.ifm.shape[1]
        valid = False
        if s_w == 1 and s_h == 1:
            valid = True

        if s_w == 2 and s_h == 2:
            valid = True

        if s_w == 2 and s_h == 1 and i_h == 1 and k_h == 1:
            valid = True

        return valid, f"Op has ifm_height={i_h}, kernel_height={k_h} and stride WxH as {s_w}x{s_h}"

    @staticmethod
    def constraint_tconv_same(op):
        "SAME padding: OFM dimensions must equal IFM dimensions multiplied by stride"
        if op.attrs["padding"] == Padding.SAME:
            w = op.kernel.stride.x
            h = op.kernel.stride.y
            ifm_shape = op.ifm.shape
            ofm_shape = op.ofm.shape
            valid = (ofm_shape[1] == (ifm_shape[1] * h)) and (ofm_shape[2] == (ifm_shape[2] * w))
            return valid, f"Op has ifm_shape={ifm_shape}, ofm_shape={ofm_shape} and stride WxH as {w}x{h}"
        return True, "Op has padding=VALID"

    @staticmethod
    def constraint_tconv_valid(op):
        """VALID padding: OFM dimensions must equal IFM dimensions multiplied by stride,
        minus difference between kernel size and stride"""
        if op.attrs["padding"] == Padding.VALID:
            s_w = op.kernel.stride.x
            s_h = op.kernel.stride.y
            k_w = op.kernel.width
            k_h = op.kernel.height
            ifm_shape = op.ifm.shape
            ofm_shape = op.ofm.shape
            height_check = ofm_shape[1] == (ifm_shape[1] * s_h + max(k_h - s_h, 0))
            width_check = ofm_shape[2] == (ifm_shape[2] * s_w + max(k_w - s_w, 0))
            valid = height_check and width_check
            extra = (
                f"Op has ifm_shape={ifm_shape}, ofm_shape={ofm_shape},"
                f" stride WxH as {s_w}x{s_h} and kernel WxH as {k_w}x{k_h}"
            )
            return valid, extra
        return True, "Op has padding=SAME"

    @classmethod
    @docstring_format_args(filter_range)
    def constraint_filter_range(cls, op):
        "Kernel filter values for both width and height must be in the range [{}, {}]"
        if op.attrs["padding"] == Padding.SAME:
            sw, _ = op.get_kernel_stride()
            w = op.kernel.width
            h = op.kernel.height
            filter_min, filter_max = cls.filter_range
            valid = ((filter_min <= w <= filter_max) or sw == w) and (filter_min <= h <= filter_max)
            return valid, f"Op has kernel filter WxH as: {w}x{h}"
        return True, "Op has padding=VALID"

    @classmethod
    @docstring_format_args(filter_height_range)
    def constraint_filter_height_range(cls, op):
        "Kernel filter height must be in the range [{}, {}]"
        h = op.kernel.height
        filter_height_min, filter_height_max = cls.filter_height_range
        valid = filter_height_min <= h <= filter_height_max
        return valid, f"Op has kernel filter height as: {h}"

    @classmethod
    @docstring_format_args(filter_product_range)
    def constraint_filter_product_range(cls, op):
        "Product of kernel filter width and height must be in the range [{}, {}]"
        product = op.kernel.elements_wh()
        filter_product_min, filter_product_max = cls.filter_product_range
        valid = filter_product_min <= product <= filter_product_max
        return valid, f"Op has product of kernel filter width and height as: {product}"

    @staticmethod
    @docstring_format_args(filter_height_range)
    def constraint_filter_height_range_valid_pad(op):
        "VALID padding: Kernel filter height must be in the range [{}, {}]"
        if op.attrs["padding"] == Padding.VALID:
            return TFLiteSupportedOperators.constraint_filter_height_range(op)
        return True, "Op has padding=SAME"

    @staticmethod
    @docstring_format_args(filter_product_range)
    def constraint_filter_product_range_valid_pad(op):
        "VALID padding: Product of kernel filter width and height must be in the range [{}, {}]"
        if op.attrs["padding"] == Padding.VALID:
            return TFLiteSupportedOperators.constraint_filter_product_range(op)
        return True, "Op has padding=SAME"

    @staticmethod
    def constraint_resize(op):
        """The width and height of the IFM and OFM must match one of the following criteria:
        IFM W and H must both be 1
        IFM must match OFM
        W and H scaling must be equal and OFM W-1 and H-1 must be 2x/4x/8x IFM W-1 and H-1, if align_corners is True
        W and H scaling must be equal and OFM W and H must be 2x/4x/8x IFM W and H, if align_corners is False"""
        # Easier to start with False condition as very few cases result in a supported resize
        valid = False
        ifm_shape = op.ifm.shape
        ifm_shape_h = ifm_shape[1]
        ifm_shape_w = ifm_shape[2]
        ofm_shape = op.ofm.shape
        ofm_shape_h = ofm_shape[1]
        ofm_shape_w = ofm_shape[2]

        align_corners = op.attrs.get("align_corners", False)
        if len(ifm_shape) == 4:
            # Valid if IFM W and H are both 1, or IFM and OFM shape are the same
            if ((ifm_shape_h == 1) and (ifm_shape_w == 1)) or (ifm_shape == ofm_shape):
                valid = True
            else:
                # Valid if OFM is 2/4/8x IFM (-1 for align corners)
                if align_corners:
                    h_upscale_factor = (ofm_shape_h - 1) / (ifm_shape_h - 1)
                    w_upscale_factor = (ofm_shape_w - 1) / (ifm_shape_w - 1)
                else:
                    h_upscale_factor = ofm_shape_h / ifm_shape_h
                    w_upscale_factor = ofm_shape_w / ifm_shape_w

                # could use either height or width. save as int because it is more usable later in graph optimiser
                op.attrs["upscale_factor"] = int(h_upscale_factor)
                valid = h_upscale_factor == w_upscale_factor and h_upscale_factor in (2.0, 4.0, 8.0)

        return valid, f"Op has ifm_shape={ifm_shape}, ofm_shape={ofm_shape} and align_corners={align_corners}"

    @staticmethod
    def constraint_resize_size(op):
        "The size tensor must match the output tensor shape"
        valid = False
        ofm_shape = op.ofm.shape
        size_h, size_w = None, None
        # check that the size tensor (the second input) exists, is not none, and has the correct values
        if len(op.inputs) == 2 and op.inputs[1] is not None and len(op.inputs[1].values) == 2:
            size_h, size_w = op.inputs[1].values
            # check size and output size match
            if size_h == ofm_shape[1] and size_w == ofm_shape[2]:
                valid = True

        return valid, f"Op has size={size_h}x{size_w} and ofm_shape={ofm_shape}."

    @staticmethod
    def constraint_resize_attrs(op):
        "Both align_corners and half_pixel_centers can't be True"
        valid = True
        align_corners = op.attrs.get("align_corners", False)
        half_pixel_centers = op.attrs.get("half_pixel_centers", False)

        if align_corners and half_pixel_centers:
            valid = False
        return valid, "Op has both align_corners and half_pixel_centers set to True."

    @staticmethod
    def constraint_resizebi_half_pixel_centers_dims(op):
        """For half_pixel_centers the width and height of the IFM and OFM must match one of the following criteria:
        IFM W and H are both 1
        OFM W and H is 2x IFM W and H"""
        half_pixel_centers = op.attrs.get("half_pixel_centers", False)
        if not half_pixel_centers:
            valid = True
        elif len(op.ifm.shape) >= 3:
            ifm_h, ifm_w = op.ifm.shape[-3:-1]
            ofm_h, ofm_w = op.ofm.shape[-3:-1]
            if ifm_h == 1 and ifm_w == 1:
                valid = True
            else:
                valid = ofm_h / ifm_h == 2 and ofm_w / ifm_w == 2
        else:
            # Unexpected IFM shape
            valid = False
        return (
            valid,
            f"Op has ifm_shape={op.ifm.shape}, ofm_shape={op.ofm.shape} and half_pixel_centers={half_pixel_centers}",
        )

    @staticmethod
    def constraint_pad_shape(op):
        "The padding tensor must have the shape [3,2] or [4,2]"
        valid = op.inputs[1].shape in ([3, 2], [4, 2])
        return valid, f"The pad tensor has the shape: {op.inputs[1].shape}"

    @classmethod
    @docstring_format_args([list_formatter(supported_pad_dtypes)])
    def constraint_pad_type(cls, op):
        "Pad tensor must be of type: {}"
        pad_tensor = op.inputs[1]
        valid = pad_tensor.dtype in cls.supported_pad_dtypes
        return valid, f"Tensor '{pad_tensor.name}' has data type: {pad_tensor.dtype}"

    @staticmethod
    def constraint_padding_dimensions(op):
        "The pad tensor can only pad width and height"
        pad_tensor = op.inputs[1].values

        valid = sum(pad_tensor[-1, :]) == 0
        if valid and len(pad_tensor) > 3:
            valid = sum(pad_tensor[0, :]) == 0
        return valid, f"First dimension padding: {pad_tensor[0,:]}, last dimension padding: {pad_tensor[-1,:]}"

    @staticmethod
    def constraint_mirror_pad_padding_values(op):
        "The number of pad values for each direction must not be larger than the ifm size in that dimension"
        pad_tensor = op.inputs[1].values
        ifm_shape = op.inputs[0].shape
        for dim_padding, ifm_dim_shape in enumerate(pad_tensor, ifm_shape):
            if any(dim_padding > ifm_dim_shape):
                valid = False
        return valid, f"IFM shape: {ifm_shape}, number of padding values per dimension: {pad_tensor}"

    @staticmethod
    def constraint_stridedslice_stride_values(op):
        "All Strides values must be 1"
        strides = op.inputs[3]
        valid = all(stride == 1 for stride in strides.values)
        return valid, f"Op has strides values {strides.values}"

    @staticmethod
    def constraint_stridedslice_offset_false(op):
        "Offset attribute must be False"
        offset = op.attrs.get("offset", False)
        valid = offset is False
        return valid, f"Op has offset={offset}"

    @staticmethod
    def constraint_inputs_int32(op):
        "Both Input data types must be int32"
        ifm_dtype = op.ifm.dtype
        ifm2_dtype = op.ifm2.dtype
        valid = (ifm_dtype == DataType.int32) and (ifm2_dtype == DataType.int32)
        return valid, f"Op has ifm_dtype={ifm_dtype} and ifm2_dtype={ifm2_dtype}"

    @staticmethod
    def constraint_output_int32(op):
        "OFM must be int32"
        ofm_dtype = op.ofm.dtype
        valid = ofm_dtype == DataType.int32
        return valid, f"Op has ofm_dtype={ofm_dtype}"

    @staticmethod
    def constraint_matching_quantization_parameters(op):
        "Both Input quantization parameters must match OFM quantization parameters"
        valid = True
        extra = []
        if not check_quantized_tens_scaling_equal(op.ofm, op.ifm):
            valid = False
            extra.append(op.ifm.name)
        if op.ifm2 is not None and not check_quantized_tens_scaling_equal(op.ofm, op.ifm2):
            valid = False
            extra.append(op.ifm2.name)
        extra = ", ".join(extra)
        return valid, f"Op has tensors with different quantization parameters to the OFM '{op.ofm.name}': {extra}"

    @staticmethod
    def constraint_broadcast_shapes(op):
        "Broadcasting is only allowed for rank indices with dimension 1, from either IFM1 or IFM2"
        ifm_shape = op.ifm.shape
        ifm2_shape = op.ifm2.shape if op.ifm2 else None
        ofm_shape = op.ofm.shape
        valid = True
        if ifm_shape is not None and ifm2_shape is not None:
            # align trailing dimensions
            size = min(len(ifm_shape), len(ifm2_shape))
            for i, i2, o in zip(ifm_shape[-size:], ifm2_shape[-size:], ofm_shape[-size:]):
                mi = max(i, i2)
                # Input dimensions should match or one should be of dimension 1
                # Output dimension should match the largest input dimension, together
                # with constraint_match_either_shapes ensures broadcast from only one input
                if not (i == i2 or i == 1 or i2 == 1) or o != mi:
                    valid = False
                    break

        return valid, f"Op has ifm_shape={ifm_shape} and ifm2_shape={ifm2_shape}"

    @classmethod
    @docstring_format_args([mean_kernel_product_int8, mean_kernel_product_uint8, mean_kernel_product_int16])
    def constraint_mean_height_width_product(cls, op):
        """Product of reduced axes must be no greater than:
        - {} for signed 8-bit inputs.
        - {} for unsigned 8-bit inputs.
        - {} for signed 16-bit inputs."""
        shape = op.inputs[0].shape
        if op.inputs[1].shape == []:
            axis = [int(op.inputs[1].values)]
        else:
            axis = list(op.inputs[1].values)

        # compute the product of the shape of all reduced axes
        axis_shapes = [shape[ax] for ax in axis]
        prod = np.prod(axis_shapes)

        if op.ifm.dtype == DataType.int16:
            max_prod = cls.mean_kernel_product_int16
            datatype = "int16"
        elif op.ifm.dtype == DataType.uint8:
            max_prod = cls.mean_kernel_product_uint8
            datatype = "uint8"
        else:
            max_prod = cls.mean_kernel_product_int8
            datatype = "int8"
        return prod <= max_prod, f"Datatype is {datatype}, product of axes is {prod}"

    @classmethod
    @docstring_format_args([mean_reduced_axis_max_size])
    def constraint_mean_width(cls, op):
        """If Width axis is reduced its shape must be no greater than {}."""
        shape = op.inputs[0].shape
        hi = 0 if len(shape) < 4 else 1
        h, w = shape[hi : hi + 2]
        max_width = cls.mean_reduced_axis_max_size
        return w <= max_width, f"Width is {w}"

    @classmethod
    @docstring_format_args([mean_reduced_axis_max_size])
    def constraint_mean_depth(cls, op):
        """If Depth axis is reduced its shape must be no greater than {}."""
        max_depth = cls.mean_reduced_axis_max_size
        shape = op.inputs[0].shape

        if op.inputs[1].shape == []:
            axis = [int(op.inputs[1].values)]
        else:
            axis = list(op.inputs[1].values)

        depth_idx = len(shape) - 1

        supported = True
        if depth_idx in axis and shape[-1] > max_depth:
            supported = False

        return supported, f"Depth is {shape[-1]}, shape is {shape}, axis is {axis}"

    @staticmethod
    def constraint_reshape_shape_constant(op):
        "Shape must be constant"
        valid = True
        extra = []

        # if a reshape tensor is specified then it must be constant
        if len(op.inputs) > 1:
            reshape_tens = op.inputs[1]
            if reshape_tens is not None:
                # constant inputs have either no driving operator or a const one
                # create a list of non-constant inputs
                if not (len(reshape_tens.ops) == 0 or reshape_tens.ops[0].type == Op.Const):
                    valid = False
                    extra.append(reshape_tens.name)
        extra = ", ".join(extra)

        return valid, f"Op has non-const input(s): {extra}"

    @staticmethod
    def constraint_argmax_axis(op):
        "Operation must be performed along the depth axis"
        inp_dims = len(op.inputs[0].shape)
        axis = op.inputs[1].values
        return (
            axis in (inp_dims - 1, -1),
            f"Axis is {axis} and number of input dimensions is {inp_dims}",
        )

    @staticmethod
    def constraint_argmax_depth(op):
        "IFM depth must be no greater than 127"
        ifm_depth = op.inputs[0].shape[-1]
        return ifm_depth <= 127, f"IFM depth is {ifm_depth}"

    @staticmethod
    def constraint_lstm_no_cifg(op):
        "Must not use CIFG"
        cifg = None not in op.inputs[2:5] + op.inputs[6:9]
        cifg = cifg and op.inputs[1] is None
        cifg = cifg and op.inputs[5] is None
        return not cifg, "Op uses CIFG"

    @staticmethod
    def constraint_lstm_no_peep_hole(op):
        "Must not use Peephole"
        valid = all([tens is None for tens in op.inputs[9:12]])
        return valid, "Op uses peephole"

    @staticmethod
    def constraint_lstm_no_projection(op):
        "Must not use Projection"
        valid = all([tens is None for tens in op.inputs[16:18]])
        return valid, "Op uses projection"

    @staticmethod
    def constraint_lstm_no_normalisation(op):
        "Must not use Normalisation"
        valid = all([tens is None for tens in op.inputs[20:24]])
        return valid, "Op uses normalisation"

    @staticmethod
    def constraint_lstm_weights(op):
        "All input and recurrent weights must be available"
        valid = None not in op.inputs[1:9]
        return valid, "Op has missing weights"

    @staticmethod
    def constraint_lstm_weight_dimensions(op):
        "All recurrent weights must be 2D"
        valid = all([len(input.shape) == 2 for input in op.inputs[5:9]])
        return valid, "Op recurrent weights are not 2D"

    @staticmethod
    def constraint_rsqrt_input_int8(op):
        "IFM must be int8"
        ifm_dtype = op.ifm.dtype
        valid = ifm_dtype == DataType.int8
        return valid, f"Op has ifm_dtype={ifm_dtype}"

    @staticmethod
    def constraint_slice_inputs_const(op):
        "Begin and Size Input tensors must be constant"
        valid = True
        extra = []
        _, begin, sizes = op.inputs
        if begin.values is None:
            valid = False
            extra.append(f"Begin tensor '{begin.name}'")
        if sizes.values is None:
            valid = False
            extra.append(f"Size tensor '{sizes.name}'")
        extra = ", ".join(extra)
        return valid, f"Op has non-constant tensors: {extra}"

    @staticmethod
    def constraint_transpose(op):
        """The following shape/permutations are supported for transpose:
        When ifm rank is 2: WxC -> CxW
        When ifm rank is 3: HxWxC -> WxHxC, 1xWxC -> 1xCxW, Hx1xC -> Cx1xH
        When ifm rank is 4: 1xHxWxC -> 1xWxHxC, 1x1xWxC -> 1x1xCxW, 1xHx1xC -> 1xCx1xW"""

        ifm_shape = op.inputs[0].shape
        perm = op.inputs[1]

        # WxC -> CxW
        valid = len(ifm_shape) == 2

        # HxWxC -> WxHxC
        if not valid and perm.shape == [3]:
            valid = perm.values[0] == 1 and perm.values[1] == 0

        # 1xWxC -> 1xCxW
        if not valid and perm.shape == [3] and ifm_shape[0] == 1:
            valid = perm.values[1] == 2 and perm.values[2] == 1

        # Hx1xC -> Cx1xH
        if not valid and perm.shape == [3] and ifm_shape[1] == 1:
            valid = perm.values[0] == 2 and perm.values[2] == 0

        # 1xHxWxC -> 1xWxHxC
        if not valid and perm.shape == [4]:
            valid = perm.values[0] == 0 and perm.values[1] == 2 and perm.values[2] == 1

        # 1x1xWxC -> 1x1xCxW
        if not valid and perm.shape == [4] and ifm_shape[1] == 1:
            valid = perm.values[0] == 0 and perm.values[2] == 3 and perm.values[3] == 2

        # 1xHx1xC -> 1xCx1xH
        if not valid and perm.shape == [4] and ifm_shape[2] == 1:
            valid = perm.values[0] == 0 and perm.values[1] == 3 and perm.values[3] == 1

        return valid, f"Op has ifm_shape: {ifm_shape} and permutation is: {perm.values}"