aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/tflite_model_semantic.py
blob: 1c258de8fdb8c98fd0286093e5ada6f4bafccd52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
# SPDX-FileCopyrightText: Copyright 2021-2023 Arm Limited and/or its affiliates <open-source-office@arm.com>
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Description:
# The TFLiteSemantic class which is a collection of TensorFlow lite model semantic checks.
from collections import defaultdict

import numpy as np

from .data_type import BaseType
from .data_type import DataType
from .numeric_util import is_integer
from .operation import Op
from .supported_operators_util import docstring_format_args
from .supported_operators_util import list_formatter
from .tensor import check_quantized_tens_scaling_equal
from .tensor import shape_num_elements
from .tflite_mapping import BUILTIN_OPERATOR_UNKNOWN
from .tflite_mapping import optype_to_builtintype


def _optype_formatter(op_list):
    # Convert internal op types to external names
    output = map(optype_to_builtintype, op_list)
    # Remove UNKNOWNs
    output = (x for x in output if x is not BUILTIN_OPERATOR_UNKNOWN)
    return list_formatter(output)


class TFLiteSemantic:
    # Categorised lists of operators
    convolution_ops = set(
        (
            Op.Conv2DBias,
            Op.Conv2D,
            Op.QuantizedConv2D,
        )
    )
    depthwise_convolution_ops = set((Op.DepthwiseConv2DBias,))
    transpose_convolution_ops = set((Op.Conv2DBackpropInput,))
    convolution_like_ops = convolution_ops | depthwise_convolution_ops | transpose_convolution_ops
    max_pooling_ops = Op.op_set(Op.is_maxpool_op)
    avg_pooling_ops = Op.op_set(Op.is_avgpool_op)
    pooling_ops = set((Op.ReduceSum,)) | max_pooling_ops | avg_pooling_ops
    unary_elem_wise_main_ops = Op.op_set(Op.is_unary_elementwise_op)
    binary_elem_wise_min_max_ops = set(
        (
            Op.Minimum,
            Op.Maximum,
        )
    )
    binary_elem_wise_shift_ops = set(
        (
            Op.SHL,
            Op.SHR,
        )
    )
    binary_elem_wise_add_mul_sub = set(
        (
            Op.Add,
            Op.Mul,
            Op.Sub,
        )
    )
    binary_elem_wise_main_ops = binary_elem_wise_min_max_ops | binary_elem_wise_add_mul_sub | binary_elem_wise_shift_ops
    elem_wise_main_ops = binary_elem_wise_main_ops | unary_elem_wise_main_ops | set((Op.SquaredDifference,))
    shapeless_input_ops = binary_elem_wise_main_ops | set(
        (Op.Split, Op.SplitV, Op.Mean, Op.ExpandDims, Op.Quantize, Op.ArgMax)
    )
    reshape_ops = set(
        (
            Op.Reshape,
            Op.QuantizedReshape,
            Op.Squeeze,
            Op.ExpandDims,
        )
    )

    def __init__(self):
        # Setup the generic constraints. Note: the order matters
        self.generic_constraints = []
        self.generic_constraints.append(TFLiteSemantic.constraint_attributes_specified)
        self.generic_constraints.append(TFLiteSemantic.constraint_tens_no_dynamic)
        self.generic_constraints.append(TFLiteSemantic.constraint_tens_defined_shape)
        self.generic_constraints.append(TFLiteSemantic.constraint_tens_output_scalar)
        self.generic_constraints.append(TFLiteSemantic.constraint_tens_input_scalar)
        self.generic_constraints.append(TFLiteSemantic.constraint_tens_shape_size)

        self.generic_constraints.append(TFLiteSemantic.constraint_tens_quant_none_check)
        self.generic_constraints.append(TFLiteSemantic.constraint_tens_quant_scale)
        self.generic_constraints.append(TFLiteSemantic.constraint_quant_scale_inf)
        self.generic_constraints.append(TFLiteSemantic.constraint_none_const_tensors)

        # Setup specific constraints. Note: the order matters
        self.specific_constraints = defaultdict(list)

        # Conv-like checks:
        for op_type in TFLiteSemantic.convolution_like_ops:
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_stride_type)
            if op_type in TFLiteSemantic.convolution_ops:
                # Only Conv has groups
                self.specific_constraints[op_type].append(TFLiteSemantic.constraint_conv_groups_ifm_depth)
                self.specific_constraints[op_type].append(TFLiteSemantic.constraint_conv_groups_num_filters)
            if op_type not in TFLiteSemantic.transpose_convolution_ops:
                # Transpose Conv does not contain dilation
                self.specific_constraints[op_type].append(TFLiteSemantic.constraint_dilation_type)

        # Pooling checks:
        for op_type in TFLiteSemantic.pooling_ops:
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_stride_type)
        # AVG pooling specific checks:
        for op_type in TFLiteSemantic.avg_pooling_ops:
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_in_out_types)
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_filter_type)
        # MAX pooling specific checks:
        for op_type in TFLiteSemantic.max_pooling_ops:
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_in_out_types)
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_filter_type)

        # Concat specific checks:
        for op_type in (Op.Concat, Op.ConcatTFLite):
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_axis_exists)
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_axis_valid)
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_dimensionality)
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_valid_dimensions)
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_valid_dimensions_axis)

        # Element-wise checks:
        for op_type in TFLiteSemantic.elem_wise_main_ops:
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_either_shapes)
        # Unary specific checks:
        for op_type in TFLiteSemantic.unary_elem_wise_main_ops:
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_in_out_types)
        # Binary Min/Max specific checks:
        for op_type in TFLiteSemantic.binary_elem_wise_min_max_ops:
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_in_out_types)
        # Binary Add/Mul/Sub specific checks:
        for op_type in TFLiteSemantic.binary_elem_wise_add_mul_sub:
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_inputs_types)
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_signed)
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_unsigned_valid)

        # Ops reshaping dimensions: Reshape, Squeeze and ExpandDims
        for op_type in TFLiteSemantic.reshape_ops:
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_in_out_quant)
            self.specific_constraints[op_type].append(TFLiteSemantic.constraint_matching_in_out_elements)

        # Softmax specific checks:
        self.specific_constraints[Op.Softmax].append(TFLiteSemantic.constraint_matching_shapes)
        self.specific_constraints[Op.Softmax].append(TFLiteSemantic.constraint_matching_in_out_types)
        self.specific_constraints[Op.Softmax].append(TFLiteSemantic.constraint_beta_value_range)

        # Split specific checks:
        self.specific_constraints[Op.Split].append(TFLiteSemantic.constraint_split_axis)
        self.specific_constraints[Op.Split].append(TFLiteSemantic.constraint_split_num_splits)

        # SplitV specific checks:
        self.specific_constraints[Op.SplitV].append(TFLiteSemantic.constraint_splitv_inferred)

        # StridedSlice specific checks:
        self.specific_constraints[Op.StridedSlice].append(TFLiteSemantic.constraint_stridedslice_input_count)
        self.specific_constraints[Op.StridedSlice].append(TFLiteSemantic.constraint_stridedslice_inputs_const)
        self.specific_constraints[Op.StridedSlice].append(TFLiteSemantic.constraint_ellipsis_mask)
        self.specific_constraints[Op.StridedSlice].append(TFLiteSemantic.constraint_axis_masks)
        self.specific_constraints[Op.StridedSlice].append(TFLiteSemantic.constraint_slice_ranges)

        # FullyConnected specific checks:
        self.specific_constraints[Op.FullyConnected].append(TFLiteSemantic.constraint_fc_output_2d)
        self.specific_constraints[Op.FullyConnected].append(TFLiteSemantic.constraint_keep_dim_ifm_ofm)

        # Pad specific checks:
        self.specific_constraints[Op.Pad].append(TFLiteSemantic.constraint_pad_input_count)
        self.specific_constraints[Op.Pad].append(TFLiteSemantic.constraint_pad_constant)
        self.specific_constraints[Op.Pad].append(TFLiteSemantic.constraint_pad_output_shape)

        # HardSwish specific checks:
        self.specific_constraints[Op.HardSwish].append(TFLiteSemantic.constraint_input_8bit)
        self.specific_constraints[Op.HardSwish].append(TFLiteSemantic.constraint_matching_in_out_types)

        # Mean specific checks:
        self.specific_constraints[Op.Mean].append(TFLiteSemantic.constraint_mean_input_dims)
        self.specific_constraints[Op.Mean].append(TFLiteSemantic.constraint_mean_axis)

        # ArgMax specific checks:
        self.specific_constraints[Op.ArgMax].append(TFLiteSemantic.constraint_input_8bit)
        self.specific_constraints[Op.ArgMax].append(TFLiteSemantic.constraint_argmax_output)

        # UnidirectionalSequenceLstm specific checks:
        self.specific_constraints[Op.UnidirectionalSequenceLstm].append(TFLiteSemantic.constraint_input_signed)
        self.specific_constraints[Op.UnidirectionalSequenceLstm].append(TFLiteSemantic.constraint_matching_in_out_types)
        self.specific_constraints[Op.UnidirectionalSequenceLstm].append(TFLiteSemantic.constraint_lstm_dimensions)
        self.specific_constraints[Op.UnidirectionalSequenceLstm].append(TFLiteSemantic.constraint_lstm_inputs)
        self.specific_constraints[Op.UnidirectionalSequenceLstm].append(TFLiteSemantic.constraint_lstm_intermediates)
        self.specific_constraints[Op.UnidirectionalSequenceLstm].append(TFLiteSemantic.constraint_lstm_variables)

        # Exp specific checks
        self.specific_constraints[Op.Exp].append(TFLiteSemantic.constraint_input_signed)

        # Transpose specific checks
        self.specific_constraints[Op.Transpose].append(TFLiteSemantic.constraint_transpose_permutation_size)
        self.specific_constraints[Op.Transpose].append(TFLiteSemantic.constraint_transpose_permutation_values)

    def is_operator_semantic_valid(self, op):
        ext_type = optype_to_builtintype(op.type)

        if op.type in (Op.Placeholder, Op.SubgraphInput, Op.Const):
            return True

        # Generic constraints list filtered out to exclude certain constraints depending on op.type
        filtered_generic_constraints = []

        for constraint in self.generic_constraints:
            # Check constraint not in dictionary otherwise return empty array
            if constraint not in self.get_generic_constraint_exclude_list().get(op.type, []):
                filtered_generic_constraints.append(constraint)

        for constraint in filtered_generic_constraints + self.specific_constraints[op.type]:
            valid, extra = constraint(op)
            if not valid:
                print(
                    f"Warning: Unsupported TensorFlow Lite semantics for {ext_type} '{op.name}'. Placing on CPU instead"
                )
                print(f" - {constraint.__doc__}")
                if extra:
                    print(f"   {extra}")
                return False

        return True

    @staticmethod
    def get_generic_constraint_exclude_list():

        # Not all generic constraints can be applied to each operator
        generic_constraints_exclude_list = {
            Op.Shape: [
                TFLiteSemantic.constraint_tens_quant_none_check,
            ],
            Op.Quantize: [
                TFLiteSemantic.constraint_tens_no_dynamic,
                TFLiteSemantic.constraint_tens_output_scalar,
            ],
            Op.ArgMax: [
                TFLiteSemantic.constraint_tens_quant_none_check,
            ],
            Op.Transpose: [
                TFLiteSemantic.constraint_tens_quant_none_check,
            ],
            Op.MirrorPad: [
                TFLiteSemantic.constraint_tens_quant_none_check,
            ],
        }
        return generic_constraints_exclude_list

    @staticmethod
    def constraint_none_const_tensors(op):
        "Constant tensors should not have NoneType-values"
        valid = True
        extra = ""
        for tens in filter(None, op.inputs):
            if len(tens.ops) > 0 and tens.ops[0].type == Op.Const and tens.values is None:
                valid = False
                extra = str(tens.name)
        return valid, f"Unexpected None value for constant tensor: {extra}"

    @staticmethod
    def constraint_attributes_specified(op):
        "All required operator attributes must be specified"
        # operators that have been created internally (i.e. not created as part of reading an input network) may not
        # have the read error attribute
        attribute_read_error = op.attrs.get("attribute_read_error", [])
        valid = len(attribute_read_error) == 0
        extra = ", ".join(attribute_read_error)
        return valid, f"Op has missing attributes: {extra}"

    @staticmethod
    def constraint_tens_no_dynamic(op):
        "Input(s) and Output tensors must not be dynamic"
        valid = True
        extra = []
        tensors = [tens for tens in op.inputs + op.outputs if tens]
        for tens in tensors:
            if (tens.shape == []) and (tens.values is None):
                valid = False
                extra.append(tens.name)
        extra = ", ".join(extra)
        return valid, f"Op has dynamic tensor(s): {extra}"

    @staticmethod
    def constraint_tens_defined_shape(op):
        "Input(s) and Output tensors must have a defined shape"
        valid = True
        extra = []
        tensors = [tens for tens in op.inputs + op.outputs if tens]
        for tens in tensors:
            if not tens.has_fully_defined_shape():
                valid = False
                extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}")
        return valid, ", ".join(extra)

    @staticmethod
    def constraint_tens_output_scalar(op):
        "Output tensors cannot be scalar"
        ofm = op.ofm
        valid = ofm.shape != []
        return valid, f"Output Tensor '{ofm.name}' is scalar"

    @classmethod
    @docstring_format_args([_optype_formatter(shapeless_input_ops)])
    def constraint_tens_input_scalar(cls, op):
        "Scalar Input tensors are only valid for op type: {}"
        valid = True
        extra = []
        tensors = [tens for tens in op.inputs if tens]
        for tens in tensors:
            if (tens.shape == []) and (op.type not in cls.shapeless_input_ops):
                valid = False
                extra.append(tens.name)
        extra = ", ".join(extra)
        return valid, f"Op has scalar input tensor(s): {extra}"

    @staticmethod
    def constraint_tens_shape_size(op):
        "Input(s) and Output tensors must not be greater than 4D"
        valid = True
        extra = []
        tensors = [tens for tens in op.inputs + op.outputs if tens]
        for tens in tensors:
            if len(tens.shape) > 4:
                valid = False
                extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}")
        return valid, ", ".join(extra)

    @staticmethod
    def constraint_tens_quant_none_check(op):
        "Input(s), Output and Weight tensors must have quantization parameters"
        valid = True
        extra = []
        tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
        for tens in tensors:
            if tens.quantization is None:
                valid = False
                extra.append(tens.name)
        extra = ", ".join(extra)
        return valid, f"Op has tensors with missing quantization parameters: {extra}"

    @staticmethod
    def constraint_tens_quant_scale(op):
        "Input(s), Output and Weight tensors with quantization scales must be finite"
        valid = True
        extra = []
        tensors = [tens for tens in op.get_ifm_ifm2_weights_ofm() if tens]
        for tens in tensors:
            if (
                tens.quantization
                and tens.quantization.scale_f32 is not None
                and np.isinf(tens.quantization.scale_f32).any()
            ):
                valid = False
                extra.append(f"Tensor '{tens.name}' has quantization scale: {tens.quantization.scale_f32}")
        return valid, ", ".join(extra)

    @staticmethod
    def constraint_fc_output_2d(op):
        """The output tensor(s) must have 2D shape"""
        valid = op.ifm.get_shape_as_2d(op.weights.shape[-2]) is not None
        extra = f"Op has non-2D output tensor '{op.ofm.name}'" if not valid else ""

        return valid, extra

    @staticmethod
    def constraint_stride_type(op):
        "Stride values for both width and height must be integer types"
        w, h = op.get_kernel_stride()
        valid = is_integer(w) and is_integer(h)
        return valid, f"Op has stride WxH as: {repr(w)}x{repr(h)}"

    @staticmethod
    def constraint_conv_groups_ifm_depth(op):
        """IFM depth must be a whole multiple of the filter kernel depth"""
        ifm_depth = op.ifm.shape[-1]  # nhwc
        kernel_ic = op.weights.shape[-2]  # hwio
        num_conv_groups = ifm_depth // kernel_ic

        if ifm_depth % kernel_ic == 0:
            op.attrs["num_conv_groups"] = num_conv_groups
            valid = True
        else:
            valid = False

        return valid, f"IFM depth = {ifm_depth} and filter kernel depth = {kernel_ic}"

    @staticmethod
    def constraint_conv_groups_num_filters(op):
        """Number of filter kernels must be equally divisible by the number of convolution groups"""
        ifm_depth = op.ifm.shape[-1]  # nhwc
        kernel_ic = op.weights.shape[-2]  # hwio
        kernel_oc = op.weights.shape[-1]  # hwio
        num_conv_groups = ifm_depth // kernel_ic

        if kernel_oc % num_conv_groups == 0:
            valid = True
        else:
            valid = False

        return valid, f"Filter kernels = {kernel_oc} and convolution groups = {num_conv_groups}"

    @staticmethod
    def constraint_dilation_type(op):
        "Dilation factor values for both width and height must be integer types"
        w, h = op.get_kernel_dilation()
        valid = is_integer(w) and is_integer(h)
        return valid, f"Op has dilation factor WxH as: {repr(w)}x{repr(h)}"

    @staticmethod
    def constraint_quant_scale_inf(op):
        "Input and Output tensors must have quantization scales that fit within float32 precision"
        if op.ofm is not None and op.ofm.is_quantized():
            ofm_scale = op.ofm.quantization.scale_f32
            if np.any(ofm_scale < np.finfo(np.float32).tiny):
                return (
                    False,
                    f"The quantization scale of the output tensor is {ofm_scale}, "
                    + f"minimum supported is: {np.finfo(np.float32).tiny}",
                )
            if op.ifm is not None and op.ifm.is_quantized():
                ifm_scale = op.ifm.quantization.scale_f32
                if np.any(np.isinf(ifm_scale / ofm_scale)):
                    return (
                        False,
                        f"IFM scale divided by OFM scale is infinite, ifm_scale={ifm_scale} ofm_scale={ofm_scale}",
                    )
        return True, "Op's quantization is ok"

    @staticmethod
    def constraint_matching_in_out_types(op):
        "IFM and OFM data types must match"
        ifm_dtype = op.ifm.dtype
        ofm_dtype = op.ofm.dtype
        valid = ifm_dtype == ofm_dtype
        return valid, f"Op has ifm_dtype={ifm_dtype} and ofm_dtype={ofm_dtype}"

    @staticmethod
    def constraint_beta_value_range(op):
        "Beta value needs to be positive"
        beta = op.attrs.get("beta", 1.0)
        valid = beta >= 0
        return valid, f"Op has beta={beta}"

    @staticmethod
    def constraint_filter_type(op):
        "Kernel filter values for both width and height must be integer types"
        w = op.kernel.width
        h = op.kernel.height
        valid = is_integer(w) and is_integer(h)
        return valid, f"Op has kernel filter WxH as: {repr(w)}x{repr(h)}"

    @staticmethod
    def constraint_matching_shapes(op):
        "IFM and OFM shapes must match"
        ifm_shape = op.ifm.shape
        ofm_shape = op.ofm.shape
        valid = ifm_shape == ofm_shape
        return valid, f"Op has ifm_shape={ifm_shape} and ofm_shape={ofm_shape}"

    @staticmethod
    def constraint_split_axis(op):
        "Axis value must be in the range [-RANK(IFM) to +RANK(IFM))"
        axis_tens = op.inputs[0]
        input_tens = op.inputs[1]
        dims = len(input_tens.shape)
        # handle axis being a scalar or 1-D array
        if axis_tens.values.ndim == 0:
            axis = int(axis_tens.values)
        else:
            axis = int(axis_tens.values[0])
        axis += dims if axis < 0 else 0
        valid = 0 <= axis < dims
        return valid, f"Op has ifm_dimensions={dims} and axis value is: {axis}"

    @staticmethod
    def constraint_split_num_splits(op):
        "Axis must be divisible by number of splits"
        num_splits = op.attrs.get("num_splits")
        axis_tens = op.inputs[0]
        input_tens = op.inputs[1]
        dims = len(input_tens.shape)
        # handle axis being a scalar or 1-D array
        if axis_tens.values.ndim == 0:
            axis = int(axis_tens.values)
        else:
            axis = int(axis_tens.values[0])
        axis += dims if axis < 0 else 0
        valid = input_tens.shape[axis] % num_splits == 0
        return valid, f"Op has ifm shape={input_tens.shape} axis={axis} num_splits={num_splits}"

    @staticmethod
    def constraint_splitv_inferred(op):
        "Only one size is allowed to be inferred"
        sizes = op.inputs[1].values
        valid = np.count_nonzero(sizes == -1) <= 1
        return valid, f"Op has multiple inferred sizes (-1): {sizes}"

    @staticmethod
    def constraint_axis_exists(op):
        "Axis attribute must exist"
        axis = op.attrs.get("axis")
        valid = axis is not None
        return valid, f"Op has axis={axis}"

    @staticmethod
    def constraint_axis_valid(op):
        "Axis attribute must be in the range [0, <ofm_dimensions>)"
        dims = len(op.ofm.shape)
        axis = op.attrs["axis"]
        axis += dims if axis < 0 else 0
        valid = 0 <= axis < dims
        return valid, f"Op has ofm_dimensions={dims} and axis attribute is: {axis}"

    @staticmethod
    def constraint_matching_dimensionality(op):
        "All Input dimensionalities must match OFM dimensionality"
        valid = True
        extra = []
        ofm_dim = len(op.ofm.shape)
        tensors = [tens for tens in op.inputs if tens]
        for tens in tensors:
            dim = len(tens.shape)
            if dim != ofm_dim:
                valid = False
                extra.append(f"Tensor '{tens.name}' has dimension: {dim}")
        extra = ", ".join(extra)
        return valid, f"Op has ofm_dimension={ofm_dim} and the list of mismatching inputs are: {extra}"

    @staticmethod
    def constraint_valid_dimensions(op):
        "All Input dimensions must match OFM dimension in all axes except the one defined by the axis attribute"
        valid = True
        extra = []
        ofm_shape = op.ofm.shape
        ofm_dim = len(ofm_shape)
        axis = op.attrs["axis"]
        axis += ofm_dim if axis < 0 else 0
        tensors = [tens for tens in op.inputs if tens]
        for tens in tensors:
            if any(tens.shape[dim] != ofm_shape[dim] for dim in range(ofm_dim) if dim != axis):
                valid = False
                extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}")
        extra = ", ".join(extra)
        return valid, f"Op has axis={axis}, ofm_shape={ofm_shape} and the list of mismatching inputs are: {extra}"

    @staticmethod
    def constraint_valid_dimensions_axis(op):
        """The size of the OFM axis must match the sum of all IFM axis defined by the axis attribute"""
        valid = True
        extra = []
        ofm_shape = op.ofm.shape
        ofm_dim = len(ofm_shape)
        axis = op.attrs["axis"]
        axis += ofm_dim if axis < 0 else 0

        sum_ifm_axis = 0
        tensors = [tens for tens in op.inputs if tens]
        for tens in tensors:
            sum_ifm_axis += tens.shape[axis]
            extra.append(f"Tensor '{tens.name}' has shape: {tens.shape}")

        valid = sum_ifm_axis == ofm_shape[axis]
        extra = ", ".join(extra)
        return valid, f"Op has axis={axis}, ofm_shape={ofm_shape} and the list of mismatching inputs are: {extra}"

    @staticmethod
    def constraint_stridedslice_input_count(op):
        "Exactly 4 Input tensors are required"
        inputs = len(op.inputs)
        valid = inputs == 4
        return valid, f"Op has {inputs} inputs"

    @staticmethod
    def constraint_pad_input_count(op):
        "Number of input tensors must be exactly 2"
        inputs = len(op.inputs)
        valid = inputs == 2
        return valid, f"Op has {inputs} inputs"

    @staticmethod
    def constraint_pad_constant(op):
        "The padding tensor must be constant"
        pad_tensor = op.inputs[1].values
        valid = pad_tensor is not None
        return valid, f"Op has non-constant padding tensor: {op.inputs[1].values}"

    @staticmethod
    def constraint_pad_output_shape(op):
        "Shape of output tensor must equal to size of input tensor plus padding"
        input_shape = op.inputs[0].shape
        expected_output_shape = op.outputs[0].shape
        pad_tensor = op.inputs[1].values
        actual_output_shape = input_shape + pad_tensor.T[0] + pad_tensor.T[1]
        valid = np.array_equal(actual_output_shape, expected_output_shape)
        return valid, f"Op has wrong output tensor shape: {expected_output_shape}, has shape: {actual_output_shape}"

    @staticmethod
    def constraint_stridedslice_inputs_const(op):
        "Begin, End and Stride Input tensors must be constant"
        valid = True
        extra = []
        _, begin, end, strides = op.inputs
        if begin.values is None:
            valid = False
            extra.append(f"Begin tensor '{begin.name}'")
        if end.values is None:
            valid = False
            extra.append(f"End tensor '{end.name}'")
        if strides.values is None:
            valid = False
            extra.append(f"Stride tensor '{strides.name}'")
        extra = ", ".join(extra)
        return valid, f"Op has non-constant tensors: {extra}"

    @staticmethod
    def constraint_ellipsis_mask(op):
        "ellipsis_mask must be 0"
        ellipsis = op.attrs["ellipsis_mask"]
        valid = ellipsis == 0
        return valid, f"Op has ellipsis mask as: {ellipsis}"

    @staticmethod
    def constraint_axis_masks(op):
        "new_axis_mask and shrink_axis_mask cannot both be set"
        new_axis = op.attrs["new_axis_mask"]
        shrink_axis = op.attrs["shrink_axis_mask"]
        valid = (new_axis == 0) or (shrink_axis == 0)
        return valid, f"Op has new_axis_mask={new_axis} and shrink_axis_mask={shrink_axis}"

    def _get_slice_offsets(input_shape, offset_tens, offset_mask, is_begin=True):
        # For strided slice operator: get start or end offsets
        # input_shape: List[int], offset_tens: Tensor, offset_mask: int, is_begin: bool = True
        offsets = len(input_shape) * [0] if is_begin else input_shape[:]
        for idx in range(len(input_shape)):
            # If the i:th bit in the mask is not set then the value in offset_tens[i] should be used, otherwise it
            # should be ignored
            if (offset_mask & (1 << idx)) == 0:
                offsets[idx] = offset_tens.values[idx]
                if offsets[idx] < 0:
                    # Convert negative indexing to positive ones
                    offsets[idx] += input_shape[idx]
        return offsets

    @staticmethod
    def constraint_slice_ranges(op):
        "Slice 'end' values must be greater than 'begin' values"
        ifm, begin, end, _ = op.inputs
        shrink_axis_mask = op.attrs["shrink_axis_mask"]
        # Calculate offset begin/end
        offset_begin = TFLiteSemantic._get_slice_offsets(ifm.shape, begin, op.attrs["begin_mask"], is_begin=True)
        offset_end = TFLiteSemantic._get_slice_offsets(ifm.shape, end, op.attrs["end_mask"], is_begin=False)
        # Check "end - begin" doesn't result in any zero or negative elements
        valid = True
        # if a shrink mask bit is set then the end position provided by the operation should be ignored, and instead a
        # new end position should be calculated so that calculations in the graph optimiser, such as (end - start),
        # result in the correct value. otherwise, we just need to check that the begin and end values are valid
        for i in range(len(ifm.shape)):
            if (shrink_axis_mask & (1 << i)) != 0:
                offset_end[i] = offset_begin[i] + 1
            else:
                if offset_end[i] <= offset_begin[i]:
                    valid = False

        op.attrs["offset_begin"] = offset_begin
        op.attrs["offset_end"] = offset_end
        return valid, f"Op has begin_values={begin.values} and end_values={end.values}"

    @staticmethod
    def constraint_matching_inputs_types(op):
        "Both Input data types must match"
        ifm_dtype = op.ifm.dtype
        ifm2_dtype = op.ifm2.dtype
        valid = ifm_dtype == ifm2_dtype
        return valid, f"Op has ifm_dtype={ifm_dtype} and ifm2_dtype={ifm2_dtype}"

    @staticmethod
    def constraint_matching_signed(op):
        "For IFM that are signed, OFM must also be signed"
        valid = True
        ifm_dtype = op.ifm.dtype
        ofm_dtype = op.ofm.dtype
        if ifm_dtype.type & BaseType.Signed:
            valid = bool(ofm_dtype.type & BaseType.Signed)
        return valid, f"Op has ifm_dtype={ifm_dtype} and ofm_dtype={ofm_dtype}"

    @staticmethod
    def constraint_unsigned_valid(op):
        "For IFM that are unsigned, OFM must either be the same type or int32"
        valid = True
        ifm_dtype = op.ifm.dtype
        ofm_dtype = op.ofm.dtype
        if ifm_dtype.type & BaseType.Unsigned:
            valid = (ifm_dtype == ofm_dtype) or (ofm_dtype == DataType.int32)
        return valid, f"Op has ifm_dtype={ifm_dtype} and ofm_dtype={ofm_dtype}"

    @staticmethod
    def constraint_input_signed(op):
        "IFM must be int8 or int16"
        ifm_dtype = op.ifm.dtype
        valid = (ifm_dtype == DataType.int8) or (ifm_dtype == DataType.int16)
        return valid, f"Op has ifm_dtype={ifm_dtype}"

    @staticmethod
    def constraint_input_8bit(op):
        "IFM must be int8 or uint8"
        ifm_dtype = op.ifm.dtype
        valid = (ifm_dtype == DataType.int8) or (ifm_dtype == DataType.uint8)
        return valid, f"Op has ifm_dtype={ifm_dtype}"

    @staticmethod
    def constraint_argmax_output(op):
        "OFM must be int32 or int64"
        ofm_dtype = op.ofm.dtype
        valid = ofm_dtype in (DataType.int32, DataType.int64)
        return valid, f"Op has ofm_dtype={ofm_dtype}"

    @staticmethod
    def constraint_matching_either_shapes(op):
        "At least one Input's shape must match the OFM's shape"
        ifm_shape = op.ifm.shape
        ifm2_shape = op.ifm2.shape if op.ifm2 else None
        ofm_shape = op.ofm.shape
        valid = (ifm_shape == ofm_shape) or (ifm2_shape == ofm_shape)
        return valid, f"Op has ifm_shape={ifm_shape}, ifm2_shape={ifm2_shape} and ofm_shape={ofm_shape}"

    @staticmethod
    def constraint_keep_dim_ifm_ofm(op):
        "The IFM and OFM must have the same number of dimensions if keep_num_dims is set to true"
        valid = True
        if op.attrs.get("keep_num_dims"):
            valid = len(op.ifm.shape) == len(op.ofm.shape)
        return valid, f"Op has ifm shape={op.ifm.shape} and ofm shape={op.ofm.shape}"

    @staticmethod
    def constraint_mean_input_dims(op):
        "Input tensor must be at least 2D"
        dims = len(op.inputs[0].shape)
        return 2 <= dims <= 4, f"Input is {dims}D"

    @staticmethod
    def constraint_mean_axis(op):
        """Requirements for axis parameter:
        When IFM tensor is 2D:
          - Reduction in both axes is supported.
        When IFM tensor is 3D or 4D:
          - Reduction in Batch axis is only supported if batch size is 1.
          - Reduction in both Height and Width axes is supported.
          - Reduction in Depth axis is supported if at least one of H,W,C are of size 1."""
        input_shape = op.inputs[0].shape
        dims = len(input_shape)
        if op.inputs[1].shape == []:
            axis = [int(op.inputs[1].values)]
        else:
            axis = list(op.inputs[1].values)
        valid = True

        for ax in axis:
            if ax < 0 or ax >= dims:
                return False, "Axis parameter is out of bounds. axis: {axis}, dims: {dims}. "

            # Batch is only supported if batch shape is 1
            if dims == 4 and ax == 0:
                if input_shape[0] != 1:
                    valid = False
                    break

            # Depth is supported if any of h,w,c == 1
            if dims == 3:
                if ax == 2 and not any([s == 1 for s in input_shape]):
                    valid = False
                    break

            # Depth is supported if any of h,w,c == 1
            if dims == 4:
                if ax == 3 and not any([s == 1 for s in input_shape[1:]]):
                    valid = False
                    break

        return valid, f"Shape is {input_shape}, Axis is {axis}."

    @staticmethod
    def constraint_matching_in_out_quant(op):
        "Input and output quantisation must match."
        if not check_quantized_tens_scaling_equal(op.ifm, op.ofm):
            return False, "IFM and OFM quantisation parameters are not equal."
        return True, "IFM and OFM quantisation parameters matches."

    @staticmethod
    def constraint_matching_in_out_elements(op):
        "Input and output number of elements must match."
        if shape_num_elements(op.ifm.shape) != shape_num_elements(op.ofm.shape):
            return False, f"IFM {op.ifm.shape} and OFM {op.ofm.shape} number of elements are not equal."
        return True, "IFM and OFM number of elements are equal."

    @staticmethod
    def constraint_lstm_dimensions(op):
        "IFM and OFM must have 3D shape"
        valid = len(op.ifm.shape) == len(op.ofm.shape) == 3
        return valid, f"Op has ifm shape {op.ifm.shape} and ofm shape {op.ofm.shape}"

    @staticmethod
    def constraint_lstm_inputs(op):
        "Must have 24 input tensors"
        n_inputs = len(op.inputs)
        return n_inputs == 24, f"Op has {n_inputs} inputs"

    @staticmethod
    def constraint_lstm_intermediates(op):
        "Must have 5 intermediate tensors"
        n_intermediates = len(op.intermediates)
        return n_intermediates == 5, f"Op has {n_intermediates} intermediates"

    @staticmethod
    def constraint_lstm_variables(op):
        "State tensors must be variable"
        valid = True
        extra = []
        for tens in op.inputs[18:20]:
            if not tens.is_variable:
                valid = False
                extra.append(tens.name)
        extra = ", ".join(extra)
        return valid, f"Op has non-variable state tensor(s): {extra}"

    @staticmethod
    def constraint_transpose_permutation_size(op):
        "Permutation array must be a 1D tensor with RANK(IFM) elements"
        dims = len(op.inputs[0].shape)
        perm = op.inputs[1]
        valid = len(perm.shape) == 1 and perm.shape[0] == dims
        return valid, f"Op has ifm_dimension={dims} and permutation shape {perm.shape}"

    @staticmethod
    def constraint_transpose_permutation_values(op):
        "Permutation array must have constant values in the range [0, RANK(IFM))"
        dims = len(op.inputs[0].shape)
        perm = op.inputs[1]
        valid = False
        if perm.values is not None:
            valid = not any([val < 0 or val >= dims for val in perm.values])
        return valid, f"Op has ifm_dimension={dims} and permutation values are: {perm.values}"


def tflite_semantic_checker(nng):
    semantic_checker = TFLiteSemantic()
    for sg in nng.subgraphs:
        for op in sg.get_all_ops():
            op.run_on_npu = semantic_checker.is_operator_semantic_valid(op)
    return nng