aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/tensor_allocation.py
blob: 1ffae4c484ff763e81ca0af2317b8331a7829e1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# Copyright (C) 2020-2021 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Description:
# Wrapping function to do tensor address allocation. That is, assigning addresses to tensors based on what has been
# worked out from the allowable overlaps that are calculated by the live range analysis.
import math
from typing import List

import numpy as np

from . import hillclimb_allocation
from . import live_range
from . import numeric_util
from .errors import AllocationError
from .greedy_allocation import allocate_live_ranges as greedy_allocate_live_ranges
from .live_range import LiveRange
from .live_range import LiveRangeGraph
from .nn_graph import TensorAllocator
from .tensor import MemArea
from .tensor import MemType
from .tensor import Tensor
from .tensor import TensorPurpose


def linear_allocate_live_ranges(live_ranges, alloc_granularity=Tensor.AllocationQuantum):
    # Allocates using increasing addresses. Duplicate constant tensors will be allocated to the same address
    total_sz = 0
    allocated_tensors = []

    # just assign increasing addresses, except for duplicates
    for tens, lr in live_ranges.ranges.items():
        if tens in allocated_tensors:
            continue

        address = total_sz
        if tens.weight_compression_config is not None:
            for allocated_tens in allocated_tensors:
                if allocated_tens.weight_compression_config == tens.weight_compression_config:
                    assert allocated_tens.scale_compression_config == tens.scale_compression_config
                    address = allocated_tens.address
                    break
        if tens.purpose == TensorPurpose.LUT:
            for allocated_tens in allocated_tensors:
                if allocated_tens.equivalent(tens):
                    address = allocated_tens.address
                    break
        lr.set_address(address)
        allocated_tensors += lr.tensors
        if address == total_sz:
            total_sz += numeric_util.round_up(int(math.ceil(lr.size)), alloc_granularity)

    verify_alignment(live_ranges, alloc_granularity)
    return total_sz


def hillclimb_allocate_live_ranges(
    live_ranges: LiveRangeGraph, alloc_granularity: int, max_iterations: int, mem_limit: int
) -> int:
    # Allocates using the hill climb allocator
    addresses = hillclimb_allocation.allocate_live_ranges(live_ranges.lrs, max_iterations, mem_limit)
    # The result is a list containing the allocated addresses
    total_sz = 0
    for lr, address in zip(live_ranges.lrs, addresses):
        total_sz = max(total_sz, address + lr.size)
        lr.set_address(address)
    verify_allocation(live_ranges, alloc_granularity)
    return total_sz


def verify_alignment(live_ranges: LiveRangeGraph, alignment: int):
    for lr in live_ranges.lrs:
        for tens in lr.tensors:
            if not all(op and op.run_on_npu for op in tens.ops + tens.consumer_list):
                # This is a CPU tensor, verify alignment
                if tens.address % alignment != 0:
                    raise AllocationError(f"Tensor '{tens.name}' not aligned to {alignment} bytes")


def verify_allocation(live_ranges: LiveRangeGraph, alignment: int):
    verify_alignment(live_ranges, alignment)
    nr_time_slots = 1 + max(lr.end_time for lr in live_ranges.lrs)
    # Contains active live ranges at each timestamp
    lrs_at_time: List[List[LiveRange]] = [[] for i in range(nr_time_slots)]
    for lr in live_ranges.lrs:
        for t in range(lr.start_time, lr.end_time + 1):
            lrs_at_time[t].append(lr)
    for t in range(nr_time_slots):
        lrs_new_items = [lr for lr in lrs_at_time[t] if t == 0 or lr not in lrs_at_time[t - 1]]
        for m in lrs_new_items:
            for n in lrs_at_time[t]:
                overlap, tens_n, tens_m = n.overlaps_address(m)
                if overlap and not (tens_n.equivalent(tens_m) and tens_n.address == tens_m.address):
                    raise AllocationError(
                        f"Overlapping buffers: {n.name}: {tens_n.address} -> {tens_n.address + n.size}"
                        f" and {m.name}: {tens_m.address} -> {tens_m.address + m.size}"
                    )


def mark_sram_used_for_cascaded_passes(sg, lrs):
    if len(sg.cascaded_passes) < 1:
        return
    end_pos = max(ps.time for ps in sg.cascaded_passes) + 2
    mem_usage = np.zeros(end_pos, dtype=np.int64)

    for tens, rng in lrs.ranges.items():
        storage_size = tens.storage_size()
        mem_usage[rng.start_time : rng.end_time] += storage_size

    for cps in sg.cascaded_passes:
        sram_used = max(mem_usage[cps.time], mem_usage[cps.time + 1])
        cps.sram_used = sram_used
        for ps in cps.passes:
            ps.sram_used = sram_used


def print_allocation(lrs, mem_area, mem_type_set, tensor_allocator, sg, actual_mem_usage_for_alloc):
    print("\n" + "#" * 80)
    sg_placement = (
        sg.placement.name
        if mem_type_set.intersection(
            (
                MemType.Permanent_NPU,
                MemType.Permanent_CPU,
            )
        )
        else "Cpu and Npu"
    )
    print(
        f"Tensor Allocation for mem_area {mem_area.name}, of mem_type_set ("
        f'{", ".join(f"{mem_type.name}" for mem_type in mem_type_set)}'
        f"), using allocator {tensor_allocator}, in {sg_placement} subgraph:"
    )

    memory_hist = memory_usage_histogram(lrs.lrs)
    min_mem_usage_for_alloc = max(memory_hist)
    print(
        f"{'Start Time':>10s} - {'End Time':>10s}: {'Start Addr':>10s} - {'End Addr':>10s}: {'Tensor Size':>11s}:"
        f" {'Memory Usage':>12s}: {'Purpose':12s}: Name"
    )
    for start_time, end_time, size, start_addr, end_addr, purpose, name in sorted(
        (
            lr.start_time,
            lr.end_time,
            lr.size,
            tens.address,
            tens.address + lr.size,
            tens.purpose,
            tens.name,
        )
        for tens, lr in lrs.ranges.items()
    ):
        print(
            f"{start_time:10d} - {end_time:10d}: {start_addr:#10x} - {end_addr:#10x}: {size:11d}:"
            f" {memory_hist[start_time]:12d}: {purpose.display_name():12s}: {name:s}"
        )

    alloc_overhead_fraction = (actual_mem_usage_for_alloc - min_mem_usage_for_alloc) / min_mem_usage_for_alloc
    print(
        f"Allocation Peak Tensor Size:  {min_mem_usage_for_alloc:9d} ({min_mem_usage_for_alloc:#10x})"
        f" Bytes {min_mem_usage_for_alloc/1024.0:8.2f} KiB"
    )
    print(
        f"Allocation Peak Memory Usage: {actual_mem_usage_for_alloc:9d} ({actual_mem_usage_for_alloc:#10x})"
        f" Bytes {actual_mem_usage_for_alloc/1024.0:8.2f} KiB"
    )
    print(
        f"Allocation Overhead:          {actual_mem_usage_for_alloc-min_mem_usage_for_alloc:9d}"
        f" Bytes ({100*alloc_overhead_fraction:.2f} %)"
    )


def memory_usage_histogram(lrs: List[LiveRange]):
    histogram = [0] * (1 + max(lr.end_time for lr in lrs))
    for lr in lrs:
        for t in range(lr.start_time, lr.end_time + 1):
            histogram[t] += lr.size

    return histogram


def allocate(
    sg,
    arch,
    mem_area,
    mem_type_set,
    tensor_allocator=TensorAllocator.Greedy,
    lr_graph=None,
    cpu_tensor_alignment=Tensor.AllocationQuantum,
    hillclimb_max_iterations=None,
):
    # Allocates addresses to tensors, returns False if tensors could not be fit within max_size
    lrs = live_range.extract_live_ranges_from_cascaded_passes(
        sg,
        mem_area,
        mem_type_set,
        lr_graph=lr_graph,
        cpu_tensor_alignment=cpu_tensor_alignment,
    )
    total_sz = 0
    if lrs.ranges:
        tens_alloc = tensor_allocator
        if tens_alloc == TensorAllocator.Greedy:
            total_sz = greedy_allocate_live_ranges(lrs, cpu_tensor_alignment)
            verify_allocation(lrs, cpu_tensor_alignment)
        elif tens_alloc == TensorAllocator.LinearAlloc:
            total_sz = linear_allocate_live_ranges(lrs, cpu_tensor_alignment)
        elif tens_alloc == TensorAllocator.HillClimb:
            mem_type = MemType.Scratch_fast if MemType.Scratch_fast in mem_type_set else list(mem_type_set)[0]
            mem_size = arch.mem_type_size(mem_type)
            total_sz = hillclimb_allocate_live_ranges(lrs, cpu_tensor_alignment, hillclimb_max_iterations, mem_size)
        else:
            assert 0
    return lrs, total_sz


def allocate_tensors(
    nng,
    sg,
    arch,
    mem_area,
    mem_type_set,
    tensor_allocator=TensorAllocator.Greedy,
    verbose_allocation=False,
    lr_graph=None,
    cpu_tensor_alignment=Tensor.AllocationQuantum,
    hillclimb_max_iterations=None,
    max_size=None,
    dry_test=False,
):
    # Allocates addresses to tensors, returns False if tensors could not be fit within max_size
    lrs, total_sz = allocate(
        sg,
        arch,
        mem_area,
        mem_type_set,
        tensor_allocator=tensor_allocator,
        lr_graph=lr_graph,
        cpu_tensor_alignment=cpu_tensor_alignment,
        hillclimb_max_iterations=hillclimb_max_iterations,
    )

    if lrs.ranges:
        alloc_ok = max_size is None or total_sz <= max_size
        if dry_test or not alloc_ok:
            # Dry test or allocation failed; undo allocation
            for lr in lrs.ranges.values():
                lr.set_address(None)
            return alloc_ok

        if sg.memory_used.get(mem_area, 0) == 0:
            sg.memory_used[mem_area] = total_sz
        else:
            sg.memory_used[mem_area] += total_sz

        # Keep track of how much should be used for scratch or permanent storage for NPU
        for mem_type in mem_type_set:
            if sg.memory_used_per_type.get(mem_type, 0) == 0:
                sg.memory_used_per_type[mem_type] = total_sz
            else:
                sg.memory_used_per_type[mem_type] += total_sz

        if verbose_allocation:
            print_allocation(lrs, mem_area, mem_type_set, tensor_allocator, sg, total_sz)

        if mem_area == MemArea.Sram:
            # Mark Sram usage for all subgraphs
            for sg_ in nng.subgraphs:
                mark_sram_used_for_cascaded_passes(sg_, lrs)

    if sg == nng.get_root_subgraph():
        nng.memory_used = sg.memory_used
    return True