aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/pass_packing.py
blob: 4c733ccedd898f25486d7e368ebf9954149cf1f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
# SPDX-FileCopyrightText: Copyright 2020-2023 Arm Limited and/or its affiliates <open-source-office@arm.com>
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Description:
# Packs a subgraph with Neural Network Operations into Passes. Each Pass has one or more Operations.
import collections
import enum

from .debug_database import DebugDatabase
from .nn_graph import Pass
from .nn_graph import PassPlacement
from .operation import NpuBlockType
from .operation import Op
from .operation_util import create_avgpool_nop
from .tensor import TensorPurpose


class PassFlags(enum.Flag):
    Empty = 0
    Main = 1
    Post = 2
    Mac = 4
    ElementWise = 8
    Npu = 16
    Cpu = 32
    StartupInit = 64
    MemoryOnly = 128
    PostFusingLimited = 256
    Memcpy = 512


mac_main_ops = set(
    (
        # convolutions
        Op.Conv2DBias,
        Op.Conv2D,
        Op.QuantizedConv2D,
        Op.Conv2DBackpropInputSwitchedBias,
        # depth-wise convolutions
        Op.DepthwiseConv2DBias,
        # FC layers
        Op.QuantizedMatMul,
        Op.MatMul,
        Op.FullyConnected,
        # pooling
        Op.QuantizedMaxPool,
        Op.QuantizedAvgPool,
        Op.AvgPool,
        Op.MaxPool,
        Op.ReduceSum,
    )
    # resize ops use pooling operations unless explicitly converted to other operations prior to pass packing
) | Op.op_set(Op.is_resize_op)

binary_elem_wise_main_ops = Op.op_set(Op.is_binary_elementwise_op)

unary_elem_wise_main_ops = Op.op_set(Op.is_unary_elementwise_op)

elem_wise_main_ops = binary_elem_wise_main_ops | unary_elem_wise_main_ops

activation_ops = Op.op_set(Op.is_relu_op)
npu_post_ops = activation_ops

npu_post_fuse_limited_ops = set(
    # Set of post operators that should not be fused with main/elementwise ops
    (Op.Sigmoid, Op.Tanh, Op.Quantize)
)

elem_wise_ops = elem_wise_main_ops | activation_ops | set((Op.Sigmoid, Op.Tanh))


quantization_ops = set((Op.Dequantize, Op.Max, Op.Min))
cpu_ops = set((Op.Softmax, Op.LRN, Op.Shape, Op.Pad, Op.AddN)) | quantization_ops

startup_init_ops = set((Op.Const, Op.Placeholder, Op.SubgraphInput))
memory_only_ops = set(
    (
        Op.Squeeze,
        Op.Reshape,
        Op.QuantizedReshape,
        Op.ExpandDims,
    )
)
memcpy_ops = set((Op.Memcpy,))


test_sequence = [
    (
        # ops_set
        npu_post_ops,
        # incompatible_pack_flags
        PassFlags.Cpu | PassFlags.MemoryOnly | PassFlags.Main,
        # flags_to_set
        PassFlags.Npu | PassFlags.Post,
        # flags_to_clear
        PassFlags.Empty,
    ),
    (
        # ops_set
        npu_post_fuse_limited_ops,
        # incompatible_pack_flags
        PassFlags.Cpu | PassFlags.MemoryOnly | PassFlags.Main | PassFlags.PostFusingLimited,
        # flags_to_set
        PassFlags.Npu | PassFlags.PostFusingLimited,
        # flags_to_clear
        PassFlags.Empty,
    ),
    (
        # ops_set
        mac_main_ops,
        # incompatible_pack_flags
        PassFlags.Cpu | PassFlags.MemoryOnly | PassFlags.ElementWise | PassFlags.Main | PassFlags.PostFusingLimited,
        # flags_to_set
        PassFlags.Npu | PassFlags.Mac | PassFlags.Main,
        # flags_to_clear
        PassFlags.Empty,
    ),
    (
        # ops_set
        elem_wise_main_ops,
        # incompatible_pack_flags
        PassFlags.Cpu | PassFlags.MemoryOnly | PassFlags.Mac | PassFlags.Main | PassFlags.PostFusingLimited,
        # flags_to_set
        PassFlags.Npu | PassFlags.ElementWise | PassFlags.Main,
        # flags_to_clear
        PassFlags.Empty,
    ),
    (
        # ops_set
        startup_init_ops,
        # incompatible_pack_flags
        PassFlags.Npu | PassFlags.Cpu | PassFlags.MemoryOnly,
        # flags_to_set
        PassFlags.StartupInit | PassFlags.Main,
        # flags_to_clear
        PassFlags.Empty,
    ),
    (
        # ops_set
        memory_only_ops,
        # incompatible_pack_flags
        PassFlags.Npu | PassFlags.Cpu,
        # flags_to_set
        PassFlags.MemoryOnly | PassFlags.Main,
        # flags_to_clear
        PassFlags.Empty,
    ),
    (
        # ops_set
        memcpy_ops,
        # incompatible_pack_flags
        PassFlags.Cpu | PassFlags.MemoryOnly | PassFlags.Mac | PassFlags.Main | PassFlags.PostFusingLimited,
        # flags_to_set
        PassFlags.Npu | PassFlags.Memcpy | PassFlags.Main,
        # flags_to_clear
        PassFlags.Empty,
    ),
    (
        # ops_set
        cpu_ops,
        # incompatible_pack_flags
        PassFlags.Npu | PassFlags.MemoryOnly | PassFlags.Main,
        # flags_to_set
        PassFlags.Cpu | PassFlags.Main,
        # flags_to_clear
        PassFlags.Empty,
    ),
    (  # This last one is a fallback for unrecognised operations
        # ops_set
        None,
        # incompatible_pack_flags
        PassFlags.Npu | PassFlags.MemoryOnly | PassFlags.Main,
        # flags_to_set
        PassFlags.Cpu | PassFlags.Main,
        # flags_to_clear
        PassFlags.Empty,
    ),
]

# Some sanity checking
for (operation_set, incompatible_pack_flags, flags_to_set, flags_to_clear) in test_sequence:
    assert not flags_to_clear & flags_to_set


def pack_into_passes(nng, arch, verbose_packing=False):
    def visit_op(op, ignored):
        visit_op_refcount[op] += 1

        if visit_op_refcount[op] == 1:  # First-time visit, go and fix up unused output tensors
            for tens in op.outputs:
                if len(tens.consumers()) == 0:
                    visit_op_refcount[op] += 1

        assert visit_op_refcount[op] <= len(op.outputs)
        if visit_op_refcount[op] == len(op.outputs):

            if op.type in startup_init_ops:
                startup_list.append(op)
            else:
                ofm_tensor = op.ofm
                if ofm_tensor is None:
                    ofm_tensor = op.outputs[0]
                ofm_shape = op.ofm_shapes[0] if op.run_on_npu else None

                build_pass((op,), ofm_tensor, ofm_shape)

    def build_pass(start_ops_to_process, ofm_tensor=None, ofm_shape=None):
        reverse_ops_list = []
        curr_flags = PassFlags.Empty
        npu_block_type = NpuBlockType.Default

        reverse_intermediates = []
        input_set = set()
        ifm_tensor = None
        primary_op = None
        ifm_shapes = None

        to_process = collections.deque()
        for start_op in start_ops_to_process:
            to_process.append((start_op, None))

        while to_process:
            curr_op, tens = to_process.popleft()

            if curr_op in reverse_ops_list:
                continue

            for operation_set, incompatible_pack_flags, flags_to_set, flags_to_clear in test_sequence:
                if operation_set is None or curr_op.type in operation_set:
                    if not (curr_flags & incompatible_pack_flags):
                        if flags_to_set & PassFlags.Npu:
                            if not curr_op.run_on_npu:
                                continue

                        reverse_ops_list.append(curr_op)
                        new_block_type = curr_op.type.npu_block_type
                        if new_block_type != NpuBlockType.Default:
                            assert npu_block_type == NpuBlockType.Default
                            npu_block_type = new_block_type  # Only one major block type per pass
                            assert primary_op is None
                            primary_op = curr_op

                        curr_flags &= ~flags_to_clear
                        curr_flags |= flags_to_set

                        if flags_to_set & PassFlags.Npu:
                            if flags_to_set & (
                                PassFlags.Mac
                                | PassFlags.ElementWise
                                | PassFlags.Post
                                | PassFlags.PostFusingLimited
                                | PassFlags.Memcpy
                            ):
                                assert len(curr_op.inputs) >= 1
                                ifm_tensor = curr_op.ifm
                                ifm_shapes = curr_op.ifm_shapes.copy()
                                assert ifm_tensor is not None, "IFM missing in {}".format(curr_op)
                                assert ifm_tensor.purpose == TensorPurpose.FeatureMap

                        if operation_set is None:
                            assert not curr_op.run_on_npu  # operator should have been placed on the CPU

                        for inp in reversed(curr_op.inputs):
                            if inp is None:
                                continue
                            if can_pack(inp, curr_op):
                                to_process.append((inp.ops[0], inp))
                            else:
                                input_set.add(inp)

                        break

            else:
                # This operation is not compatible with already packed operations, just register the tensor as an input
                assert tens is not None
                input_set.add(tens)

        if curr_flags & PassFlags.Npu and not curr_flags & (PassFlags.ElementWise | PassFlags.Mac):
            # Make the choice that if we don't have a mac operation, the ambidextrous operations go on the
            # element wise unit
            curr_flags |= PassFlags.ElementWise

        is_element_wise = True
        for op in reverse_ops_list:
            if op.type not in elem_wise_ops and op.type:
                is_element_wise = False
                break

        placement = PassPlacement.Unknown
        if curr_flags & PassFlags.Npu:
            assert placement == PassPlacement.Unknown
            placement = PassPlacement.Npu
        if curr_flags & PassFlags.Cpu:
            assert placement == PassPlacement.Unknown
            placement = PassPlacement.Cpu
        if curr_flags & PassFlags.MemoryOnly:
            assert placement == PassPlacement.Unknown
            placement = PassPlacement.MemoryOnly
        if curr_flags & PassFlags.StartupInit:
            assert placement == PassPlacement.Unknown
            placement = PassPlacement.StartupInit
        assert placement != PassPlacement.Unknown

        ops_list = list(reversed(reverse_ops_list))
        intermediates = list(reversed(reverse_intermediates))

        if primary_op is None:
            primary_op = create_primary_op(ops_list)
            if primary_op is not None:
                visit_tensor_refcount[primary_op.inputs[0]] += 1
                npu_block_type = primary_op.type.npu_block_type
                for input_tens in primary_op.inputs:
                    if input_tens not in input_set:
                        input_set.add(input_tens)

        ordered_input_list = []
        # Keep LUT-s in a separate list and add as inputs at the end
        # to avoid that they would accidentally be assigned as ifm or ifm2
        lut_list = []
        input_refcounts = collections.defaultdict(int)
        input_ops_list = ops_list.copy()

        # Check primary_op first
        if primary_op is not None:
            for inp in primary_op.inputs:
                if inp is None:
                    continue
                add_input_list(inp, input_set, input_refcounts, lut_list, ordered_input_list)
            input_ops_list.remove(primary_op)

        # Check rest of the list
        for op in input_ops_list:
            for inp in op.inputs:
                add_input_list(inp, input_set, input_refcounts, lut_list, ordered_input_list)

        name = ops_list[0].name
        ps = Pass(name, placement, is_element_wise, npu_block_type)
        ps.ops = ops_list
        ps.primary_op = primary_op
        ps.inputs = ordered_input_list
        ps.intermediates = intermediates
        ps.outputs = list(ops_list[-1].outputs)

        # ElementWise operation, 2 IFMs
        if ps.primary_op and ps.primary_op.type in binary_elem_wise_main_ops:
            ps.ifm_tensor = ps.inputs[0]
            ps.ifm2_tensor = ps.inputs[-1]

            if len(ps.inputs) > 2:
                ps.ifm_tensor = ps.inputs[-2]

            # Get the corresponding ifm_shapes
            for op in input_ops_list + [primary_op]:
                if op.run_on_npu:
                    if ps.ifm_tensor == op.ifm:
                        ps.ifm_shapes.append(op.ifm_shapes[0])
                    elif ps.ifm_tensor == op.ifm2:
                        ps.ifm_shapes.append(op.ifm_shapes[1])

                    if ps.ifm2_tensor == op.ifm:
                        ps.ifm_shapes.append(op.ifm_shapes[0])
                    elif ps.ifm2_tensor == op.ifm2:
                        ps.ifm_shapes.append(op.ifm_shapes[1])
        else:
            ps.ifm_tensor = ifm_tensor
            ps.ifm2_tensor = None
            if ps.primary_op is not None and ps.primary_op.run_on_npu:
                ps.ifm_shapes.append(ifm_shapes[0])

        ps.ofm_tensor = ofm_tensor
        ps.ofm_shapes.append(ofm_shape)

        assert ps.placement != PassPlacement.Npu or ps.ofm_tensor is not None
        ps.weight_tensor = ps.get_primary_op_ifm_weights()[1]
        ps.scale_tensor = ps.get_primary_op_ifm_weights_biases_ofm()[2]
        ps.lut_tensor = ps.get_primary_op_lut()
        ps.inputs.extend(lut_list)

        for op in ps.ops:
            op.scheduled_pass = ps

        reverse_pass_list.append(ps)

        for inp, refcount in input_refcounts.items():
            for _ in range(refcount):
                visit_tensor(inp)

        return ps

    def visit_tensor(tens):
        visit_tensor_refcount[tens] += 1
        assert visit_tensor_refcount[tens] <= len(tens.consumers())
        if visit_tensor_refcount[tens] == len(tens.consumers()):
            for op in reversed(tens.ops):
                visit_op(op, tens)

    def create_primary_op(op_list):
        if any(op.type in (npu_post_ops | npu_post_fuse_limited_ops) and op.run_on_npu for op in op_list):
            # Configure a 1x1 AvgPool and attach the op onto it
            op = op_list[0]
            inp = op.inputs[0]
            avgpool_op = create_avgpool_nop(op.name + "_avgpool")
            avgpool_op.add_input_tensor(inp)
            avgpool_out = inp.clone("_avgpooled")
            avgpool_out.consumer_list.append(op)
            avgpool_op.set_output_tensor(avgpool_out)
            avgpool_op.ifm_shapes = op.ifm_shapes.copy()
            avgpool_op.ofm_shapes = op.ofm_shapes.copy()
            avgpool_op.read_offsets = op.read_offsets.copy()
            avgpool_op.read_shapes = op.read_shapes.copy()

            op.inputs[0] = avgpool_out
            op_list.insert(0, avgpool_op)

            DebugDatabase.add_optimised(op, avgpool_op)
            return avgpool_op

        return None

    def can_pack(inp, curr_op):
        if len(inp.ops) == 1:
            next_op = inp.ops[0]
            for outp in next_op.outputs:
                consumers = outp.consumers()
                if len(consumers) > 1 or (len(consumers) == 1 and consumers[0] != curr_op):
                    return False

            # There cannot be any reshaping between next_op ofm and corresponding curr_op ifm
            if len(curr_op.ifm_shapes) != 0 and len(next_op.ofm_shapes) != 0:
                if inp == curr_op.ifm and next_op.ofm_shapes[0] != curr_op.ifm_shapes[0]:
                    return False
                elif (
                    curr_op.ifm2 is not None and inp == curr_op.ifm2 and next_op.ofm_shapes[0] != curr_op.ifm_shapes[1]
                ):
                    return False
        else:
            return False

        return True

    def add_input_list(inp_to_add, inp_set, inp_refcnts, lut_list, ordered_inp_list):
        if inp_to_add in inp_set:
            if inp_refcnts[inp_to_add] == 0:
                if inp_to_add.purpose == TensorPurpose.LUT:
                    lut_list.append(inp_to_add)
                else:
                    ordered_inp_list.append(inp_to_add)
            inp_refcnts[inp_to_add] += 1

    for sg in nng.subgraphs:
        reverse_pass_list = []
        visit_op_refcount = collections.defaultdict(int)
        visit_tensor_refcount = collections.defaultdict(int)

        startup_list = []

        for tens in sg.output_tensors:
            visit_tensor(tens)

        if startup_list:
            startup_ps = build_pass(startup_list)
            startup_ps.outputs = [op.outputs[0] for op in startup_list]  # Need to fixup the outputs
            startup_ps.name = "startup_weight_initialisation"

        # Graphs with both CPU and NPU ops might not have an optimal order in
        # the pass list due to how the graph is traversed (depth first search).
        # This can result in more context switching between CPU and NPU.
        # Try to optmize this by moving/grouping CPU ops where that is possible.
        # Criteria for CPU pass to be moved:
        #
        # 1) CPU passes that only depends on sg.input_tensor can be
        #    moved to the top of the list.
        #    ResourceVariables ops like VarHandle, ReadVariable, CallOnce
        #    can also be moved to the top of list.
        #
        # 2) A CPU pass X is allowed to be grouped together with CPU pass Y
        #    if there is no NPU pass between pass X and pass Y that depends
        #    on output from pass X or a MemoryOnly pass.
        #
        # Criteria 2 will try to move as many CPU passes towards the bottom of
        # the list.

        pass_list_top = []
        pass_list = []

        # Filter out early passes from the rest
        for ps in list(reversed(reverse_pass_list)):
            if startup_ps == ps:
                # startup pass belongs in the top
                pass_list_top.insert(0, ps)
                continue

            if ps.placement == PassPlacement.Cpu and (
                ps.ops[0].ifm in sg.input_tensors
                and (ps.ops[0].ifm2 in sg.input_tensors or ps.ops[0].ifm2 is None)
                or (ps.ops[0].type in (Op.VarHandle, Op.ReadVariable, Op.CallOnce))
            ):
                # This CPU pass only depends on sg.input_tensors or resource variable
                pass_list_top.append(ps)
            else:
                # Add pass to the list that will be sorted in the next step
                pass_list.append(ps)

        # Sort ops by op_index (same call order as in the original graph)
        pass_list_top = sorted(pass_list_top, key=lambda ps: -1 if ps.ops[0].op_index is None else ps.ops[0].op_index)

        # Sort the rest of the list based on critera 2.
        # Search from bottom of list and when a CPU pass is found
        # search forward in the list and see if it is possible to join another CPU pass.
        last_idx = len(pass_list) - 1
        for cpu_ps in reversed(pass_list):
            if cpu_ps.placement != PassPlacement.Cpu:
                continue
            # CPU pass found, search forward and move pass if possible
            idx = pass_list.index(cpu_ps)
            for next_ps in pass_list[idx + 1 :]:
                if next_ps.placement == PassPlacement.Cpu:
                    # It is possible to move the CPU pass
                    pass_list.remove(cpu_ps)
                    insert_index = pass_list.index(next_ps)
                    pass_list.insert(insert_index, cpu_ps)
                    break

                # Check all outputs from the cpu pass
                if (
                    any(ofm in [next_ps.ops[0].ifm, next_ps.ops[0].ifm2] for ofm in cpu_ps.ops[0].outputs)
                    or next_ps.placement == PassPlacement.MemoryOnly
                ):
                    # Not possible to move since next pass depends on the output from the cpu pass
                    break

                if pass_list.index(next_ps) == last_idx:
                    # Last element, ok to move the CPU pass
                    pass_list.remove(cpu_ps)
                    pass_list.append(cpu_ps)
                    break

        pass_list_top.extend(pass_list)

        sg.passes = pass_list_top
        sg.build_pass_links()

    if verbose_packing:
        nng.print_passes()

    return nng