aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/high_level_command_to_npu_op.py
blob: 4384f2c1d3967824ac0cc58ac7fe9042b2c51242 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
# SPDX-FileCopyrightText: Copyright 2020-2023 Arm Limited and/or its affiliates <open-source-office@arm.com>
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Description:
# Conversion from high level command to NpuOperation
from enum import IntEnum
from typing import cast
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple

from .api import NpuActivation
from .api import NpuActivationOp
from .api import NpuAddressRange
from .api import NpuBlockOperation
from .api import NpuBlockTraversal
from .api import NpuConv2DOperation
from .api import NpuConvDepthWiseOperation
from .api import NpuDataType
from .api import NpuDmaOperation
from .api import NpuElementWiseOp
from .api import NpuElementWiseOperation
from .api import NpuFeatureMap
from .api import NpuLayout
from .api import NpuOperation
from .api import NpuOperationType
from .api import NpuPadding
from .api import NpuPoolingOp
from .api import NpuPoolingOperation
from .api import NpuQuantization
from .api import NpuResamplingMode
from .api import NpuRoundingMode
from .api import NpuShape3D
from .api import NpuTileBox
from .architecture_features import ArchitectureFeatures
from .data_type import DataType
from .debug_database import DebugDatabase
from .errors import UnsupportedFeatureError
from .ethos_u55_regs.ethos_u55_regs import resampling_mode
from .high_level_command_stream import Box
from .high_level_command_stream import Command
from .high_level_command_stream import DMA
from .high_level_command_stream import NOP
from .high_level_command_stream import NpuStripe
from .numeric_util import quantise_float32
from .numeric_util import round_up
from .operation import NpuBlockType
from .operation import Op
from .operation import Operation
from .operation import Padding
from .operation import RoundingMode
from .register_command_stream_generator import generate_command_stream
from .register_command_stream_util import BASE_PTR_INDEX_MEM2MEM
from .register_command_stream_util import to_npu_kernel
from .register_command_stream_util import UNARY_ELEMWISE_OPS
from .shape4d import Shape4D
from .tensor import MemType
from .tensor import Tensor
from .tensor import TensorFormat
from .tensor import TensorPurpose
from .weight_compressor import NpuWeightTensor
from .weight_compressor import WeightKey


class BasePointerIndex(IntEnum):
    WeightTensor = 0  # base address index for the Weight tensor
    ScratchTensor = 1  # base address index for the Scratch_tensor in the TensorArena
    ScratchFastTensor = 2  # base address for the Scratch_fast_tensor


dtype_map = {
    DataType.uint8: NpuDataType.UINT8,
    DataType.int8: NpuDataType.INT8,
    DataType.uint16: NpuDataType.UINT16,
    DataType.int16: NpuDataType.INT16,
    DataType.int32: NpuDataType.INT32,
}


# Maps an elementwise op type to an elementwise_mode enum value used by NPU_OP_ELEMENTWISE
elementwise_op_map = {
    Op.Mul: NpuElementWiseOp.MUL,
    Op.Add: NpuElementWiseOp.ADD,
    Op.Sub: NpuElementWiseOp.SUB,
    Op.Minimum: NpuElementWiseOp.MIN,
    Op.Maximum: NpuElementWiseOp.MAX,
    Op.LeakyRelu: NpuElementWiseOp.LRELU,
    Op.Abs: NpuElementWiseOp.ABS,
    Op.CLZ: NpuElementWiseOp.CLZ,
    Op.SHR: NpuElementWiseOp.SHR,
    Op.SHL: NpuElementWiseOp.SHL,
}


# inverse of the resampling_mode_map in the register command stream generator
resampling_mode_inv_map = {
    resampling_mode.NONE: NpuResamplingMode.NONE,
    resampling_mode.NEAREST: NpuResamplingMode.NEAREST,
    resampling_mode.TRANSPOSE: NpuResamplingMode.TRANSPOSE,
}


rounding_mode_map = {
    RoundingMode.TFLite: NpuRoundingMode.TFL,
    RoundingMode.ToZero: NpuRoundingMode.TRUNCATE,
    RoundingMode.HalfUp: NpuRoundingMode.NATURAL,
    RoundingMode.AwayZero: NpuRoundingMode.NATURAL,
}


def ifm_ifm2_correct_order(ifm_shape: Shape4D, ifm2_shape: Shape4D) -> bool:

    if ifm_shape is None:
        # Scalar needs to be in IFM2
        return False
    if ifm2_shape is None:
        return True

    for ifm, ifm2 in zip(ifm_shape.as_list(), ifm2_shape.as_list()):
        if ifm != ifm2 and ifm == 1:
            # Broadcasted FM needs to be in IFM2
            return False
    return True


def get_rounding_mode(op: Operation, fused_quantize: bool) -> NpuRoundingMode:
    """Specifies type of rounding to be used"""
    rounding_mode = NpuRoundingMode.TFL
    if op.type.is_resize_op():
        rounding_mode = NpuRoundingMode.NATURAL
    elif (
        op.original_type.npu_block_type in (NpuBlockType.ConvolutionMxN, NpuBlockType.ConvolutionDepthWise)
        and op.ifm.dtype == DataType.int16
    ):
        rounding_mode = NpuRoundingMode.NATURAL
    elif (
        not fused_quantize
        and op.type.is_avgpool_op()
        and op.memory_function == Op.ConcatSliceWrite
        and op.kernel.elements_wh() == 1
    ):
        rounding_mode = NpuRoundingMode.NATURAL
    if op.rounding_mode is not None:
        rounding_mode = rounding_mode_map[op.rounding_mode]
    return rounding_mode


def create_padding(cmd: NpuStripe, primary_op: Operation, npu_op: NpuBlockOperation) -> NpuPadding:
    if primary_op.type.npu_block_type == NpuBlockType.VectorProduct:
        return NpuPadding(top=0, left=0, bottom=0, right=0)
    top, left, bottom, right = primary_op.attrs["explicit_padding"]

    # Check if this is for horizontal ifm streaming
    if not (cmd.is_first_h_stripe and cmd.is_last_h_stripe):
        top = cmd.pad_top
        bottom = cmd.pad_bottom

    # the ifm box coordinate range depends upon whether the primary op was combined with a split slice read
    ifm_read_offset = primary_op.read_offsets[0]
    ifm_read_shape = primary_op.read_shapes[0]
    if ifm_read_offset is None or len(ifm_read_offset) < 2:
        box_start_coord_min = 0
        box_end_coord_max = cmd.ps.ifm_shapes[0].width
    else:
        box_start_coord_min = ifm_read_offset[-2]
        box_end_coord_max = ifm_read_shape[-2]

    # Indexing from end since a 1x1 Avgpool might have been added with non 4-dimensional input/output,
    # because of activation function needed to be fused.
    if len(cmd.ifm_box.start_coord) >= 2 and cmd.ifm_box.start_coord[-2] > box_start_coord_min:
        left = 0
    if len(cmd.ifm_box.end_coord) >= 2 and cmd.ifm_box.end_coord[-2] < box_end_coord_max:
        right = 0

    # If tile padding is selected, modify the tile base addresses and set NpuPadding to zero.
    if primary_op.attrs.get("padding", None) == Padding.TILE:
        assert cmd.ifm_tensor.format == TensorFormat.NHCWB16, "Tensor format NHCWB16 required to perform tile padding"
        assert npu_op.op_type == NpuOperationType.ConvDepthWise, "Tile padding only supported for depthwise convolution"
        assert npu_op.ifm is not None, "Feature map must be initialized to modify the tile addresses"
        npu_op.ifm.tiles = modify_tile_addresses_for_padding(
            npu_op.ifm.tiles,
            primary_op.attrs.get("explicit_padding", None),
            channels=cmd.ps.ifm_shapes[0].depth,
            dtype=cmd.ifm_tensor.dtype,
        )
        top, left, bottom, right = 0, 0, 0, 0

    return NpuPadding(top=top, left=left, bottom=bottom, right=right)


def modify_tile_addresses_for_padding(
    tile_box: NpuTileBox, padding_direction: List[int], channels: int, dtype: DataType
) -> NpuTileBox:
    # Addresses are 16-bytes aligned when using the NHCWB16 format, which is required to utilize tiling
    # Calculate the offset to top right, bottom left and bottom right element in the IFM (top left offset is 0)
    """
    Example: 4x4x1 IFM
    |  a b c d | <-- Offset to TR ('d') is (w0-1) = 3
    |  e f g h |
    |  i j k l |
    |  m n o p | <-- Offset to BL ('m') is (w0*(h0-1)) = 12 and to BR ('p') ((w0*h0)-1) = 15
    """
    h0, h1, w0, addresses = tile_box
    elem_size = 2 if dtype == DataType.int16 else 1
    tr_offset = (w0 - 1) * 16 * elem_size
    bl_offset = w0 * (h0 - 1) * 16 * (round_up(channels, 16) // 16) * elem_size
    br_offset = tr_offset + bl_offset

    # Explicit padding order: (Top, Left, Bottom, Right)
    if padding_direction == (1, 1, 0, 0):
        # Pad top left corner
        """
                     | a a b |
        |  a b  | -> | a a b |
        |  c d  |    | c c d |
        """
        addresses = [addresses[0]] * 4
        h0, h1, w0 = 1, 1, 1

    elif padding_direction == (1, 0, 0, 1):
        # Pad top right corner
        """
                     | a b b |
        |  a b  | -> | a b b |
        |  c d  |    | c d d |
        """
        addresses = [addresses[0], addresses[0] + tr_offset, addresses[0], addresses[0] + tr_offset]
        h0, h1, w0 = 1, 1, w0

    elif padding_direction == (0, 1, 1, 0):
        # Pad bottom left corner
        """
        |  a b  |    | a a b |
        |  c d  | -> | c c d |
                     | c c d |
        """
        addresses = [addresses[0], addresses[0], addresses[0] + bl_offset, addresses[0] + bl_offset]
        h0, h1, w0 = h0, h1, 1

    elif padding_direction == (0, 0, 1, 1):
        # Pad bottom right corner
        """
        |  a b  |    | a b b |
        |  c d  | -> | c d d |
                     | c d d |
        """
        addresses = [
            addresses[0],
            addresses[0] + tr_offset,
            addresses[0] + bl_offset,
            addresses[0] + br_offset,
        ]
        # h0, h1, w0 = h0, h1, w0
    else:
        assert 0, "Invalid padding direction for tile padding"

    return NpuTileBox(height_0=h0, height_1=h1, width_0=w0, addresses=[int(addr) for addr in addresses])


def get_region(mem_type: MemType, arch: ArchitectureFeatures) -> int:
    base_ptr_idx_map = {
        MemType.Permanent_NPU: BasePointerIndex.WeightTensor,
        MemType.Permanent_CPU: BasePointerIndex.WeightTensor,
        MemType.Scratch: BasePointerIndex.ScratchTensor,
    }

    if arch.is_spilling_enabled():
        base_ptr_idx_map[MemType.Scratch_fast] = BasePointerIndex.ScratchFastTensor
    else:
        base_ptr_idx_map[MemType.Scratch_fast] = BasePointerIndex.ScratchTensor

    return base_ptr_idx_map[mem_type].value


def get_mem_limits_for_regions(arch: ArchitectureFeatures) -> Dict[int, int]:
    """Returns map region -> max size of the region in bytes"""
    mem_limits = dict()
    for mem_type in MemType.all():
        mem_limits[get_region(mem_type, arch)] = arch.mem_type_size(mem_type)
    mem_limits[BASE_PTR_INDEX_MEM2MEM] = arch.shram_size_bytes
    return mem_limits


def get_ifm_depth(npu_block_type: NpuBlockType, ifm_box: Box, ofm_box: Box) -> int:
    if npu_block_type in (NpuBlockType.ConvolutionMxN, NpuBlockType.VectorProduct, NpuBlockType.ReduceSum):
        block = ifm_box.get_block()
    else:
        block = ofm_box.get_block()
    return block.depth


def use_zero_point_0(ps, tens: Tensor, is_ifm_tensor: bool) -> bool:
    """Checks if quantization should use 0 as zero point"""
    if tens.dtype == DataType.int32 and is_ifm_tensor:
        return True
    if ps.primary_op.rounding_mode == RoundingMode.AwayZero:
        if (
            ps.primary_op.original_type == Op.AvgPool
            and ps.primary_op.type == Op.Conv2DBias
            and ps.primary_op.attrs.get("padding", None) == Padding.VALID
        ):
            # Force zero point to 0 for AveragePool operators converted to a Conv2DBias with rounding away from
            # zero.
            return True
        if ps.primary_op.original_type == Op.ResizeBilinear and ps.primary_op.type == Op.DepthwiseConv2DBias:
            # Force zero point to 0 for ResizeBilinear operators converted to a DepthwiseConv with rounding away from
            # zero. This is because the reference kernel ignores the zero points.
            return True
        if (
            not is_ifm_tensor
            and ps.primary_op.original_type == Op.AvgPool
            and ps.primary_op.attrs.get("padding", None) == Padding.EXPLICIT
            and ps.primary_op.type == Op.DepthwiseConv2DBias
        ):
            # Force zero point to 0 for the OFM of AvgPool operators that have been combined with a previous PAD
            # operator and converted to a DepthwiseConv with rounding away from zero. This is because the zero point
            # will already have been applied in the Bias.
            return True
    if ps.primary_op.type not in (Op.AvgPool, Op.CLZ, Op.SHL) and not ps.primary_op.type.is_resize_op():
        return False
    if ps.primary_op.type == Op.AvgPool and ps.primary_op.explicit_scaling:
        return False
    fused_quantize = any(op.type == Op.Quantize or op.original_type == Op.Quantize for op in ps.ops)
    forced_ofm_quantization = ps.primary_op.forced_output_quantization
    use_0 = (
        (
            ps.primary_op.activation is None
            or forced_ofm_quantization is not None
            or (ps.primary_op.type.is_avgpool_op() and ps.primary_op.activation.op_type.is_relu_op())
        )
        and (ps.primary_op.memory_function != Op.ConcatSliceWrite)
        and not fused_quantize
    )
    return use_0


def get_ifm_or_ifm2_quantization(ps, tens: Tensor) -> Optional[NpuQuantization]:
    """Gets quantization for IFM/IFM2"""
    op = ps.primary_op
    ifm_quant = op.forced_input_quantization if op.forced_input_quantization is not None else tens.quantization
    if ifm_quant is None:
        return None
    if use_zero_point_0(ps, tens, True):
        zero_point = 0
    else:
        zero_point = int(ifm_quant.zero_point)
    return NpuQuantization(scale_f32=ifm_quant.scale_f32, zero_point=zero_point)


def get_ofm_quantization(ps, tens: Tensor) -> Optional[NpuQuantization]:
    """Gets quantization for OFM"""
    op = ps.primary_op
    # Check if operation's output quantization is should be used instead of the output tensor's quantization
    # (used in LUTs)
    ofm_quant = op.forced_output_quantization if op.forced_output_quantization is not None else tens.quantization
    if ofm_quant is None:
        return None
    if use_zero_point_0(ps, tens, False):
        zero_point = 0
    else:
        zero_point = int(ofm_quant.zero_point)
    return NpuQuantization(scale_f32=ofm_quant.scale_f32, zero_point=zero_point)


def create_feature_map(
    tens: Tensor,
    box: Box,
    arch: ArchitectureFeatures,
    op_shape4D: Shape4D,
    tile_base_offsets: List[int],
    stride_multiplier: Optional[List[int]] = None,
) -> NpuFeatureMap:
    """Creates feature map with common fields populated"""
    fm = NpuFeatureMap()
    fm.region = get_region(tens.mem_type, arch)
    fm.data_type = dtype_map[tens.dtype]
    if tens.format == TensorFormat.NHWC:
        fm.layout = NpuLayout.NHWC
    elif tens.format == TensorFormat.NHCWB16:
        fm.layout = NpuLayout.NHCWB16
    else:
        assert 0, "Incorrect tensor format"

    strides = tens.get_strides(op_shape4D)
    assert strides is not None

    if stride_multiplier and stride_multiplier != [1, 1, 1]:
        assert (
            tens.format == TensorFormat.NHWC
        ), "Only default stride multiplier ([1, 1, 1]) supported for NHCWB16 format"
        # Multiply strides for C/H/W (in that order) with corresponding stride factor
        for i, stride_factor in enumerate(stride_multiplier, start=1):
            strides[i] *= stride_factor

    height_0, height_1, width_0, addresses = tens.addresses_for_rolling_buffer(
        box.start_coord, box.end_coord, strides, op_shape4D
    )

    for idx, offset in enumerate(tile_base_offsets):
        addresses[idx] += offset
    fm.tiles = NpuTileBox(
        height_0=height_0, height_1=height_1, width_0=width_0, addresses=[int(addr) for addr in addresses]
    )
    fm.strides = NpuShape3D(height=int(strides[2]), width=int(strides[3]), depth=int(strides[1]))
    fm.name = tens.name
    return fm


def create_weights(
    weight_tensor: NpuWeightTensor, weight_box: Box, scale_tensor: NpuWeightTensor, arch: ArchitectureFeatures
) -> Tuple[List[NpuAddressRange], List[NpuAddressRange]]:
    """Returns address ranges for weights and scales"""
    weights = []
    biases = []
    shared_region = get_region(weight_tensor.mem_type, arch)
    scale_region = get_region(scale_tensor.mem_type, arch) if scale_tensor else 0

    w_tensor_src = weight_tensor
    if weight_tensor.src_tensor:
        w_tensor_src = cast(NpuWeightTensor, weight_tensor.src_tensor)

    core_offset = 0
    for core in range(0, arch.ncores):
        # Get weight range per core
        key = WeightKey(core, weight_box.start_coord[-1])
        if key in w_tensor_src.encoded_ranges:
            weight_range = w_tensor_src.encoded_ranges[key]
            if weight_tensor == w_tensor_src:
                # Straight from source tensor
                address = weight_tensor.address + weight_range.offset
            else:
                # Weight buffered tensor
                address = weight_tensor.address + core_offset
                core_offset += round_up(weight_range.total_bytes, 16)

            # Location of weights in tensor
            addr_range = NpuAddressRange(
                shared_region, int(address + weight_range.weight_offset), round_up(int(weight_range.weight_bytes), 16)
            )
            weights.append(addr_range)

            # Location of standalone scales or combined weights tensor scales
            if scale_tensor:
                assert scale_tensor.src_tensor is None  # Must be standalone
                scale_range = scale_tensor.encoded_ranges[key]
                address = scale_tensor.address + scale_range.offset
                addr_range = NpuAddressRange(scale_region, int(address), round_up(int(scale_range.scale_bytes), 16))
            else:
                addr_range = NpuAddressRange(shared_region, int(address), round_up(int(weight_range.scale_bytes), 16))

            biases.append(addr_range)

    return weights, biases


def create_npu_activation(op: Operation) -> NpuActivation:
    """Creates fused activation function"""
    if op.activation is None:
        return NpuActivation(NpuActivationOp.NONE_OR_RELU)
    faf = op.activation.op_type
    act_op = NpuActivationOp.NONE_OR_RELU
    if faf == Op.Tanh:
        act_op = NpuActivationOp.TANH
    elif faf == Op.Sigmoid:
        act_op = NpuActivationOp.SIGMOID
    elif faf == Op.LUT:
        act_op = NpuActivationOp.TABLE_LOOKUP
    elif not faf.is_relu_op():
        raise UnsupportedFeatureError(f"Unsupported fused_activation_function: {faf.name}")

    act = NpuActivation(act_op)
    act.min = op.activation.min
    act.max = op.activation.max
    if act_op is NpuActivationOp.NONE_OR_RELU and op.type.is_avgpool_op() and not op.explicit_scaling:
        quant = op.ofm.quantization
        if quant and quant.zero_point:  # Zero point is not 0
            scale_f32 = 1 if quant.scale_f32 is None else quant.scale_f32
            zero_point = quant.zero_point
            if act.min is not None:
                act.min = scale_f32 * quantise_float32(act.min, scale_f32, zero_point)
            if act.max is not None:
                act.max = scale_f32 * quantise_float32(act.max, scale_f32, zero_point)
    act.lookup_table_index = op.activation.lut_index
    return act


def set_common_op_fields(npu_op: NpuBlockOperation, cmd: NpuStripe, arch: ArchitectureFeatures):
    """Sets common fields of the given operation"""
    ps = cmd.ps
    op = ps.primary_op

    ifm_height = cmd.ifm_box.get_block().height
    ifm_width = cmd.ifm_box.get_block().width
    ifm_depth = get_ifm_depth(op.type.npu_block_type, cmd.ifm_box, cmd.ofm_box)

    npu_op.ifm = create_feature_map(cmd.ifm_tensor, cmd.ifm_box, arch, ps.ifm_shapes[0], op.tile_base_offsets_ifm[0])
    npu_op.ifm.shape = NpuShape3D(height=ifm_height, width=ifm_width, depth=ifm_depth)
    npu_op.ifm.quantization = get_ifm_or_ifm2_quantization(ps, cmd.ifm_tensor)

    out_block = cmd.ofm_box.get_block()
    npu_op.ofm = create_feature_map(
        cmd.ofm_tensor, cmd.ofm_box, arch, ps.ofm_shapes[0], op.tile_base_offsets_ofm, op.ofm_stride_multiplier
    )
    npu_op.ofm.shape = NpuShape3D(height=out_block.height, width=out_block.width, depth=out_block.depth)
    npu_op.ofm.quantization = get_ofm_quantization(ps, cmd.ofm_tensor)

    if cmd.weight_tensor is not None:
        npu_op.weights, npu_op.biases = create_weights(cmd.weight_tensor, cmd.weight_box, cmd.scale_tensor, arch)
    npu_op.activation = create_npu_activation(op)
    npu_op.fused_quantize = any(op.type == Op.Quantize or op.original_type == Op.Quantize for op in ps.ops)
    npu_op.rounding_mode = get_rounding_mode(op, npu_op.fused_quantize)
    npu_op.block_config = NpuShape3D(height=ps.block_config[0], width=ps.block_config[1], depth=ps.block_config[3])

    if not op.type.is_elementwise_op():
        npu_op.padding = create_padding(cmd, op, npu_op)
        npu_op.kernel = to_npu_kernel(op.kernel)
    npu_op.ifm_upscale = resampling_mode_inv_map[op.ifm_resampling_mode]
    return npu_op


def create_npu_conv2d_op(cmd: NpuStripe, arch: ArchitectureFeatures) -> NpuConv2DOperation:
    """Converts the command to NpuConv2DOperation"""
    npu_op = NpuConv2DOperation()
    set_common_op_fields(npu_op, cmd, arch)
    if cmd.ps.primary_op.type.npu_block_type == NpuBlockType.VectorProduct:
        npu_op.block_traversal = NpuBlockTraversal.DEPTH_FIRST
    else:
        if cmd.weight_tensor.src_tensor:
            npu_op.block_traversal = cmd.weight_tensor.src_tensor.hw_traversal
        else:
            npu_op.block_traversal = cmd.weight_tensor.hw_traversal
    return npu_op


def create_npu_conv_depthwise_op(cmd: NpuStripe, arch: ArchitectureFeatures) -> NpuConvDepthWiseOperation:
    """Converts the command to NpuConvDepthWiseOperation"""
    npu_op = NpuConvDepthWiseOperation()
    set_common_op_fields(npu_op, cmd, arch)
    return npu_op


def create_npu_pool_op(cmd: NpuStripe, arch: ArchitectureFeatures) -> NpuPoolingOperation:
    """Converts the command to NpuPoolingOperation"""
    ps = cmd.ps
    op = ps.primary_op
    if op.type.is_maxpool_op():
        pool_op = NpuPoolingOp.MAX
    elif op.type.is_avgpool_op() or op.type.is_resize_op():
        pool_op = NpuPoolingOp.AVERAGE
    elif op.type == Op.ReduceSum:
        pool_op = NpuPoolingOp.REDUCE_SUM
    else:
        assert 0, f"Unknown pool type {op.type}"
    npu_op = NpuPoolingOperation(pool_op)
    set_common_op_fields(npu_op, cmd, arch)
    # Pooling specific info
    if op.explicit_scaling:
        # Note: reuse of rescale for explicit scaling to not expose this in the external API
        npu_op.rescale = op.explicit_scaling
    return npu_op


def create_npu_elementwise_op(cmd: NpuStripe, arch: ArchitectureFeatures) -> NpuElementWiseOperation:
    """Converts the command to NpuElementWiseOperation"""
    ps = cmd.ps
    op = ps.primary_op
    assert op.type in elementwise_op_map, f"Unknown elementwise type {op.type}"
    elemwise_op = elementwise_op_map[op.type]
    npu_op = NpuElementWiseOperation(elemwise_op)

    if elemwise_op not in UNARY_ELEMWISE_OPS:
        ifm_shape = None if cmd.ifm_tensor.shape == [] else ps.ifm_shapes[0]
        ifm2_shape = None if cmd.ifm2_tensor.shape == [] else ps.ifm_shapes[1]
        if cmd.reversed_operands:
            assert ifm_ifm2_correct_order(ifm_shape, ifm2_shape)
            npu_op.reversed_operands = True
        elif not ifm_ifm2_correct_order(ifm_shape, ifm2_shape):
            # The scalar/broadcasted feature map has to be the ifm2 tensor so switch the ifms
            cmd.ifm_tensor, cmd.ifm2_tensor = cmd.ifm2_tensor, cmd.ifm_tensor
            cmd.ifm_box, cmd.ifm2_box = cmd.ifm2_box, cmd.ifm_box
            ps.ifm_shapes[0], ps.ifm_shapes[1] = ps.ifm_shapes[1], ps.ifm_shapes[0]
            npu_op.reversed_operands = True
        npu_op.ifm2 = create_feature_map(
            cmd.ifm2_tensor,
            cmd.ifm2_box,
            arch,
            ps.ifm_shapes[1],
            op.tile_base_offsets_ifm[1],
        )
        npu_op.ifm2.quantization = get_ifm_or_ifm2_quantization(ps, cmd.ifm2_tensor)
        if cmd.ifm2_tensor.shape == []:
            # scalar
            npu_op.ifm2_scalar = cmd.ifm2_tensor.get_scalar()
            npu_op.ifm2.shape = NpuShape3D(height=0, width=0, depth=0)
        else:
            ifm2_blk = cmd.ifm2_box.get_block()
            npu_op.ifm2.shape = NpuShape3D(height=ifm2_blk.height, width=ifm2_blk.width, depth=ifm2_blk.depth)
    set_common_op_fields(npu_op, cmd, arch)
    # Check if output scale needs to be overridden
    output_scale = None
    if op.explicit_scaling is not None:
        assert not op.explicit_scaling.per_channel
        assert op.type in (Op.Add, Op.Mul, Op.Sub)
        npu_op.rescale = (op.explicit_scaling.multiplier[0], op.explicit_scaling.shift[0])
    elif op.type == Op.Add and op.original_type.is_resize_op():
        # Force output scale same as the input scale for
        # resizebilinear/nearestneighbor 1x1 that is converted to add
        output_scale = npu_op.ifm2.quantization.scale_f32
    elif op.type == Op.Abs:
        output_scale = npu_op.ifm.quantization.scale_f32 / npu_op.ofm.quantization.scale_f32
    elif op.type == Op.LeakyRelu:
        output_scale = op.attrs["alpha"]
    elif op.type in (Op.Add, Op.Mul, Op.Sub):
        if op.activation is not None and op.activation.op_type in (Op.Sigmoid, Op.Tanh):
            output_scale = 1 / 0x3000
    if output_scale is not None:
        npu_op.ofm.quantization = NpuQuantization(scale_f32=output_scale, zero_point=npu_op.ofm.quantization.zero_point)
    return npu_op


def create_dma_op(cmd: DMA, arch: ArchitectureFeatures) -> NpuDmaOperation:
    """Converts the command to NpuDmaOperation"""
    src_region = get_region(cmd.in_tensor.mem_type, arch)
    if cmd.out_tensor.purpose == TensorPurpose.LUT:
        dest_region = BASE_PTR_INDEX_MEM2MEM
    else:
        dest_region = get_region(cmd.out_tensor.mem_type, arch)

    if cmd.in_tensor.purpose == TensorPurpose.Weights:
        # Get weight range per core
        sz = 0
        for core in range(0, arch.ncores):
            key = WeightKey(core, cmd.box.start_coord[-1])
            if key in cmd.in_tensor.encoded_ranges:
                weight_range = cmd.in_tensor.encoded_ranges[key]
                sz += round_up(weight_range.total_bytes, 16)

                if core == 0:
                    weight_range = cmd.in_tensor.encoded_ranges[key]
                    src_addr = cmd.in_tensor.address + weight_range.offset
                    dest_addr = cmd.out_tensor.address
    else:
        src_addr = cmd.in_tensor.address_for_coordinate(cmd.box.start_coord)
        dest_addr = cmd.out_tensor.address_for_coordinate(cmd.box.start_coord)
        # DMA must use 16 bytes alignment (tensors are always aligned but the sz calculation uses actual size)
        sz = round_up(cmd.in_tensor.address_for_coordinate(cmd.box.end_coord, is_top_box=True) - src_addr, 16)
    src = NpuAddressRange(src_region, int(src_addr), int(sz))
    dest = NpuAddressRange(dest_region, int(dest_addr), int(sz))
    return NpuDmaOperation(src, dest)


def convert_command_to_npu_op(cmd: Command, arch: ArchitectureFeatures) -> NpuOperation:
    """Converts the high level command to NpuOperation"""
    npu_op: NpuOperation
    if isinstance(cmd, DMA):
        npu_op = create_dma_op(cmd, arch)
        npu_op.name = cmd.out_tensor.name
    elif isinstance(cmd, NpuStripe):
        npu_block_type = cmd.ps.primary_op.type.npu_block_type
        if npu_block_type in (NpuBlockType.ConvolutionMxN, NpuBlockType.VectorProduct):
            npu_op = create_npu_conv2d_op(cmd, arch)
        elif npu_block_type == NpuBlockType.ConvolutionDepthWise:
            npu_op = create_npu_conv_depthwise_op(cmd, arch)
        elif npu_block_type in (NpuBlockType.Pooling, NpuBlockType.ReduceSum):
            npu_op = create_npu_pool_op(cmd, arch)
        elif npu_block_type == NpuBlockType.ElementWise:
            npu_op = create_npu_elementwise_op(cmd, arch)
        else:
            assert 0, f"Unknown command type {npu_block_type}"
        npu_op.name = cmd.ps.primary_op.name
    return npu_op


def generate_register_command_stream_for_sg(nng, sg, arch, verbose=False):
    """Generates command stream for the subgraph, adds it to sg.register_command_stream"""
    # Convert high level command stream to list of NpuOperation
    npu_op_list = []
    npu_op_to_cmd = dict()  # map from npu op to high level command
    for cmd in sg.high_level_command_stream:
        if isinstance(cmd, NpuStripe) and cmd.ps.npu_block_type == NpuBlockType.Default:
            print("Warning: Skipping register command stream generation for", cmd.ps)
        elif isinstance(cmd, NOP):
            # NOP should not generate anything
            continue
        else:
            npu_op = convert_command_to_npu_op(cmd, arch)
            npu_op_list.append(npu_op)
            npu_op_to_cmd[npu_op] = cmd
    mem_limits = get_mem_limits_for_regions(arch)
    # Generate register commands
    if len(sg.high_level_command_stream) > 0:
        stream_id = DebugDatabase.add_stream(sg)
        sg.generated_stream_id = stream_id

        def add_to_debug_db(npu_op: NpuOperation, offset: int):
            """Adds info to the debug database"""
            if not isinstance(npu_op, NpuDmaOperation):
                cmd = npu_op_to_cmd[npu_op]
                DebugDatabase.add_command(stream_id, offset, cmd.ps.primary_op)

        sg.register_command_stream = generate_command_stream(
            npu_op_list, arch, verbose, mem_limits, add_to_debug_db, npu_op_to_cmd
        )