aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/high_level_command_stream_generator.py
blob: 1dac1815d35eb5ae8d1b0fc5a5bf185c063a8246 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# SPDX-FileCopyrightText: Copyright 2020-2023 Arm Limited and/or its affiliates <open-source-office@arm.com>
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Description:
# Generate a high-level command stream from a schedule
from .architecture_allocator import is_nearest
from .high_level_command_stream import Box
from .high_level_command_stream import DMA
from .high_level_command_stream import NOP
from .high_level_command_stream import NpuStripe
from .numeric_util import round_up_divide
from .operation import create_activation_function
from .operation import NpuBlockType
from .operation import Op
from .shape4d import Shape4D
from .tensor import TensorPurpose


def dma_if_necessary(ps, box, tensor):
    src_tensor = tensor.src_tensor
    if src_tensor and tensor.mem_area != src_tensor.mem_area:
        yield DMA(ps, src_tensor, tensor, box)


def dma_feature_map_if_necessary(ps, src_tensor, dst_tensor):
    box = Box([0] * len(src_tensor.shape), list(src_tensor.shape))
    src_addr = src_tensor.address_for_coordinate(box.start_coord)
    dst_addr = dst_tensor.address_for_coordinate(box.start_coord)

    if src_addr != dst_addr or src_tensor.mem_area != dst_tensor.mem_area:
        yield DMA(ps, src_tensor, dst_tensor, box)
    else:
        # Source and destination is the same so no need for a DMA transaction
        # Create a NOP for visibility when printing the high_level_command_stream
        yield NOP(ps, src_tensor, dst_tensor)


def generate_high_level_command_stream_for_schedule(nng, sg, arch, verbose_high_level_command_stream):
    res = []
    # sg.sched_ops are ordered by execution
    processed_cascades = set()
    for sched_op in sg.sched_ops:
        op_info = sg.schedule.cost_map[sched_op]
        if op_info.cascade in processed_cascades:
            # This cascade has already been processed
            continue

        if op_info.cascade == 0:
            # Generate high-level commands for this Op in isolation
            res += list(generate_high_level_commands_for_sched_op(sched_op, sg.schedule))
        else:
            # Generate high-level commands for the whole cascade
            cascade_info = sg.schedule.cascades[op_info.cascade]
            # Start from the last Op in the cascade
            res += list(generate_high_level_commands_for_sched_op(sg.sched_ops[cascade_info.end], sg.schedule))
            processed_cascades.add(op_info.cascade)

    sg.high_level_command_stream = res
    if verbose_high_level_command_stream:
        sg.print_high_level_command_stream()


def generate_high_level_commands_for_sched_op(sched_op, schedule):
    op_info = schedule.cost_map[sched_op]
    cascade_info = schedule.cascades.get(op_info.cascade)
    npu_block_type = sched_op.parent_ps.npu_block_type
    block_config = op_info.block_config
    ps = sched_op.parent_ps
    parent_op = sched_op.parent_op
    ofm_tensor = ps.ofm_tensor

    # Get Tensors and Full Shapes
    (
        ifm_tensor,
        ifm2_tensor,
        uncomp_weight_tensor,
        _,
        _,
    ) = parent_op.get_ifm_ifm2_weights_biases_ofm()
    if sched_op.reversed_operands:
        ifm2_tensor, ifm_tensor = ifm_tensor, ifm2_tensor
    ifm = sched_op.ifm
    ifm2 = sched_op.ifm2
    ofm_shape = sched_op.ofm.shape

    # Get Kernel strides and upscaling factor
    kernel_stride = sched_op.kernel.stride
    strides = [1, kernel_stride.y, kernel_stride.x, 1]
    skirt = parent_op.attrs.get("skirt", None)
    upscaling = 1
    if sched_op.op_type == Op.Conv2DBackpropInputSwitchedBias:
        upscaling = ofm_shape.height // ifm.shape.height
    elif is_nearest(sched_op.resampling_mode):
        upscaling = round_up_divide(ofm_shape.height, ifm.shape.height)

    # Get kernel height and height dilation
    k_height = 1
    if npu_block_type in (NpuBlockType.Pooling, NpuBlockType.ReduceSum):
        if parent_op is not None:
            k_height = parent_op.attrs["ksize"][1]
    else:
        if uncomp_weight_tensor is not None:
            k_height = uncomp_weight_tensor.shape[0]

    k_height_dilation = parent_op.attrs.get("dilation", (_, 1, _, _))[-3]

    # Calculate dilated kernel height
    k_dilated_height = k_height_dilation * (k_height - 1) + 1

    # Define Start and End coordinates for the OFM
    ofm_start = Shape4D(0, 0, 0, op_info.ofm_depth_slices[0])
    ofm_end = ofm_shape

    ofm_depth_slices = op_info.ofm_depth_slices

    # Read/Write offsets
    read_offsets = list(parent_op.read_offsets)  # offset for [ifm, ifm2]
    read_shapes = list(parent_op.read_shapes)  # read shapes for [ifm, ifm2]
    write_offset = Shape4D(0, 0, 0, 0)
    if parent_op.write_offset is not None:
        write_offset = parent_op.write_offset
        ofm_start = write_offset
        ofm_end = parent_op.write_offset + parent_op.write_shape

    # Create activation function if needed
    for op in ps.ops:
        if op.type.is_relu_op() or op.type in (Op.Tanh, Op.Sigmoid):
            ps.primary_op.activation = create_activation_function(
                op.type, min=op.attrs.get("min", None), max=op.attrs.get("max", None)
            )

    # Generate commands for the Op that produces this Op's IFM, if applicable
    if cascade_info is None or cascade_info.start == sched_op.index:
        # Lone Op or First Op in cascade - all IFM data is present
        ifm_present = Box([0, 0, 0, 0], ifm.shape.as_list())
        producer_op = None
        prev_cmd_gen = []
    else:
        ifm_present = Box([0, 0, 0, 0], [0, 0, 0, 0])
        producer_op = sched_op.ifm.connection.producers[0]
        prev_cmd_gen = generate_high_level_commands_for_sched_op(producer_op, schedule)
    ofm_step = op_info.stripe
    for start_height in range(ofm_start.height, ofm_end.height, ofm_step.height):
        end_height = min(start_height + ofm_step.height, ofm_end.height)
        for start_width in range(ofm_start.width, ofm_end.width, ofm_step.width):
            end_width = min(start_width + ofm_step.width, ofm_end.width)

            lut_dma_done = False
            for depth_idx, start_channel in enumerate(ofm_depth_slices[:-1]):
                start_channel = max(start_channel, ofm_start.depth)
                end_channel = min(ofm_depth_slices[depth_idx + 1], ofm_end.depth)

                # Construct the OFM box for the current stripe
                ofm_box_start = Shape4D(ofm_start.batch, start_height, start_width, start_channel)
                ofm_box_end = Shape4D(ofm_end.batch, end_height, end_width, end_channel)
                ofm_box = Box(ofm_box_start.as_list(), ofm_box_end.as_list())
                ifm_box = Box([], [])
                ifm2_box = Box([], [])
                # Calculate IFM input box based on the OFM box
                if ifm:
                    ifm_box, pad_top, pad_bottom = ofm_box.transform_with_strides_and_skirt(
                        strides,
                        skirt,
                        ifm.shape,
                        npu_block_type,
                        write_offset.as_list(),
                        k_dilated_height,
                        read_offsets[0],
                        read_shapes[0],
                        upscaling,
                        sched_op.op_type,
                    )
                # Calculate IFM2 input box based on the OFM box
                if ifm2:
                    ifm2_box, pad_top, pad_bottom = ofm_box.transform_with_strides_and_skirt(
                        strides,
                        skirt,
                        ifm2.shape,
                        npu_block_type,
                        write_offset.as_list(),
                        k_dilated_height,
                        read_offsets[1],
                        read_shapes[1],
                        upscaling,
                        sched_op.op_type,
                    )

                ifm_required = ifm_box
                # Get the Op that produces this Op's IFM data - only applicable within cascades
                if producer_op:
                    assert op_info.cascade != 0
                    assert op_info.cascade == schedule.cost_map[producer_op].cascade
                    if not ifm_required.is_subbox_of(ifm_present):
                        for prev_cmd in prev_cmd_gen:
                            yield prev_cmd
                            if prev_cmd.is_npu_pass_command() and prev_cmd.ps == producer_op.parent_ps:
                                ifm_present.end_coord = prev_cmd.ofm_box.end_coord
                                if ifm_required.is_subbox_of(ifm_present):
                                    # There is enough IFM data - exit loop
                                    break

                # Information about the current stripe's location in the cascade
                is_first_h_stripe = ofm_box_start.height == ofm_start.height
                is_last_h_stripe = ofm_box_end.height >= ofm_end.height

                # Calculate the weight box - i.e. the subshape of weights needed for this NpuStripe command
                weight_tensor = op_info.npu_weights_tensor
                scale_tensor = op_info.npu_scales_tensor
                if op_info.npu_weights_tensor:
                    weight_box = Box([0, 0, 0, start_channel], [1, 1, 1, end_channel])

                    if op_info.buffered_weight_tensors:
                        idx = depth_idx % len(op_info.buffered_weight_tensors)
                        weight_tensor = op_info.buffered_weight_tensors[idx]
                        if is_first_h_stripe:
                            yield from dma_if_necessary(
                                sched_op.parent_ps, weight_box, op_info.buffered_weight_tensors[idx]
                            )
                else:
                    weight_box = None

                # Should only be done once per loop but not before weights above
                if parent_op.activation_lut and not lut_dma_done:
                    lut_tensor = [tens for tens in parent_op.inputs if tens.purpose == TensorPurpose.LUT][0]
                    lut_box = Box([0] * len(lut_tensor.shape), list(lut_tensor.shape))
                    lut_dma_done = True
                    yield from dma_if_necessary(sched_op.parent_ps, lut_box, lut_tensor)

                if parent_op.type == Op.Memcpy:
                    yield from dma_feature_map_if_necessary(sched_op.parent_ps, ifm_tensor, ofm_tensor)
                else:
                    yield NpuStripe(
                        sched_op.parent_ps,
                        block_config.old_style_representation(),
                        is_first_h_stripe,
                        is_last_h_stripe,
                        ifm_tensor,
                        ifm_box,
                        ofm_tensor,
                        ofm_box,
                        weight_tensor,
                        weight_box,
                        scale_tensor,
                        ifm2_tensor=ifm2_tensor,
                        ifm2_box=ifm2_box,
                        pad_top=pad_top,
                        pad_bottom=pad_bottom,
                        reversed_operands=sched_op.reversed_operands,
                    )