aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/architecture_allocator.py
blob: b5edcabb94a29c2580c1d077bb1d3145ebd3af0d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
# Copyright (C) 2021 Arm Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Description: Architecture SHRAM allocator
import enum
import math
from typing import Dict
from typing import Optional
from typing import Tuple
from typing import Union

from .architecture_features import ArchitectureFeatures
from .architecture_features import Block
from .architecture_features import SHRAMConfig
from .architecture_features import SHRAMElements
from .ethos_u55_regs.ethos_u55_regs import resampling_mode
from .numeric_util import round_up
from .numeric_util import round_up_divide
from .operation import Kernel
from .operation import NpuBlockType
from .range_set import MemoryRangeSet
from .shape4d import Shape4D
from .tensor import MemArea


class SHRAMLayout:
    def __init__(self):
        self.ib_start = 0
        self.ib_end = 0
        self.ib_start2 = 0
        self.ab_start = 0
        self.lut_start = 0


class ArchitectureBlockConfig:
    def __init__(self):
        self.layout = SHRAMLayout()
        self.ifm_block = Shape4D()
        self.ofm_block = Shape4D()  # non-1D-optimised block
        self.acc_type = SHRAMElements.Acc32
        self.is_partkernel = False
        self.bank_size = 0

    def get_shram_memory_access_range(self):
        # Returns the SHRAM memory access range used by this shared buffer,
        # excluding access to LUT
        return MemoryRangeSet(MemArea.Shram, 0, self.layout.lut_start * self.bank_size)

    def old_style_representation(self):
        return [self.ofm_block.height, self.ofm_block.width, self.ifm_block.depth, self.ofm_block.depth]

    def __str__(self):
        return str(self.old_style_representation())


_AccumulatorBits = {SHRAMElements.Acc16: 16, SHRAMElements.Acc32: 32, SHRAMElements.Acc40: 40}


class ElementwiseUsage(enum.IntEnum):
    No = 0
    Full = 1
    Scalar = 2


def _try_block_config(
    shram: SHRAMConfig,
    ew_usage: ElementwiseUsage,
    ofm_block: Union[Shape4D, Block],
    ifm_block: Union[Shape4D, Block],
    ifm_bits: int,
    ifm_granule: int,
    acc_bits: int,
    acc_granule: int,
    lut_banks: int,
) -> Union[SHRAMLayout, None]:
    assert (acc_bits > 0) and (acc_granule > 0)
    assert (ifm_bits >= 8) and ((ifm_bits % 8) == 0) and (ifm_granule > 0)

    # Aways need IFM space
    ifm_bytes = ifm_block.elements_wh() * round_up((ifm_block.depth * ifm_bits) / 8, 8)
    ifm_banks = round_up_divide(ifm_bytes, shram.bank_size_bytes) * 2
    ifm_banks = round_up(ifm_banks, ifm_granule)

    # Calculate SHRAM boundaries of the IFM and Accumulators
    lut_start = shram.total_banks - lut_banks
    ifm_end = shram.reserved_output_banks + ifm_banks
    ifm2_start = ifm_end
    acc_start = lut_start

    # If not elementwise then we need accumulator space
    if ew_usage == ElementwiseUsage.No:
        acc_bytes = (ofm_block.elements_wh() * round_up(ofm_block.depth, 8) * acc_bits) // 8
        acc_banks = round_up_divide(acc_bytes, shram.bank_size_bytes) * 2
        acc_banks = round_up(acc_banks, acc_granule)
        acc_start = acc_start - acc_banks
    else:
        ifm2_banks = ifm_banks if ew_usage == ElementwiseUsage.Full else 0
        if ifm2_start + ifm2_banks > acc_start:
            return None
        ifm_end = acc_start

    # IFM must still fit before accumulators
    if ifm_end > acc_start:
        return None

    # Should all fit, so return this layout
    layout = SHRAMLayout()
    layout.ib_start = shram.reserved_output_banks
    layout.ib_start2 = ifm2_start
    layout.ib_end = ifm_end
    layout.ab_start = acc_start
    layout.lut_start = lut_start
    return layout


def _choose_kernel_method(ifm_shape: Shape4D, ifm_bits: int, kernel: Kernel) -> bool:
    if ifm_shape.depth <= 8:
        return True

    # Compare part-kernel to depth-kernel and choose the one with best utilisation
    kernel_elements = kernel.elements_wh()
    depth_utilisation = ifm_shape.depth / round_up(ifm_shape.depth, 32 if ifm_bits == 8 else 16)
    part_utilisation = (
        ifm_shape.depth
        * kernel_elements
        / (round_up(ifm_shape.depth, 8) * round_up(kernel_elements, 4 if ifm_bits == 8 else 2))
    )

    return part_utilisation > depth_utilisation


def _ew_usage(npu_op_type: NpuBlockType, uses_scalar: bool) -> ElementwiseUsage:
    ew_usage = ElementwiseUsage.No
    if npu_op_type == NpuBlockType.ElementWise:
        ew_usage = ElementwiseUsage.Full
        if uses_scalar:
            ew_usage = ElementwiseUsage.Scalar
    return ew_usage


def _acc_type(npu_op_type: NpuBlockType, ifm_bits: int, scaled: bool) -> int:
    """Returns accumulator type"""
    acc_type = SHRAMElements.Acc32
    if (ifm_bits == 16) and npu_op_type != NpuBlockType.Pooling and scaled:
        acc_type = SHRAMElements.Acc40
    return acc_type


def is_nearest(ifm_resampling: resampling_mode) -> bool:
    return ifm_resampling == resampling_mode.NEAREST


def to_upscale(ifm_resampling: resampling_mode) -> int:
    # Upscaling depending on resampling mode
    return 1 if ifm_resampling == resampling_mode.NONE else 2


def _ifm_blockdepth(arch, ifm_shape: Union[Shape4D, Block], ifm_bits: int, is_partkernel: bool):
    if ifm_bits == 16:
        ifm_blockdepth = round_up(min(ifm_shape.depth, 16), 4)
    else:
        ifm_blockdepth = round_up(min(ifm_shape.depth, 16 if is_partkernel else 32), arch.ifm_ublock.depth)
    return ifm_blockdepth


def _required_size(value: int, stride: int, border: int, upscale: int, nearest: bool) -> int:
    return int(math.ceil(((value - 1) * stride + border + nearest) / upscale))


def get_ifm_area_required(
    ofm_shape: Union[Shape4D, Block], kernel: Kernel, resampling_mode: resampling_mode
) -> Tuple[int, int]:
    upscale = to_upscale(resampling_mode)
    nearest = is_nearest(resampling_mode)
    h1 = _required_size(ofm_shape.height, kernel.stride.y, kernel.area_height(), upscale, nearest)
    w1 = _required_size(ofm_shape.width, kernel.stride.x, kernel.area_width(), upscale, nearest)
    return (w1, h1)


def _get_ifm_blocksize(
    ofm_block: Union[Shape4D, Block], kernel: Kernel, ublock: Block, subkernel_limit: Block, upscale: int, nearest: bool
) -> Shape4D:
    # IFM block height
    h1 = _required_size(
        ofm_block.height, kernel.stride.y, min(kernel.area_height(), subkernel_limit.height), upscale, nearest
    )
    h2 = h1
    height = round_up(min(h1, h2), ublock.height)

    # IFM block width
    w1 = _required_size(
        ofm_block.width, kernel.stride.x, min(kernel.area_width(), subkernel_limit.width), upscale, nearest
    )
    w2 = w1
    width = round_up(min(w1, w2), ublock.width)

    return Shape4D(1, height, width, ofm_block.depth)


def fit_block_for_ofm(
    arch: ArchitectureFeatures, ofm_shape: Union[Shape4D, Block], kernel: Kernel, block: Union[Shape4D, Block]
):
    # 256/512 Conv1D optimisation (ratio of IFM:Accumulators changes) This is a specific
    # interpretation of a more general constraint that can't be applied because the
    # find_block_config function must return block configs that can be applied to any OFM shape.
    if (ofm_shape.height == 1) and (kernel.height == 1) and (arch.ofm_ublock.height == 2):
        return Shape4D(1, min(block.height, ofm_shape.height), block.width, block.depth)
    return block


def find_block_config(
    arch: ArchitectureFeatures,
    npu_op_type: NpuBlockType,
    ofm_shape: Shape4D,
    ifm_shape: Shape4D,
    ifm2_shape: Optional[Shape4D],
    uses_scalar: bool,
    ifm_bits: int,
    kernel: Kernel,
    lut_banks: int,
    scaled: bool,
    ifm_resampling: resampling_mode,
) -> Optional[ArchitectureBlockConfig]:
    SplitDepth = ArchitectureFeatures.OFMSplitDepth
    # Elementwise larger-volume correction
    if ifm2_shape is not None and ifm2_shape.elements() > ifm_shape.elements():
        ifm_shape = ifm2_shape

    # Figure out if SHRAM should be portioned for elementwise
    ew_usage = _ew_usage(npu_op_type, uses_scalar)

    # Operator typing help
    is_pooling = npu_op_type == NpuBlockType.Pooling
    is_depthwise = npu_op_type == NpuBlockType.ConvolutionDepthWise
    is_equal_depth_op = (ew_usage != ElementwiseUsage.No) or is_pooling or is_depthwise
    is_convolution = (npu_op_type == NpuBlockType.ConvolutionMxN) or is_depthwise

    # Block config to be returned
    config = ArchitectureBlockConfig()
    config.is_partkernel = is_convolution and _choose_kernel_method(ifm_shape, ifm_bits, kernel)

    # Accumulator & granule settings
    config.acc_type = _acc_type(npu_op_type, ifm_bits, scaled)

    # Memory rounding granules
    acc_granule = arch.accumulator_granules[config.acc_type]
    acc_bits = _AccumulatorBits[config.acc_type]
    if ew_usage != ElementwiseUsage.No:
        ifm_granule = arch.ifm_ew_bank_granules[ifm_bits]
    else:
        ifm_granule = arch.ifm_bank_granules[ifm_bits]
    lut_banks = max(lut_banks, arch.shram.reserved_end_banks)
    upscale = to_upscale(ifm_resampling)
    nearest = is_nearest(ifm_resampling)

    # Subkernel repeats of the IFM
    ifm_repeats = round_up_divide(kernel.area_width(), arch.SubKernelMax.width) * round_up_divide(
        kernel.area_height(), arch.SubKernelMax.height
    )
    ifm_blockdepth = _ifm_blockdepth(arch, ifm_shape, ifm_bits, config.is_partkernel)

    # Weights fetch (for operators that have them)
    weight_fetch_wh = (kernel.area_width() * kernel.area_height()) if is_convolution else 0

    search_space = Shape4D.min(ofm_shape, Shape4D(arch.ofm_block_max.to_hwc()))
    search_space = Shape4D.round_up(search_space, Shape4D(arch.ofm_ublock.to_hwc()))

    # Block WHC search, loops across the search space looking for best efficiency
    best_cost = math.inf
    best_coverage = math.inf
    depth = max(arch.ofm_ublock.depth, min(search_space.depth, SplitDepth))
    if depth < ofm_shape.depth:
        depth = round_up(depth, SplitDepth)

    while depth <= search_space.depth:
        wont_fit: Dict[Tuple[int, int], bool] = {}
        for height in range(arch.ofm_ublock.height, search_space.height + 1, arch.ofm_ublock.height):
            for width in range(arch.ofm_ublock.width, search_space.width + 1, arch.ofm_ublock.width):
                # Avoid checking W/H transposed blocks that already didn't fit. i.e. if 8x4x16 didn't
                # fit, then 4x8x16 won't either.
                if wont_fit.get((height, width), False):
                    continue

                # Calculate the IFM block dimensions required to feed this OFM block
                ofm_block = Shape4D(1, height, width, depth)
                ifm_block = _get_ifm_blocksize(ofm_block, kernel, arch.ofm_ublock, arch.SubKernelMax, upscale, nearest)
                if not is_equal_depth_op:
                    ifm_block = ifm_block.with_depth(ifm_blockdepth)

                # Test if the IFM/OFM blocks fit into SHRAM
                ofm_block = fit_block_for_ofm(arch, ofm_shape, kernel, ofm_block)
                layout = _try_block_config(
                    arch.shram,
                    ew_usage,
                    Block(ofm_block.width, ofm_block.height, ofm_block.depth),
                    Block(ifm_block.width, ifm_block.height, ifm_block.depth),
                    ifm_bits,
                    ifm_granule,
                    acc_bits,
                    acc_granule,
                    lut_banks,
                )

                if layout:
                    full_blocks = Shape4D.div_round_up(ofm_shape, ofm_block)
                    blocks = ofm_shape / ofm_block

                    # Weights fetching
                    weight_fetch = weight_fetch_wh * ifm_shape.depth * full_blocks.elements_wh()
                    if not is_depthwise:
                        weight_fetch *= ofm_block.depth * blocks.depth

                    # IFM fetching
                    ifm_fetch = ifm_block.elements_wh() * ifm_shape.depth * ifm_repeats * blocks.elements_wh()
                    if not is_equal_depth_op:
                        ifm_fetch *= full_blocks.depth

                    # Scale relative to every output OFM element
                    if npu_op_type == NpuBlockType.ElementWise:
                        relative_cost = ofm_shape.elements() / (height * width * depth)
                    else:
                        relative_cost = (ifm_fetch + weight_fetch) / ofm_shape.elements()

                    # If the entire IFM can be encompassed by both buffers, bias to prefer this configuration
                    if ifm_shape.elements() < ifm_block.elements() * 2:
                        relative_cost = relative_cost / 2

                    # Choose based on relative minimum cost or larger IFM area (if equal cost)
                    if relative_cost <= best_cost:
                        choose_this = False
                        # Check IFM coverage only when it's equal best_cost and small OFM
                        if relative_cost == best_cost:
                            coverage_shape = Shape4D.min(ifm_shape, ifm_block)
                            coverage = ifm_shape.elements_wh() / coverage_shape.elements_wh()
                            # Small 4x4 IFM constraint found through analysis of networks
                            if coverage <= best_coverage and (height <= 4 and width <= 4):
                                best_coverage = coverage
                                choose_this = True
                        else:
                            best_coverage = math.inf
                            choose_this = True

                        if choose_this:
                            best_cost = relative_cost
                            config.layout = layout
                            config.bank_size = arch.shram_bank_size
                            config.ifm_block = ifm_block
                            config.ofm_block = Shape4D(1, height, width, depth)
                else:
                    wont_fit[(width, height)] = True

        depth = depth + arch.ofm_ublock.depth
        if depth < ofm_shape.depth:
            depth = round_up(depth, SplitDepth)

    if best_cost != math.inf:
        return config

    return None


def try_block_config(
    block_config: Block,
    arch: ArchitectureFeatures,
    npu_op_type: NpuBlockType,
    ofm_shape: Union[Shape4D, Block],
    ifm_shape: Union[Shape4D, Block],
    ifm2_shape: Optional[Union[Shape4D, Block]],
    uses_scalar: bool,
    ifm_bits: int,
    is_partkernel: bool,
    kernel: Kernel,
    lut_banks: int,
    scaled: bool,
    ifm_resampling: resampling_mode,
) -> Optional[ArchitectureBlockConfig]:
    """
    Given a block_config, returns a corresponding ArchitectureBlockConfig.
    Returns None if the block_config does not fit or is invalid.
    """
    # Check block config validity
    if not all(
        blk > 0 and blk <= blk_max and blk % ublk == 0
        for blk, blk_max, ublk in zip(block_config.as_list(), arch.ofm_block_max.as_list(), arch.ofm_ublock.as_list())
    ):
        return None
    # Elementwise larger-volume correction
    if ifm2_shape is not None and ifm2_shape.elements() > ifm_shape.elements():
        ifm_shape = ifm2_shape

    ew_usage = _ew_usage(npu_op_type, uses_scalar)

    # Operator typing help
    is_pooling = npu_op_type == NpuBlockType.Pooling
    is_depthwise = npu_op_type == NpuBlockType.ConvolutionDepthWise
    is_equal_depth_op = (ew_usage != ElementwiseUsage.No) or is_pooling or is_depthwise

    # Block config to be returned
    config = ArchitectureBlockConfig()
    config.is_partkernel = is_partkernel

    # Accumulator & granule settings
    config.acc_type = _acc_type(npu_op_type, ifm_bits, scaled)

    # Memory rounding granules
    acc_granule = arch.accumulator_granules[config.acc_type]
    acc_bits = _AccumulatorBits[config.acc_type]
    if ew_usage != ElementwiseUsage.No:
        ifm_granule = arch.ifm_ew_bank_granules[ifm_bits]
    else:
        ifm_granule = arch.ifm_bank_granules[ifm_bits]
    lut_banks = max(lut_banks, arch.shram.reserved_end_banks)
    upscale = to_upscale(ifm_resampling)
    nearest = is_nearest(ifm_resampling)
    ifm_blockdepth = _ifm_blockdepth(arch, ifm_shape, ifm_bits, is_partkernel)
    ifm_block = _get_ifm_blocksize(block_config, kernel, arch.ofm_ublock, arch.SubKernelMax, upscale, nearest)
    if not is_equal_depth_op:
        ifm_block = ifm_block.with_depth(ifm_blockdepth)

    # 256/512 Conv1D optimisation (ratio of IFM:Accumulators changes)
    block_config_opt = fit_block_for_ofm(arch, ofm_shape, kernel, block_config)

    layout = _try_block_config(
        arch.shram, ew_usage, block_config_opt, ifm_block, ifm_bits, ifm_granule, acc_bits, acc_granule, lut_banks
    )
    if layout is None:
        return None
    config.layout = layout
    config.bank_size = arch.shram_bank_size
    config.ifm_block = ifm_block
    config.ofm_block = block_config
    return config