aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/api.py
blob: 589a2834872816743e0761cd7eccd246101e6c2c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
# SPDX-FileCopyrightText: Copyright 2020-2023 Arm Limited and/or its affiliates <open-source-office@arm.com>
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Description:
# Contains external APIs
from enum import auto
from enum import Enum
from typing import List
from typing import NamedTuple
from typing import Optional
from typing import Tuple

import numpy


API_VERSION_MAJOR = 1
API_VERSION_MINOR = 4
API_VERSION = f"{API_VERSION_MAJOR}.{API_VERSION_MINOR}"


class NpuAccelerator(Enum):
    """
    Supported accelerators
    """

    Ethos_U55_32 = auto()
    Ethos_U55_64 = auto()
    Ethos_U55_128 = auto()
    Ethos_U55_256 = auto()
    Ethos_U65_256 = auto()
    Ethos_U65_512 = auto()


class NpuElementWiseOp(Enum):
    """
    Elementwise operation
    """

    ADD = auto()
    SUB = auto()
    MUL = auto()
    ABS = auto()
    MIN = auto()
    MAX = auto()
    LRELU = auto()  # Leaky relu
    CLZ = auto()  # Number leading zeros
    SHR = auto()  # Rounded right-shift
    SHL = auto()  # Bitwise shift-left


class NpuPoolingOp(Enum):
    """
    Pooling operation
    """

    MAX = auto()
    AVERAGE = auto()
    REDUCE_SUM = auto()


class NpuActivationOp(Enum):
    """
    Activation function
    """

    NONE_OR_RELU = auto()  # Clamps output using min/max
    TANH = auto()
    SIGMOID = auto()
    TABLE_LOOKUP = auto()  # Performs table look-up, using the provided table lookup index


class NpuRoundingMode(Enum):
    """
    Available rounding modes
    """

    TFL = auto()  # TensorFlow Lite rounding
    TRUNCATE = auto()  # Truncate towards zero
    NATURAL = auto()  # Round to nearest with x.5 rounded up, towards +infinity


class NpuLayout(Enum):
    """
    Tensor layout of feature maps
    """

    NHWC = auto()
    NHCWB16 = auto()

    def __str__(self):
        return self.name


class NpuResamplingMode(Enum):
    """
    Resampling mode
    """

    NONE = auto()  # No resampling is performed
    NEAREST = auto()  # 2x2 insert nearest
    TRANSPOSE = auto()  # 2x2 transpose


class NpuBlockTraversal(Enum):
    """
    Block-traversal of weights
    """

    DEPTH_FIRST = auto()
    PART_KERNEL_FIRST = auto()


class NpuDataType(Enum):
    """
    Supported data types in feature maps
    """

    UINT8 = 8, False, auto()
    INT8 = 8, True, auto()
    UINT16 = 16, False, auto()
    INT16 = 16, True, auto()
    INT32 = 32, True, auto()

    def is_signed(self) -> bool:
        """Checks if this data type is signed or unsigned"""
        return self.value[1]

    def size_in_bits(self) -> int:
        """Size of the data type in bits"""
        return self.value[0]

    def size_in_bytes(self) -> int:
        """Size of the data type in bytes"""
        return self.value[0] // 8

    def min_value(self) -> int:
        """Minimum value of this type"""
        if self.is_signed():
            return -(1 << (self.size_in_bits() - 1))
        else:
            return 0

    def max_value(self) -> int:
        """Maximum value of this type"""
        if self.is_signed():
            return (1 << (self.size_in_bits() - 1)) - 1
        else:
            return (1 << self.size_in_bits()) - 1

    def __str__(self):
        return self.name

    __repr__ = __str__


class NpuAddressRange(NamedTuple):
    """
    Address range
    """

    region: int  # Memory region, a value between 0 and 7
    address: int  # Address, offset from the region's base address
    length: int  # The length of the range, in bytes

    def __str__(self):
        return f"(region={self.region}, address={hex(self.address)}, length={self.length})"


class NpuTileBox(NamedTuple):
    """
    Specifies the addresses and dimensions of the tiles of a feature map.
    A feature map can use 1 to 4 tiles
    """

    height_0: int  # The height of tile 0
    height_1: int  # The height of tile 1, 0 if unused
    width_0: int  # the width of tile 0, and tile 2 (if used)
    addresses: List[int]  # A list of 4 addresses, set unused addresses to 0


class NpuShape3D(NamedTuple):
    """
    Shape of (part of) a feature map
    """

    height: int
    width: int
    depth: int


class NpuQuantization(NamedTuple):
    """
    Quantization parameters
    """

    scale_f32: Optional[float]
    zero_point: int


class NpuPadding(NamedTuple):
    """
    Padding to be applied to a convolution operation
    """

    top: int
    left: int
    bottom: int
    right: int


class NpuActivation:
    """
    Activation function, fused with NPU operations
    """

    def __init__(self, op_type: NpuActivationOp):
        self.op_type = op_type  # The activation operation to be performed
        # min/max are optional
        self.min: Optional[float] = None  # E.g. set to 0.0 for RELU
        self.max: Optional[float] = None  # E.g. set to 6.0 for RELU6
        # Table lookup index, only applicable for TABLE_LOOKUP activation, 0-7
        self.lookup_table_index: int = 0


class NpuFeatureMap:
    """
    Basic information about IFM, IFM2, OFM
    """

    def __init__(self):
        self.data_type: NpuDataType = NpuDataType.UINT8
        # The memory region, a value 0-7
        self.region: int = 0
        # Shape of the feature map
        self.shape: NpuShape3D = NpuShape3D(height=0, width=0, depth=0)
        # The tiles that comprise the feature map. In the normal case when only 1 tile is used,
        # height_0 == self.shape.height, height_1 is 0, width_0 == self.shape.width, addresses[1:] are set to 0
        self.tiles: NpuTileBox = NpuTileBox(height_0=0, height_1=0, width_0=0, addresses=[0, 0, 0, 0])
        self.quantization: Optional[NpuQuantization]
        self.layout: NpuLayout = NpuLayout.NHWC
        # x/y/c strides used by the NPU when traversing the feature map, if None, vela will use default strides
        self.strides: Optional[NpuShape3D] = None
        # Used for debug
        self.name: Optional[str] = None


class NpuKernel:
    """
    Kernel information for NPU operations
    """

    def __init__(self, w: int, h: int, stride_x: int = 1, stride_y: int = 1, dilation_x: int = 1, dilation_y: int = 1):
        assert stride_x > 0 and stride_y > 0
        assert dilation_x > 0 and dilation_y > 0
        self.width = w
        self.height = h
        self.stride_x = stride_x
        self.stride_y = stride_y
        self.dilation_x = dilation_x
        self.dilation_y = dilation_y


class NpuOperationType(Enum):
    """
    Type of NPU operation
    """

    Dma = auto()
    Conv2D = auto()
    ConvDepthWise = auto()
    Pooling = auto()
    ElementWise = auto()


class NpuOperation:
    """
    Base class for all NPU operations
    """

    def __init__(self, op_type: NpuOperationType):
        self.op_type = op_type
        # Used for debug
        self.name: Optional[str] = None


class NpuDmaOperation(NpuOperation):
    """
    DMA operation
    """

    def __init__(self, src: NpuAddressRange, dest: NpuAddressRange):
        super().__init__(NpuOperationType.Dma)
        self.src = src
        self.dest = dest
        # DMA channel, usually 0 (user channel)
        self.channel: int = 0
        # Channel mode, 0 = external, 1 = internal (should usually be 0)
        self.mode: int = 0


class NpuBlockOperation(NpuOperation):
    """
    Base class for operations which produce an OFM
    """

    def __init__(self, op_type: NpuOperationType):
        super().__init__(op_type)
        self.ifm: Optional[NpuFeatureMap] = None
        self.ifm2: Optional[NpuFeatureMap] = None
        # The non-quantized scalar value in a binary elementwise operation. Only set if IFM2 is scalar
        self.ifm2_scalar: Optional[float] = None
        self.ofm: Optional[NpuFeatureMap] = None
        self.kernel: Optional[NpuKernel] = None
        # Weights, one element for each NPU core, empty if no weights are used.
        # Must have been compressed using npu_encode_weights()
        self.weights: List[NpuAddressRange] = []
        # Biases, one element for each NPU core, empty if no bias is used.
        # Must have been encoded using npu_encode_bias()
        self.biases: List[NpuAddressRange] = []
        self.padding: Optional[NpuPadding] = None
        # Optional activation function to be applied
        self.activation: Optional[NpuActivation] = None
        # The block config to be used, which must be valid for the given operation.
        # See also npu_find_block_configs.
        # If the operation has weights, the depth of the block config must be the same as
        # the ofm depth used in the call to npu_encode_weights()
        self.block_config: NpuShape3D
        self.rounding_mode: NpuRoundingMode = NpuRoundingMode.TFL
        # Set to True if the operations is fused with a Quantize operation (affects scaling)
        self.fused_quantize: bool = False
        # IFM upscaling to be applied
        self.ifm_upscale: NpuResamplingMode = NpuResamplingMode.NONE


class NpuConv2DOperation(NpuBlockOperation):
    """
    NPU_OP_CONV operation
    """

    def __init__(self):
        super().__init__(NpuOperationType.Conv2D)
        # Block traversal must be consistent with the block_traversal parameter specified in
        # weight_compressor.encode_weights()
        self.block_traversal: NpuBlockTraversal = NpuBlockTraversal.PART_KERNEL_FIRST


class NpuConvDepthWiseOperation(NpuBlockOperation):
    """
    NPU_OP_DEPTHWISE operation
    """

    def __init__(self):
        super().__init__(NpuOperationType.ConvDepthWise)


class NpuPoolingOperation(NpuBlockOperation):
    """
    NPU_OP_POOL operation
    """

    def __init__(self, pooling_op_type: NpuPoolingOp):
        super().__init__(NpuOperationType.Pooling)
        self.sub_op_type: NpuPoolingOp = pooling_op_type
        # Set to a float value for ResizeBilinear/NearestNeighbor operations (affects scaling), else to None
        self.rescale: Optional[float] = None


class NpuElementWiseOperation(NpuBlockOperation):
    """
    NPU_OP_ELEMENTWISE operation
    """

    def __init__(self, elementwise_op_type: NpuElementWiseOp):
        super().__init__(NpuOperationType.ElementWise)
        self.sub_op_type: NpuElementWiseOp = elementwise_op_type
        # Set to True for binary operators where IFM2 should be used as first operand
        self.reversed_operands: bool = False
        # Set to a tuple (scale, shift) for explicit rescale, else to None
        self.rescale: Optional[Tuple] = None


def npu_get_api_version():
    """
    Public facing API to get the API version
    :return: int, the 16 most significant bits, corresponding to major version
            the 16 least significant bits, corresponding to minor version
    """
    version = (API_VERSION_MAJOR << 16) | (API_VERSION_MINOR & 0xFFFF)
    return version


def npu_encode_weights(
    accelerator: NpuAccelerator,
    weights_volume: numpy.ndarray,
    dilation_xy: Tuple[int, int],
    ifm_bitdepth: int,
    ofm_block_depth: int,
    is_depthwise: bool,
    block_traversal: NpuBlockTraversal,
):
    """
    Public facing API to use the Ethos-U weight encoding.

    :param accelerator: NpuAccelerator enum to pick the correct accelerator
    :param weights_volume: numpy.ndarray in OHWI layout with a shape of four
    :param dilation_xy: a two element tuple of dilation attributes in x,y dimension
    :param ifm_bitdepth: the bitdepth of input feature map
    :param ofm_block_depth: the depth of blocks for processing
    :param is_depthwise: a boolean indicating these weights are used for a depthwise traversal
    :param block_traversal: indicates how these weights are traversed on sub-kernel basis
    :return: a bytearray of encoded weights
    """
    from .architecture_features import Accelerator
    from . import weight_compressor

    acc = Accelerator.from_npu_accelerator(accelerator)
    encoded_weights, _ = weight_compressor.encode_weights(
        acc, weights_volume, dilation_xy, ifm_bitdepth, ofm_block_depth, is_depthwise, block_traversal
    )
    return encoded_weights


def npu_encode_bias(bias: numpy.int64, scale: int, shift: int):
    """
    Public facing API to pack bias and scale values as required by the hardware
    :param bias: 64-bit signed number that includes 40-bit signed bias
    :param scale: 32-bit scale value
    :param shift: 6-bit shift value
    :return: packed 80-bit [0(2-bits),shift(6-bits),scale(32-bits),bias(40-bits)]
    """
    from . import weight_compressor

    return weight_compressor.encode_bias(bias, scale, shift)


def npu_find_block_configs(npu_op: NpuOperation, accelerator: NpuAccelerator) -> List[NpuShape3D]:
    """
    Public facing API that returns a list of block configs that are valid for the given operation.
    This function can be used to find a valid value for npu_op.block_config.
    The block config is the unit of work in which the NPU generates the OFM.
    """
    from .architecture_features import Accelerator
    from .architecture_features import ArchitectureFeatures
    from .architecture_features import Block
    from .architecture_features import create_default_arch
    from .architecture_allocator import try_block_config
    from .register_command_stream_generator import resampling_mode_map
    from .register_command_stream_util import to_kernel
    from .operation import NpuBlockType

    is_partkernel = False
    if isinstance(npu_op, NpuConv2DOperation):
        block_type = NpuBlockType.ConvolutionMxN
        is_partkernel = npu_op.block_traversal == NpuBlockTraversal.PART_KERNEL_FIRST
    elif isinstance(npu_op, NpuConvDepthWiseOperation):
        block_type = NpuBlockType.ConvolutionDepthWise
    elif isinstance(npu_op, NpuPoolingOperation):
        block_type = NpuBlockType.ReduceSum if npu_op.sub_op_type == NpuPoolingOp.REDUCE_SUM else NpuBlockType.Pooling
    elif isinstance(npu_op, NpuElementWiseOperation):
        block_type = NpuBlockType.ElementWise
    else:
        assert 0, "Unsupported operation"

    ifm_shape = Block(npu_op.ifm.shape.width, npu_op.ifm.shape.height, npu_op.ifm.shape.depth)
    ifm2_shape = None
    if npu_op.ifm2:
        ifm2_shape = Block(npu_op.ifm2.shape.width, npu_op.ifm2.shape.height, npu_op.ifm2.shape.depth)
    ofm_shape = Block(npu_op.ofm.shape.width, npu_op.ofm.shape.height, npu_op.ofm.shape.depth)

    ifm_resampling_mode = resampling_mode_map[npu_op.ifm_upscale]
    ifm_bits = npu_op.ifm.data_type.size_in_bits()
    kernel = to_kernel(npu_op.kernel)
    lut_banks = 0
    if npu_op.activation:
        lut_banks = 2 if npu_op.activation.op_type == NpuActivationOp.TABLE_LOOKUP else 0

    has_scaling = True
    for tensor in [npu_op.ifm, npu_op.ifm2, npu_op.ofm]:
        if tensor and tensor.quantization is None:
            has_scaling = False
            break

    arch = create_default_arch(Accelerator.from_npu_accelerator(accelerator))

    max_block_width = min(arch.ofm_block_max.width, ofm_shape.width)
    max_block_height = min(arch.ofm_block_max.height, ofm_shape.height)
    max_block_depth = min(arch.ofm_block_max.depth, ofm_shape.depth)

    min_block_height = max(arch.ofm_ublock.height, 2 if ifm_resampling_mode != NpuResamplingMode.NONE else 1)
    min_block_width = max(arch.ofm_ublock.width, 2 if ifm_resampling_mode != NpuResamplingMode.NONE else 1)

    valid_block_configs = []
    for w in range(min_block_width, max_block_width + min_block_width, min_block_width):
        for h in range(min_block_height, max_block_height + min_block_height, min_block_height):
            # Try valid OFM block depths
            for c in range(arch.ofm_ublock.depth, max_block_depth + arch.ofm_ublock.depth, arch.ofm_ublock.depth):
                # OFM block depth has the constraint that if it causes the OFM to be
                # split, it must be a multiple of the OFM split size
                if (c >= max_block_depth) or (c < max_block_depth and (c % ArchitectureFeatures.OFMSplitDepth) == 0):
                    block = Block(w, h, c)
                    config = try_block_config(
                        block,
                        arch,
                        block_type,
                        ofm_shape,
                        ifm_shape,
                        ifm2_shape,
                        npu_op.ifm2_scalar is not None,
                        ifm_bits,
                        is_partkernel,
                        kernel,
                        lut_banks,
                        has_scaling,
                        ifm_resampling_mode,
                    )

                    if config:
                        ofm_block = config.ofm_block
                        valid_block_configs.append(NpuShape3D(ofm_block.height, ofm_block.width, ofm_block.depth))

    assert len(valid_block_configs) > 0
    return valid_block_configs


def npu_generate_register_command_stream(npu_op_list: List[NpuOperation], accelerator: NpuAccelerator) -> List[int]:
    """
    Public facing API for generating an Ethos-U register command stream.
    Calculates dependencies between commands and inserts wait operations if needed.

    :param npu_op_list: List[NpuOperation] list of high level NPU operations
    :param accelerator: NpuAccelerator enum to pick the correct accelerator
    :return register commands, as a list of 32-bit integers
    """
    from . import register_command_stream_generator

    return register_command_stream_generator.generate_register_command_stream(npu_op_list, accelerator)


def npu_create_driver_payload(register_command_stream: List[int], accelerator: NpuAccelerator) -> bytes:
    """
    Public facing API for generating driver payload, containing a driver header
    and the given Ethos-U register command stream.
    Returns the payload, in little endian format, which must be placed in memory on a 16-byte aligned
    address.

    :param register_command_stream: List[int] register commands, as a list of 32-bit integers
    :param accelerator: NpuAccelerator enum to pick the correct accelerator
    :return driver payload, as a byte array
    """
    from . import driver_actions

    return driver_actions.npu_create_driver_payload(register_command_stream, accelerator)