aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/tflite_reader.py
diff options
context:
space:
mode:
Diffstat (limited to 'ethosu/vela/tflite_reader.py')
-rw-r--r--ethosu/vela/tflite_reader.py252
1 files changed, 252 insertions, 0 deletions
diff --git a/ethosu/vela/tflite_reader.py b/ethosu/vela/tflite_reader.py
new file mode 100644
index 00000000..535847d7
--- /dev/null
+++ b/ethosu/vela/tflite_reader.py
@@ -0,0 +1,252 @@
+# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
+#
+# SPDX-License-Identifier: Apache-2.0
+#
+# Licensed under the Apache License, Version 2.0 (the License); you may
+# not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an AS IS BASIS, WITHOUT
+# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+# Description:
+# Functions used to read from a TensorFlow Lite format file.
+
+from .tflite.Model import Model
+from .tflite.BuiltinOperator import BuiltinOperator
+
+import numpy as np
+import os.path
+from .nn_graph import Graph, Operation, Subgraph
+from .tensor import Tensor, QuantizationParameters
+
+from .tflite_mapping import builtin_operator_map, datatype_map, datatype_map_numpy, DataType
+
+
+def decode_str(s):
+ if s is None:
+ return ""
+ return s.decode("utf-8")
+
+
+def reshape_tensor_add_const_op(tens, reorder):
+ if not tens.reshaped:
+ original_shape = tens.shape
+ tens.name = tens.name + "_reshape"
+ tens.shape = [original_shape[idx] for idx in reorder]
+ tens.bandwidth_shape = tens.shape
+ tens.storage_shape = tens.shape
+
+ if tens.values is not None:
+ tens.values = tens.values.transpose(reorder)
+
+ if tens.quant_values is not None:
+ tens.quant_values = tens.quant_values.transpose(reorder)
+
+ op = Operation("Const", tens.name)
+ op.outputs = [tens]
+ tens.ops = [op]
+ tens.reshaped = True
+
+
+class TFLiteSubgraph:
+ def __init__(self, graph, subgraph):
+ self.graph = graph
+ self.name = decode_str(subgraph.Name())
+
+ self.tensors = []
+ for idx in range(subgraph.TensorsLength()):
+ self.tensors.append(self.parse_tensor(subgraph.Tensors(idx)))
+
+ for idx in range(subgraph.OperatorsLength()):
+ self.parse_operator(subgraph.Operators(idx))
+
+ self.outputs = [self.tensors[idx] for idx in subgraph.OutputsAsNumpy()]
+ self.inputs = [self.tensors[idx] for idx in subgraph.InputsAsNumpy()]
+
+ # Fix up tensors without operations. Generate either Placeholder or Constant ops
+ for tens in self.inputs:
+ assert not tens.ops
+ op = Operation("Placeholder", tens.name)
+ op.outputs = [tens]
+ tens.ops = [op]
+
+ for tens in self.tensors:
+ if not tens.ops:
+ op = Operation("Const", tens.name)
+ op.outputs = [tens]
+ tens.ops = [op]
+
+ def parse_tensor(self, tens_data):
+ np_shape = tens_data.ShapeAsNumpy()
+ shape = list(np_shape) if type(np_shape) is np.ndarray else []
+ name = decode_str(tens_data.Name())
+ dtype = datatype_map[tens_data.Type()]
+
+ tens = Tensor(shape, dtype, name)
+
+ quant = tens_data.Quantization()
+
+ def len1_array_to_scalar(arr):
+ # The following flatbuffer quantisation fields all return a scalar value of 0 if they are not definied in
+ # the input buffer. This is represented in Vela by using None.
+ # Otherwise, the fields returned are a single or multi-element array. In which case, single element arrays
+ # are converted to scalars
+ if isinstance(arr, int) and arr == 0:
+ return None
+ if len(arr) == 1:
+ return arr[0]
+ return arr
+
+ tens.quantization = QuantizationParameters()
+ tens.quantization.min = len1_array_to_scalar(quant.MinAsNumpy())
+ tens.quantization.max = len1_array_to_scalar(quant.MaxAsNumpy())
+ tens.quantization.scale_f32 = len1_array_to_scalar(quant.ScaleAsNumpy())
+ tens.quantization.zero_point = len1_array_to_scalar(quant.ZeroPointAsNumpy())
+
+ if dtype == DataType.uint8:
+ tens.quantization.quant_min = 0
+ tens.quantization.quant_max = (1 << dtype.bits) - 1
+ elif dtype in set((DataType.int8, DataType.int16, DataType.int32, DataType.int64)):
+ tens.quantization.quant_min = -(1 << (dtype.bits - 1))
+ tens.quantization.quant_max = (1 << (dtype.bits - 1)) - 1
+ else:
+ raise Exception("DataType '" + str(dtype) + "' is not supported for quantization.")
+
+ if tens.quantization.scale_f32 is None and tens.quantization.zero_point is None:
+ tens.quantization = None
+
+ tens.values = None
+ buf = self.graph.buffers[tens_data.Buffer()]
+ if buf is not None:
+ tens.values = np.array(buf.view(datatype_map_numpy[tens_data.Type()]).reshape(shape))
+ if tens.quantization is not None:
+ tens.quant_values = tens.values
+ tens.values = tens.quantization.dequantize(tens.quant_values)
+ return tens
+
+ def parse_operator(self, op_data):
+ op_type, opt_serializer = self.graph.operator_codes[op_data.OpcodeIndex()]
+ inputs = [self.tensors[idx] for idx in op_data.InputsAsNumpy()]
+ outputs = [self.tensors[idx] for idx in op_data.OutputsAsNumpy()]
+ name = "unknown_op_name"
+ if len(outputs):
+ name = outputs[0].name
+ op = Operation(op_type, name)
+ op.inputs = inputs
+ op.outputs = outputs
+ for out in op.outputs:
+ out.ops = [op]
+
+ activation_function_to_split_out = None
+
+ if op_type.startswith("DepthwiseConv2d") or op_type.startswith("Conv2D"):
+ reshape_tensor_add_const_op(inputs[1], (1, 2, 3, 0))
+
+ if op_type.startswith("FullyConnected"):
+ reshape_tensor_add_const_op(inputs[1], (1, 0))
+
+ if opt_serializer is not None:
+ op.attrs = opt_serializer.deserialize(op_data.BuiltinOptions(), op_data.CustomOptionsAsNumpy())
+
+ if "stride_w" in op.attrs:
+ op.attrs["strides"] = (1, op.attrs["stride_h"], op.attrs["stride_w"], 1)
+ if "filter_width" in op.attrs:
+ op.attrs["ksize"] = (1, op.attrs["filter_height"], op.attrs["filter_width"], 1)
+ if "dilation_w_factor" in op.attrs:
+ op.attrs["dilation"] = (1, op.attrs["dilation_h_factor"], op.attrs["dilation_w_factor"], 1)
+ if "depth_multiplier" in op.attrs:
+ op.attrs["channel_multiplier"] = op.attrs["depth_multiplier"]
+
+ if "fused_activation_function" in op.attrs:
+ if op_type in set(("ConcatTFLite",)):
+ act = op.attrs["fused_activation_function"]
+ del op.attrs["fused_activation_function"]
+ if act is not None:
+ activation_function_to_split_out = act
+
+ if activation_function_to_split_out is not None:
+ act_op = Operation(activation_function_to_split_out, name + activation_function_to_split_out)
+ out_tens = op.outputs[0]
+ intermediate_tens = out_tens.clone("_act_intermediate")
+ out_tens.ops = [act_op]
+ act_op.outputs = [out_tens]
+ intermediate_tens.ops = [op]
+ op.outputs[0] = intermediate_tens
+ act_op.inputs = [intermediate_tens]
+
+
+class TFLiteGraph:
+ def __init__(
+ self,
+ filename,
+ batch_size=1,
+ feed_dict={},
+ output_node_names=[],
+ initialisation_nodes=[],
+ ):
+
+ self.op_times = {}
+ if batch_size is None:
+ batch_size = 1
+ self.batch_size = batch_size
+ self.name = os.path.splitext(os.path.basename(filename))[0]
+ self.initialisation_nodes = initialisation_nodes
+
+ with open(filename, "rb") as f:
+ buf = bytearray(f.read())
+
+ model = Model.GetRootAsModel(buf, 0)
+
+ self.buffers = []
+ for idx in range(model.BuffersLength()):
+ self.buffers.append(self.parse_buffer(model.Buffers(idx)))
+
+ self.operator_codes = []
+ for idx in range(model.OperatorCodesLength()):
+ self.operator_codes.append(self.parse_operator_code(model.OperatorCodes(idx)))
+
+ self.subgraphs = []
+ for idx in range(model.SubgraphsLength()):
+ self.subgraphs.append(TFLiteSubgraph(self, model.Subgraphs(idx)))
+
+ self.nng = Graph(self.name, self.batch_size)
+ for tflite_sg in self.subgraphs:
+ sg = Subgraph(tflite_sg.name)
+ sg.original_inputs = tflite_sg.inputs # Preserve the original input order
+ sg.output_tensors = tflite_sg.outputs
+ self.nng.subgraphs.append(sg)
+
+ def parse_buffer(self, buf_data):
+ if buf_data.DataLength() == 0:
+ return None
+ data = buf_data.DataAsNumpy()
+ return data
+
+ def parse_operator_code(self, code):
+ c = code.BuiltinCode()
+ op_type, ser = builtin_operator_map[c]
+ if c == BuiltinOperator.CUSTOM:
+ op_type += decode_str(code.CustomCode())
+ return op_type, ser
+
+
+def read_tflite(
+ filename,
+ batch_size=1,
+ feed_dict={},
+ output_node_names=[],
+ initialisation_nodes=[],
+):
+ tflite_graph = TFLiteGraph(
+ filename, batch_size, feed_dict, output_node_names, initialisation_nodes
+ )
+ nng = tflite_graph.nng
+ nng.refresh_after_modification()
+ return nng