aboutsummaryrefslogtreecommitdiff
path: root/ethosu/vela/tensor.py
diff options
context:
space:
mode:
Diffstat (limited to 'ethosu/vela/tensor.py')
-rw-r--r--ethosu/vela/tensor.py629
1 files changed, 629 insertions, 0 deletions
diff --git a/ethosu/vela/tensor.py b/ethosu/vela/tensor.py
new file mode 100644
index 00000000..46040a46
--- /dev/null
+++ b/ethosu/vela/tensor.py
@@ -0,0 +1,629 @@
+# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
+#
+# SPDX-License-Identifier: Apache-2.0
+#
+# Licensed under the Apache License, Version 2.0 (the License); you may
+# not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an AS IS BASIS, WITHOUT
+# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+# Description:
+# Internal representation of a Neural Network Tensor.
+
+import enum
+from . import numeric_util
+import numpy as np
+from . import data_type
+import uuid
+from .range_set import MemoryRangeSet
+from .numeric_util import round_up_divide
+
+
+class MemArea(enum.IntFlag):
+ Unknown = 0
+ Sram = 1
+ Dram = 2
+ OnChipFlash = 3
+ OffChipFlash = 4
+ Size = OffChipFlash + 1
+
+ def display_name(self):
+ return ("Unknown", "SRAM", "DRAM", "On-chip Flash", "Off-chip Flash", "Size")[self.value]
+
+ def identifier_name(self):
+ return ("unknown", "sram", "dram", "on_chip_flash", "off_chip_flash", "size")[self.value]
+
+ def all():
+ return (MemArea.Sram, MemArea.Dram, MemArea.OnChipFlash, MemArea.OffChipFlash)
+
+ def __str__(self):
+ return self.name
+
+
+class TensorPurpose(enum.IntFlag):
+ Unknown = 0
+ Weights = 1
+ FeatureMap = 2
+ Scratch = 3
+ Size = 4
+
+ def display_name(self):
+ return ("Unknown", "Weights", "FeatureMap", "Scratch", "Size")[self.value]
+
+ def identifier_name(self):
+ return ("unknown", "weights", "feature_map", "scratch", "size")[self.value]
+
+ def all():
+ return (TensorPurpose.Weights, TensorPurpose.FeatureMap)
+
+
+class TensorSubPurpose(enum.Enum):
+ Standard = 0
+ DoubleBuffer = 1
+ RollingBufferX = 2
+ RollingBufferY = 3
+ RollingBufferXY = 4
+
+ def display_name(self):
+ return ("Standard", "Double Buffer", "Rolling Buffer X", "Rolling Buffer Y", "Rolling Buffer XY")[self.value]
+
+ def identifier_name(self):
+ return ("standard", "double_buffer", "rolling_buffer_x", "rolling_buffer_y", "rolling_buffer_xy")[self.value]
+
+ def all():
+ return (
+ TensorSubPurpose.Standard,
+ TensorSubPurpose.DoubleBuffer,
+ TensorSubPurpose.RollingBufferX,
+ TensorSubPurpose.RollingBufferY,
+ TensorSubPurpose.RollingBufferXY,
+ )
+
+
+class TensorFormat(enum.Flag):
+ Unknown = 0
+ WeightsCompressed = 1
+ NHWC = 2
+ NHCWB16 = 3
+
+ def __str__(self):
+ return self.name
+
+
+class TensorBlockTraversal(enum.Enum):
+ Default = 0
+ DepthWise = 1
+ DepthFirst = 2
+ PartKernelFirst = 3
+
+
+def shape_num_elements(shp):
+ elems = 1
+ if shp is None:
+ return None
+ for d in shp:
+ if d is None:
+ return None
+ elems *= d
+ return elems
+
+
+def shape_fully_defined(shp):
+ if shp is None:
+ return False
+ for d in shp:
+ if d is None:
+ return False
+ return True
+
+
+def shape_round_to_quantum(shp, quantum):
+ new_shp = list(shp)
+
+ # Traverse backwards using length of shape since there may be more rounding quantums than shape elements
+ for i in range(-1, -len(shp) - 1, -1):
+ if new_shp[i] is not None:
+ new_shp[i] = numeric_util.round_up(new_shp[i], quantum[i])
+ return new_shp
+
+
+class QuantizationParameters:
+ __slots__ = "min", "max", "num_bits", "narrow_range", "scale_f32", "zero_point", "quant_min", "quant_max"
+
+ def __init__(self, min=None, max=None, num_bits=None, narrow_range=None):
+ self.min = min
+ self.max = max
+
+ self.num_bits = num_bits
+ self.narrow_range = narrow_range
+
+ self.scale_f32 = None
+ self.zero_point = None
+ self.quant_min = None
+ self.quant_max = None
+
+ def __str__(self):
+ return "<nng.QuantizationParameters min=%s max=%s, num_bits=%s, scale=%s, zero_point=%s>" % (
+ self.min,
+ self.max,
+ self.num_bits,
+ self.scale_f32,
+ self.zero_point,
+ )
+
+ __repr__ = __str__
+
+ def clone(self):
+ res = QuantizationParameters()
+ res.min = self.min
+ res.max = self.max
+
+ res.num_bits = self.num_bits
+ res.narrow_range = self.narrow_range
+
+ res.scale_f32 = self.scale_f32
+ res.zero_point = self.zero_point
+ res.quant_min = self.quant_min
+ res.quant_max = self.quant_max
+ return res
+
+ def dequantize(self, values):
+ if self.zero_point.size == 1 and self.scale_f32.size == 1:
+ # same scale is used for all values
+ res = (values.astype(np.float64) - self.zero_point) * self.scale_f32
+ else:
+ # a different scale is used for different sets of values
+ values_as_float = values.astype(np.float64)
+
+ # this is not compatible with the format of depthwise weights,
+ # where input is at index 3 (Output, Kh, Kw, Input)
+ # return the quantized values
+ return np.ndarray((values_as_float.shape))
+
+ shape = values_as_float.shape[0]
+ assert self.zero_point.size == self.scale_f32.size == shape
+ res = np.ndarray(values_as_float.shape)
+ for i in range(shape):
+ res[i] = (values_as_float[i] - self.zero_point[i]) * self.scale_f32[i]
+
+ return res
+
+
+class Tensor:
+ __slots__ = (
+ "shape",
+ "storage_shape",
+ "bandwidth_shape",
+ "dtype",
+ "name",
+ "ops",
+ "consumer_list",
+ "values",
+ "quant_values",
+ "compressed_values",
+ "mem_area",
+ "format",
+ "purpose",
+ "sub_purpose",
+ "alignment",
+ "weight_transpose_depthwise",
+ "storage_compression_scale",
+ "bandwidth_compression_scale",
+ "compression_scale_for_worst_weight_stream",
+ "weight_compression_scales",
+ "weight_compression_config",
+ "storage_rounding_quantum",
+ "brick_size",
+ "address",
+ "quantization",
+ "weight_compressed_offsets",
+ "element_size_bytes",
+ "reshaped",
+ "block_traversal",
+ "offset",
+ "cpu_tensor",
+ "npu_tensor",
+ "equivalence_id",
+ )
+ AllocationQuantum = 16
+
+ def __init__(self, shape, dtype, name):
+ self.shape = shape
+ self.storage_shape = shape
+ self.bandwidth_shape = shape
+ self.dtype = dtype
+ self.name = name
+ self.equivalence_id = uuid.uuid4()
+
+ self.ops = []
+ self.consumer_list = []
+ # Below attributes are only set if a tensor has been cloned,
+ # either from Cpu -> Npu or vice versa. Needed for offline allocation
+ self.cpu_tensor = None # reference to the corresponding Cpu tensor
+ self.npu_tensor = None # reference to the corresponding Npu tensor
+
+ self.values = None
+ self.quant_values = None
+ self.compressed_values = None
+ self.mem_area = MemArea.Unknown
+ self.format = TensorFormat.Unknown
+ self.purpose = TensorPurpose.Unknown
+ self.sub_purpose = TensorSubPurpose.Standard
+ self.alignment = Tensor.AllocationQuantum
+ self.weight_transpose_depthwise = False
+
+ self.storage_compression_scale = 1.0
+ self.bandwidth_compression_scale = 1.0
+ self.compression_scale_for_worst_weight_stream = 1.0
+ self.weight_compression_scales = None
+ self.weight_compression_config = None
+ self.weight_compressed_offsets = []
+ self.storage_rounding_quantum = (1, 1, 1, 1)
+ self.brick_size = (1, 1, 1, 1)
+ self.address = 0 # start address of tensor. will be filled in by tensor allocator
+ self.element_size_bytes = 0
+
+ # quantization parameters
+ self.quantization = None
+
+ self.reshaped = False
+ self.block_traversal = TensorBlockTraversal.Default
+
+ def element_size(self):
+ if self.element_size_bytes == 0:
+ return self.dtype.size_in_bits() / 8
+ return self.element_size_bytes
+
+ def clone(self, suffix="_clone"):
+ res = Tensor(self.shape, self.dtype, self.name + suffix)
+ res.storage_shape = list(self.storage_shape)
+ res.bandwidth_shape = list(self.bandwidth_shape)
+
+ res.ops = []
+ res.consumer_list = []
+ res.equivalence_id = self.equivalence_id
+
+ res.values = self.values
+ res.quant_values = self.quant_values
+ res.compressed_values = self.compressed_values
+ res.mem_area = self.mem_area
+ res.format = self.format
+ res.purpose = self.purpose
+ res.sub_purpose = self.sub_purpose
+ res.alignment = self.alignment
+ res.weight_transpose_depthwise = self.weight_transpose_depthwise
+
+ res.storage_compression_scale = self.storage_compression_scale
+ res.bandwidth_compression_scale = self.bandwidth_compression_scale
+ res.compression_scale_for_worst_weight_stream = self.compression_scale_for_worst_weight_stream
+ res.weight_compression_scales = self.weight_compression_scales
+ res.storage_rounding_quantum = self.storage_rounding_quantum
+ res.brick_size = self.brick_size
+ res.address = 0
+
+ if self.quantization is not None:
+ res.quantization = self.quantization.clone()
+ else:
+ res.quantization = None
+
+ return res
+
+ def clone_into_fast_storage(self, arch):
+ res = self.clone(suffix="_fast_storage")
+ res.mem_area = arch.fast_storage_mem_area
+ return res
+
+ def set_format(self, fmt, arch):
+ self.format = fmt
+ shape_len = 0
+ try:
+ shape_len = len(self.shape)
+ except TypeError:
+ pass
+
+ self.storage_rounding_quantum = arch.storage_rounding_quantums[self.format]
+ self.storage_rounding_quantum = self.storage_rounding_quantum[-shape_len:]
+ if self.format == TensorFormat.NHCWB16:
+ self.storage_rounding_quantum = self.storage_rounding_quantum[:-1] + (
+ int(self.storage_rounding_quantum[-1] / self.dtype.size_in_bytes()),
+ )
+ self.brick_size = arch.brick_sizes[self.format]
+ self.brick_size = self.brick_size[-shape_len:]
+ if self.shape is None:
+ return
+
+ self.bandwidth_shape = shape_round_to_quantum(self.shape, self.brick_size)
+ self.storage_shape = shape_round_to_quantum(self.shape, self.storage_rounding_quantum)
+
+ if fmt == TensorFormat.WeightsCompressed:
+ compression_ratio = 5 / 8
+ self.storage_compression_scale = compression_ratio
+ self.bandwidth_compression_scale = compression_ratio
+ self.compression_scale_for_worst_weight_stream = compression_ratio
+
+ def storage_elements(self):
+ elems = shape_num_elements(self.storage_shape)
+ if elems is None:
+ return 0
+ return elems
+
+ def elements(self):
+ elems = shape_num_elements(self.shape)
+ if elems is None:
+ return 0
+ return elems
+
+ def has_fully_defined_shape(self):
+ return shape_fully_defined(self.shape)
+
+ def storage_size(self):
+ raw_size = self.storage_elements() * self.element_size()
+ if raw_size == 0:
+ raw_size = 1 # force it to take up space
+ rounded_size = numeric_util.round_up(numeric_util.round_up_to_int(raw_size), self.alignment)
+ return rounded_size
+
+ def storage_size_for_sub_purpose(self, sub_purpose, param_a=None, param_b=None):
+ alt_shape = self.storage_shape_for_sub_purpose(sub_purpose, param_a, param_b)
+ elems = shape_num_elements(alt_shape)
+ if elems is None:
+ return 0
+ if sub_purpose == TensorSubPurpose.DoubleBuffer:
+ raw_size = elems * self.element_size() * self.compression_scale_for_worst_weight_stream
+ else:
+ raw_size = elems * self.element_size() * self.storage_compression_scale
+ rounded_size = numeric_util.round_up(numeric_util.round_up_to_int(raw_size), self.alignment)
+ return rounded_size
+
+ def storage_shape_for_sub_purpose(self, sub_purpose, param_a, param_b):
+ shp = list(self.storage_shape)
+ if sub_purpose == TensorSubPurpose.DoubleBuffer:
+ assert len(shp) >= 2
+ shp[-1] = min(shp[-1], param_a * 2)
+ elif sub_purpose == TensorSubPurpose.RollingBufferX:
+ assert len(shp) == 4
+ shp[0] = 1
+ shp[2] = min(shp[2], param_a)
+ elif sub_purpose == TensorSubPurpose.RollingBufferY:
+ assert len(shp) == 4
+ shp[0] = 1
+ shp[1] = min(shp[1], param_a)
+ elif sub_purpose == TensorSubPurpose.RollingBufferXY:
+ assert len(shp) == 4
+ shp[0] = 1
+ shp[2] = min(shp[2], param_a)
+ shp[1] = min(shp[1], param_b)
+ elif sub_purpose == TensorSubPurpose.Standard:
+ pass
+ else:
+ assert 0, "did not expect new sub purpose %s" % (sub_purpose,)
+ return shp
+
+ def set_new_sub_purpose(self, sub_purpose, param_a=None, param_b=None):
+ self.storage_shape = self.storage_shape_for_sub_purpose(sub_purpose, param_a, param_b)
+ self.sub_purpose = sub_purpose
+ if sub_purpose == TensorSubPurpose.DoubleBuffer:
+ self.storage_compression_scale = self.compression_scale_for_worst_weight_stream
+
+ def bandwidth(self):
+ elems = shape_num_elements(self.bandwidth_shape)
+ if elems is None:
+ return 0
+ return elems * self.element_size() * self.bandwidth_compression_scale
+
+ def consumers(self):
+ return self.consumer_list
+
+ def get_address_ranges_for_coordinates(self, start_coord, end_coord):
+ if self.sub_purpose in set(
+ (TensorSubPurpose.RollingBufferX, TensorSubPurpose.RollingBufferY, TensorSubPurpose.RollingBufferXY)
+ ):
+ # build dummy coordinates that cover the entire buffer
+ start_coord = [0] * len(start_coord)
+ end_coord = [min(self.storage_shape[i], self.shape[i]) for i in range(len(end_coord))]
+
+ start = self.address_for_coordinate(start_coord, is_top_box=False)
+ end = self.address_for_coordinate(end_coord, is_top_box=True)
+ return MemoryRangeSet(self.mem_area, start, end)
+
+ def addresses_for_rolling_buffer(self, start_coord, end_coord):
+ # returns ( box_height0, box_height1, box_width, [address_tl, address_tr, address_bl, address_br] )
+
+ if len(start_coord) < 4:
+ box_height0 = 1
+ box_width = 1
+
+ if len(start_coord) >= 2:
+ box_width = end_coord[-2] - start_coord[-2]
+
+ return box_height0, box_height0, box_width, [self.address_for_coordinate(start_coord), None, None, None]
+
+ crossing_y = numeric_util.round_up(start_coord[1] + 1, self.storage_shape[1])
+ crossing_x = numeric_util.round_up(start_coord[2] + 1, self.storage_shape[2])
+
+ crossing_y = min(crossing_y, end_coord[1])
+ crossing_x = min(crossing_x, end_coord[2])
+
+ box_height0 = crossing_y - start_coord[1]
+ box_width = crossing_x - start_coord[2]
+
+ addresses = [None] * 4
+ addresses[0] = self.address_for_coordinate(start_coord)
+
+ if end_coord[2] > crossing_x:
+ addresses[1] = self.address_for_coordinate([start_coord[0], start_coord[1], crossing_x, start_coord[3]])
+ raise Exception("Striping in vertical direction is not supported")
+ if end_coord[1] > crossing_y:
+ addresses[2] = self.address_for_coordinate([start_coord[0], crossing_y, start_coord[2], start_coord[3]])
+ if end_coord[1] > crossing_y and end_coord[2] > crossing_x:
+ addresses[3] = self.address_for_coordinate([start_coord[0], crossing_y, crossing_x, start_coord[3]])
+
+ return box_height0, box_height0, box_width, addresses
+
+ def address_for_coordinate(self, coord, is_top_box=False):
+ return self.address + self.address_offset_for_coordinate(coord, is_top_box)
+
+ def get_strides_and_coord(self, coord=None):
+ if coord is None:
+ coord = [0] * len(self.storage_shape)
+
+ augmented_coord = coord
+ augmented_shape = self.storage_shape
+ while len(augmented_shape) < 4:
+ augmented_shape = [1] + augmented_shape
+
+ while len(augmented_coord) < 4:
+ augmented_coord = [0] + augmented_coord
+
+ assert len(augmented_coord) == len(augmented_shape)
+
+ if self.format == TensorFormat.NHWC:
+ augmented_shape = [augmented_shape[0], augmented_shape[3]] + augmented_shape[1:3] + [1]
+ augmented_coord = [augmented_coord[0], augmented_coord[3]] + augmented_coord[1:3] + [0]
+ stride_order = [4, 1, 3, 2, 0]
+
+ elif self.format == TensorFormat.NHCWB16:
+ channel_divisor = int(16 / self.element_size())
+ augmented_shape = augmented_shape[0:4] + [1]
+ augmented_coord = (
+ [augmented_coord[0], augmented_coord[3] // channel_divisor]
+ + augmented_coord[1:3]
+ + [augmented_coord[3] % channel_divisor]
+ )
+
+ if augmented_shape[1] == 0:
+ augmented_shape[1] = 1
+
+ else:
+ assert self.format in set((TensorFormat.Unknown, TensorFormat.WeightsCompressed))
+ return None, None
+
+ strides = [0] * len(augmented_shape)
+ stride = self.element_size() * self.storage_compression_scale
+
+ if self.format != TensorFormat.NHCWB16:
+ for i in stride_order:
+ strides[i] = stride
+ stride *= augmented_shape[i]
+ else:
+ assert len(strides) == 5
+ channel_divisor = int(16 / self.element_size())
+ strides[4] = stride
+ strides[3] = channel_divisor # STRIDE_X
+ strides[1] = strides[3] * augmented_shape[2] # STRIDE_C
+ strides[2] = augmented_shape[2] * augmented_shape[3] # STRIDE_Y
+ strides[0] = strides[2] * augmented_shape[1] # STRIDE_N
+
+ return strides, augmented_coord
+
+ def get_strides(self):
+ strides, _ = self.get_strides_and_coord()
+
+ return strides
+
+ def compressed_stream_index_from_coord(self, coord):
+ assert self.format == TensorFormat.WeightsCompressed
+ assert len(self.compressed_values) > 0
+ assert len(self.compressed_values) + 1 == len(self.weight_compressed_offsets)
+
+ depth = coord[-1]
+ brick_depth = self.brick_size[-1]
+ # Clamp position at final element index
+ if depth > self.shape[-1]:
+ depth = self.shape[-1]
+
+ # Always round up to next boundary
+ index = round_up_divide(depth, brick_depth)
+
+ # Check boundaries on all but last weight set (which may be shorter
+ # than the brick we divided it up into)
+ if index < len(self.weight_compressed_offsets) - 1:
+ # There are no half-way points in the weights
+ if (depth % brick_depth) != 0:
+ raise Exception("Offset into weights must be aligned to a brick")
+
+ return index
+
+ def size_of_compressed_stream(self, index):
+ assert 0 <= index < len(self.compressed_values)
+ return len(self.compressed_values[index])
+
+ def is_last_index_in_compressed_stream(self, index):
+ assert 0 <= index < len(self.compressed_values)
+ return index == len(self.compressed_values) - 1
+
+ def address_offset_for_coordinate(self, orig_coord, is_top_box=False):
+ address_offset = 0
+ coord = orig_coord
+
+ coord = coord[-len(self.storage_shape) :]
+
+ if self.sub_purpose == TensorSubPurpose.Standard:
+ for idx, c in enumerate(coord):
+ if is_top_box:
+ assert c > 0 and c <= self.shape[idx]
+ else:
+ assert c >= 0 and c < self.shape[idx]
+
+ if self.format == TensorFormat.WeightsCompressed:
+ if len(self.weight_compressed_offsets) == 0:
+ return 0
+
+ if len(self.ops) == 1 and self.ops[0].type == "DMA" and self.sub_purpose == TensorSubPurpose.DoubleBuffer:
+ depth = orig_coord[-1]
+ brick_depth = self.brick_size[-1]
+ # Clamp position at final element index
+ if depth > self.shape[-1]:
+ depth = self.shape[-1]
+
+ # Always round up to next boundary
+ index = round_up_divide(depth, brick_depth)
+ index = index % 2
+
+ if len(self.compressed_values) <= 2:
+ if is_top_box and index == 0:
+ for cv in self.compressed_values:
+ address_offset += len(cv)
+ else:
+ address_offset = index * len(self.compressed_values[0])
+ else:
+ if is_top_box and index == 0:
+ address_offset = self.storage_shape[-1]
+ else:
+ address_offset = index * (self.storage_shape[-1] // 2)
+ else:
+ index = self.compressed_stream_index_from_coord(orig_coord)
+ assert index < len(self.weight_compressed_offsets)
+ address_offset = self.weight_compressed_offsets[index]
+ else:
+ if is_top_box:
+ coord = [c - 1 for c in coord]
+
+ # handle wraparound for partial buffers. make sure to do this after subtracting top box:
+ coord = [c % self.storage_shape[idx] for idx, c in enumerate(coord)]
+
+ strides, augmented_coord = self.get_strides_and_coord(coord)
+ if strides is None:
+ return None
+
+ if is_top_box:
+ address_offset += 1 * strides[-1] # one element
+
+ address_offset += np.dot(augmented_coord, strides)
+
+ assert address_offset >= 0
+ assert address_offset <= self.storage_size()
+ return address_offset
+
+ def __str__(self):
+ return "<nng.Tensor '%s' shape=%s dtype=%s>" % (self.name, self.shape, self.dtype)
+
+ __repr__ = __str__