aboutsummaryrefslogtreecommitdiff
path: root/tests/InferenceModel.hpp
blob: f5f00378ca8aeaea913007115ebc5239f80494cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// See LICENSE file in the project root for full license information.
//
#pragma once
#include "armnn/ArmNN.hpp"
#include "HeapProfiling.hpp"

#include <boost/exception/exception.hpp>
#include <boost/exception/diagnostic_information.hpp>
#include <boost/log/trivial.hpp>
#include <boost/format.hpp>
#include <boost/program_options.hpp>
#include <boost/filesystem.hpp>

#include <map>
#include <string>
#include <fstream>

template<typename TContainer>
inline armnn::InputTensors MakeInputTensors(const std::pair<armnn::LayerBindingId, armnn::TensorInfo>& input,
    const TContainer& inputTensorData)
{
    if (inputTensorData.size() != input.second.GetNumElements())
    {
        try
        {
            throw armnn::Exception(boost::str(boost::format("Input tensor has incorrect size. Expected %1% elements "
                "but got %2%.") % input.second.GetNumElements() % inputTensorData.size()));
        } catch (const boost::exception& e)
        {
            // Coverity fix: it should not be possible to get here but boost::str and boost::format can both
            // throw uncaught exceptions - convert them to armnn exceptions and rethrow
            throw armnn::Exception(diagnostic_information(e));
        }
    }
    return { { input.first, armnn::ConstTensor(input.second, inputTensorData.data()) } };
}

template<typename TContainer>
inline armnn::OutputTensors MakeOutputTensors(const std::pair<armnn::LayerBindingId, armnn::TensorInfo>& output,
    TContainer& outputTensorData)
{
    if (outputTensorData.size() != output.second.GetNumElements())
    {
        throw armnn::Exception("Output tensor has incorrect size");
    }
    return { { output.first, armnn::Tensor(output.second, outputTensorData.data()) } };
}

template <typename IParser, typename TDataType>
class InferenceModel
{
public:
    using DataType = TDataType;

    struct CommandLineOptions
    {
        std::string m_ModelDir;
        armnn::Compute m_ComputeDevice;
        bool m_VisualizePostOptimizationModel;
    };

    static void AddCommandLineOptions(boost::program_options::options_description& desc, CommandLineOptions& options)
    {
        namespace po = boost::program_options;

        desc.add_options()
            ("model-dir,m", po::value<std::string>(&options.m_ModelDir)->required(),
                "Path to directory containing model files (.caffemodel/.prototxt)")
            ("compute,c", po::value<armnn::Compute>(&options.m_ComputeDevice)->default_value(armnn::Compute::CpuAcc),
                "Which device to run layers on by default. Possible choices: CpuAcc, CpuRef, GpuAcc")
            ("visualize-optimized-model,v",
                po::value<bool>(&options.m_VisualizePostOptimizationModel)->default_value(false),
             "Produce a dot file useful for visualizing the graph post optimization."
                "The file will have the same name as the model with the .dot extention.");
    }

    struct Params
    {
        std::string m_ModelPath;
        std::string m_InputBinding;
        std::string m_OutputBinding;
        const armnn::TensorShape* m_InputTensorShape;
        armnn::Compute m_ComputeDevice;
        bool m_IsModelBinary;
        bool m_VisualizePostOptimizationModel;

        Params()
         : m_InputTensorShape(nullptr)
         , m_ComputeDevice(armnn::Compute::CpuRef)
         , m_IsModelBinary(true)
         , m_VisualizePostOptimizationModel(false)
        {
        }
    };


    InferenceModel(const Params& params)
     : m_Runtime(armnn::IRuntime::Create(params.m_ComputeDevice))
    {
        const std::string& modelPath = params.m_ModelPath;

        // Create a network from a file on disk
        auto parser(IParser::Create());

        std::map<std::string, armnn::TensorShape> inputShapes;
        if (params.m_InputTensorShape)
        {
            inputShapes[params.m_InputBinding] = *params.m_InputTensorShape;
        }
        std::vector<std::string> requestedOutputs{ params.m_OutputBinding };

        armnn::INetworkPtr network{nullptr, [](armnn::INetwork *){}};
        {
            ARMNN_SCOPED_HEAP_PROFILING("Parsing");
            // Handle text and binary input differently by calling the corresponding parser function
            network = (params.m_IsModelBinary ?
                parser->CreateNetworkFromBinaryFile(modelPath.c_str(), inputShapes, requestedOutputs) :
                parser->CreateNetworkFromTextFile(modelPath.c_str(), inputShapes, requestedOutputs));
        }

        m_InputBindingInfo  = parser->GetNetworkInputBindingInfo(params.m_InputBinding);
        m_OutputBindingInfo = parser->GetNetworkOutputBindingInfo(params.m_OutputBinding);

        armnn::IOptimizedNetworkPtr optNet{nullptr, [](armnn::IOptimizedNetwork *){}};
        {
            ARMNN_SCOPED_HEAP_PROFILING("Optimizing");
            optNet = armnn::Optimize(*network, m_Runtime->GetDeviceSpec());
        }

        if (params.m_VisualizePostOptimizationModel)
        {
            boost::filesystem::path filename = params.m_ModelPath;
            filename.replace_extension("dot");
            std::fstream file(filename.c_str(),file.out);
            optNet->SerializeToDot(file);
        }

        armnn::Status ret;
        {
            ARMNN_SCOPED_HEAP_PROFILING("LoadNetwork");
            ret = m_Runtime->LoadNetwork(m_NetworkIdentifier, std::move(optNet));
        }

        if (ret == armnn::Status::Failure)
        {
            throw armnn::Exception("IRuntime::LoadNetwork failed");
        }
    }

    unsigned int GetOutputSize() const
    {
        return m_OutputBindingInfo.second.GetNumElements();
    }

    void Run(const std::vector<TDataType>& input, std::vector<TDataType>& output)
    {
        BOOST_ASSERT(output.size() == GetOutputSize());
        armnn::Status ret = m_Runtime->EnqueueWorkload(m_NetworkIdentifier,
                                                            MakeInputTensors(input),
                                                            MakeOutputTensors(output));
        if (ret == armnn::Status::Failure)
        {
            throw armnn::Exception("IRuntime::EnqueueWorkload failed");
        }
    }

private:
    template<typename TContainer>
    armnn::InputTensors MakeInputTensors(const TContainer& inputTensorData)
    {
        return ::MakeInputTensors(m_InputBindingInfo, inputTensorData);
    }

    template<typename TContainer>
    armnn::OutputTensors MakeOutputTensors(TContainer& outputTensorData)
    {
        return ::MakeOutputTensors(m_OutputBindingInfo, outputTensorData);
    }

    armnn::NetworkId m_NetworkIdentifier;
    armnn::IRuntimePtr m_Runtime;

    std::pair<armnn::LayerBindingId, armnn::TensorInfo> m_InputBindingInfo;
    std::pair<armnn::LayerBindingId, armnn::TensorInfo> m_OutputBindingInfo;
};