aboutsummaryrefslogtreecommitdiff
path: root/tests/ImageTensorGenerator/ImageTensorGenerator.hpp
blob: 6d2e549360f38f5c8e1ce814c5f0b7c9b16e6254 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//

#include "../InferenceTestImage.hpp"

#include <armnn/TypesUtils.hpp>

#include <armnnUtils/Permute.hpp>

#include <algorithm>
#include <fstream>
#include <iterator>
#include <string>

// Parameters used in normalizing images
struct NormalizationParameters
{
    float scale{ 1.0 };
    std::array<float, 3> mean{ { 0.0, 0.0, 0.0 } };
    std::array<float, 3> stddev{ { 1.0, 1.0, 1.0 } };
};

enum class SupportedFrontend
{
    TFLite     = 0,
};

/** Get normalization parameters.
 * Note that different flavours of models and different model data types have different normalization methods.
 * This tool currently only supports TF and TFLite models
 *
 * @param[in] modelFormat   One of the supported frontends
 * @param[in] outputType    Output type of the image tensor, also the type of the intended model
 */
NormalizationParameters GetNormalizationParameters(const SupportedFrontend& modelFormat,
                                                   const armnn::DataType& outputType)
{
    NormalizationParameters normParams;
    // Explicitly set default parameters
    normParams.scale  = 1.0;
    normParams.mean   = { 0.0, 0.0, 0.0 };
    normParams.stddev = { 1.0, 1.0, 1.0 };
    switch (modelFormat)
    {
        case SupportedFrontend::TFLite:
        default:
            switch (outputType)
            {
                case armnn::DataType::Float32:
                    normParams.scale = 127.5;
                    normParams.mean  = { 1.0, 1.0, 1.0 };
                    break;
                case armnn::DataType::Signed32:
                    normParams.mean = { 128.0, 128.0, 128.0 };
                    break;
                case armnn::DataType::QAsymmU8:
                    break;
                case armnn::DataType::QAsymmS8:
                    normParams.mean = { 128.0, 128.0, 128.0 };
                    break;
                default:
                    break;
            }
            break;
    }
    return normParams;
}

/** Prepare raw image tensor data by loading the image from imagePath and preprocessing it.
 *
 * @param[in] imagePath     Path to the image file
 * @param[in] newWidth      The new width of the output image tensor
 * @param[in] newHeight     The new height of the output image tensor
 * @param[in] normParams    Normalization parameters for the normalization of the image
 * @param[in] batchSize     Batch size
 * @param[in] outputLayout  Data layout of the output image tensor
 */
template <typename ElemType>
std::vector<ElemType> PrepareImageTensor(const std::string& imagePath,
                                         unsigned int newWidth,
                                         unsigned int newHeight,
                                         const NormalizationParameters& normParams,
                                         unsigned int batchSize                = 1,
                                         const armnn::DataLayout& outputLayout = armnn::DataLayout::NHWC);

// Prepare float32 image tensor
template <>
std::vector<float> PrepareImageTensor<float>(const std::string& imagePath,
                                             unsigned int newWidth,
                                             unsigned int newHeight,
                                             const NormalizationParameters& normParams,
                                             unsigned int batchSize,
                                             const armnn::DataLayout& outputLayout)
{
    // Generate image tensor
    std::vector<float> imageData;
    InferenceTestImage testImage(imagePath.c_str());
    if (newWidth == 0)
    {
        newWidth = testImage.GetWidth();
    }
    if (newHeight == 0)
    {
        newHeight = testImage.GetHeight();
    }
    // Resize the image to new width and height or keep at original dimensions if the new width and height are specified
    // as 0 Centre/Normalise the image.
    imageData = testImage.Resize(newWidth, newHeight, CHECK_LOCATION(),
                                 InferenceTestImage::ResizingMethods::BilinearAndNormalized, normParams.mean,
                                 normParams.stddev, normParams.scale);
    if (outputLayout == armnn::DataLayout::NCHW)
    {
        // Convert to NCHW format
        const armnn::PermutationVector NHWCToArmNN = { 0, 2, 3, 1 };
        armnn::TensorShape dstShape({ batchSize, 3, newHeight, newWidth });
        std::vector<float> tempImage(imageData.size());
        armnnUtils::Permute(dstShape, NHWCToArmNN, imageData.data(), tempImage.data(), sizeof(float));
        imageData.swap(tempImage);
    }
    return imageData;
}

// Prepare int32 image tensor
template <>
std::vector<int> PrepareImageTensor<int>(const std::string& imagePath,
                                         unsigned int newWidth,
                                         unsigned int newHeight,
                                         const NormalizationParameters& normParams,
                                         unsigned int batchSize,
                                         const armnn::DataLayout& outputLayout)
{
    // Get float32 image tensor
    std::vector<float> imageDataFloat =
        PrepareImageTensor<float>(imagePath, newWidth, newHeight, normParams, batchSize, outputLayout);
    // Convert to int32 image tensor with static cast
    std::vector<int> imageDataInt;
    imageDataInt.reserve(imageDataFloat.size());
    std::transform(imageDataFloat.begin(), imageDataFloat.end(), std::back_inserter(imageDataInt),
                   [](float val) { return static_cast<int>(val); });
    return imageDataInt;
}

// Prepare qasymmu8 image tensor
template <>
std::vector<uint8_t> PrepareImageTensor<uint8_t>(const std::string& imagePath,
                                                 unsigned int newWidth,
                                                 unsigned int newHeight,
                                                 const NormalizationParameters& normParams,
                                                 unsigned int batchSize,
                                                 const armnn::DataLayout& outputLayout)
{
    // Get float32 image tensor
    std::vector<float> imageDataFloat =
        PrepareImageTensor<float>(imagePath, newWidth, newHeight, normParams, batchSize, outputLayout);
    std::vector<uint8_t> imageDataQasymm8;
    imageDataQasymm8.reserve(imageDataFloat.size());
    // Convert to uint8 image tensor with static cast
    std::transform(imageDataFloat.begin(), imageDataFloat.end(), std::back_inserter(imageDataQasymm8),
                   [](float val) { return static_cast<uint8_t>(val); });
    return imageDataQasymm8;
}

// Prepare qasymms8 image tensor
template <>
std::vector<int8_t> PrepareImageTensor<int8_t>(const std::string& imagePath,
                                               unsigned int newWidth,
                                               unsigned int newHeight,
                                               const NormalizationParameters& normParams,
                                               unsigned int batchSize,
                                               const armnn::DataLayout& outputLayout)
{
    // Get float32 image tensor
    std::vector<float> imageDataFloat =
            PrepareImageTensor<float>(imagePath, newWidth, newHeight, normParams, batchSize, outputLayout);
    std::vector<int8_t> imageDataQasymms8;
    imageDataQasymms8.reserve(imageDataFloat.size());
    // Convert to uint8 image tensor with static cast
    std::transform(imageDataFloat.begin(), imageDataFloat.end(), std::back_inserter(imageDataQasymms8),
                   [](float val) { return static_cast<uint8_t>(val); });
    return imageDataQasymms8;
}

/** Write image tensor to ofstream
 *
 * @param[in] imageData         Image tensor data
 * @param[in] imageTensorFile   Output filestream (ofstream) to which the image tensor data is written
 */
template <typename ElemType>
void WriteImageTensorImpl(const std::vector<ElemType>& imageData, std::ofstream& imageTensorFile)
{
    std::copy(imageData.begin(), imageData.end(), std::ostream_iterator<ElemType>(imageTensorFile, " "));
}

// For uint8_t image tensor, cast it to int before writing it to prevent writing data as characters instead of
// numerical values
template <>
void WriteImageTensorImpl<uint8_t>(const std::vector<uint8_t>& imageData, std::ofstream& imageTensorFile)
{
    std::copy(imageData.begin(), imageData.end(), std::ostream_iterator<int>(imageTensorFile, " "));
}

// For int8_t image tensor, cast it to int before writing it to prevent writing data as characters instead of
// numerical values
template <>
void WriteImageTensorImpl<int8_t>(const std::vector<int8_t>& imageData, std::ofstream& imageTensorFile)
{
    std::copy(imageData.begin(), imageData.end(), std::ostream_iterator<int>(imageTensorFile, " "));
}