aboutsummaryrefslogtreecommitdiff
path: root/tests/ExecuteNetwork/ExecuteNetwork.cpp
blob: f812e53e047b849f4d2df1c95c1467f3044784ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
//
// Copyright © 2017 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//

#include "NetworkExecutionUtils/NetworkExecutionUtils.hpp"
#include "ExecuteNetworkProgramOptions.hpp"

#include <armnn/Logging.hpp>
#include <Filesystem.hpp>
#include <InferenceTest.hpp>

#if defined(ARMNN_SERIALIZER)
#include "armnnDeserializer/IDeserializer.hpp"
#endif
#if defined(ARMNN_CAFFE_PARSER)
#include "armnnCaffeParser/ICaffeParser.hpp"
#endif
#if defined(ARMNN_TF_PARSER)
#include "armnnTfParser/ITfParser.hpp"
#endif
#if defined(ARMNN_TF_LITE_PARSER)
#include "armnnTfLiteParser/ITfLiteParser.hpp"
#endif
#if defined(ARMNN_ONNX_PARSER)
#include "armnnOnnxParser/IOnnxParser.hpp"
#endif
#if defined(ARMNN_TFLITE_DELEGATE)
#include <armnn_delegate.hpp>
#include <DelegateOptions.hpp>

#include <tensorflow/lite/builtin_ops.h>
#include <tensorflow/lite/c/builtin_op_data.h>
#include <tensorflow/lite/c/common.h>
#include <tensorflow/lite/optional_debug_tools.h>
#include <tensorflow/lite/kernels/builtin_op_kernels.h>
#include <tensorflow/lite/interpreter.h>
#include <tensorflow/lite/kernels/register.h>
#endif

#include <future>
#if defined(ARMNN_TFLITE_DELEGATE)
int TfLiteDelegateMainImpl(const ExecuteNetworkParams& params,
                           const std::shared_ptr<armnn::IRuntime>& runtime = nullptr)
{
    using namespace tflite;

    std::unique_ptr<tflite::FlatBufferModel> model = tflite::FlatBufferModel::BuildFromFile(params.m_ModelPath.c_str());

    auto tfLiteInterpreter =  std::make_unique<Interpreter>();
    tflite::ops::builtin::BuiltinOpResolver resolver;

    tflite::InterpreterBuilder builder(*model, resolver);
    builder(&tfLiteInterpreter);
    tfLiteInterpreter->AllocateTensors();

    int status = 0;
    if (params.m_TfLiteExecutor == ExecuteNetworkParams::TfLiteExecutor::ArmNNTfLiteDelegate)
    {
        // Create the Armnn Delegate
        armnnDelegate::DelegateOptions delegateOptions(params.m_ComputeDevices);
        std::unique_ptr<TfLiteDelegate, decltype(&armnnDelegate::TfLiteArmnnDelegateDelete)>
                theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions),
                                 armnnDelegate::TfLiteArmnnDelegateDelete);
        // Register armnn_delegate to TfLiteInterpreter
        status = tfLiteInterpreter->ModifyGraphWithDelegate(std::move(theArmnnDelegate));
        if (status == kTfLiteError)
        {
            ARMNN_LOG(fatal) << "Could not register ArmNN TfLite Delegate to TfLiteInterpreter!";
            return EXIT_FAILURE;
        }
    }
    else
    {
        std::cout << "Running on TfLite without ArmNN delegate\n";
    }


    std::vector<std::string>  inputBindings;
    for (const std::string& inputName: params.m_InputNames)
    {
        inputBindings.push_back(inputName);
    }

    armnn::Optional<std::string> dataFile = params.m_GenerateTensorData
                                            ? armnn::EmptyOptional()
                                            : armnn::MakeOptional<std::string>(params.m_InputTensorDataFilePaths[0]);

    const size_t numInputs = inputBindings.size();

    for(unsigned int inputIndex = 0; inputIndex < numInputs; ++inputIndex)
    {
        int input = tfLiteInterpreter->inputs()[inputIndex];
        TfLiteIntArray* inputDims = tfLiteInterpreter->tensor(input)->dims;

        long inputSize = 1;
        for (unsigned int dim = 0; dim < static_cast<unsigned int>(inputDims->size); ++dim)
        {
            inputSize *=  inputDims->data[dim];
        }

        if (params.m_InputTypes[inputIndex].compare("float") == 0)
        {
            auto inputData = tfLiteInterpreter->typed_tensor<float>(input);

            if(inputData == NULL)
            {
                ARMNN_LOG(fatal) << "Input tensor is null, input type: "
                                    "\"" << params.m_InputTypes[inputIndex] << "\" may be incorrect.";
                return EXIT_FAILURE;
            }

            std::vector<float> tensorData;
            PopulateTensorWithDataGeneric<float>(tensorData,
                                                  params.m_InputTensorShapes[inputIndex]->GetNumElements(),
                                                  dataFile,
                                                  [](const std::string& s)
                                                  { return std::stof(s); });

            std::copy(tensorData.begin(), tensorData.end(), inputData);
        }
        else if (params.m_InputTypes[inputIndex].compare("qsymms8") == 0)
        {
            auto inputData = tfLiteInterpreter->typed_tensor<int8_t>(input);

            if(inputData == NULL)
            {
                ARMNN_LOG(fatal) << "Input tensor is null, input type: "
                                    "\"" << params.m_InputTypes[inputIndex] << "\" may be incorrect.";
                return EXIT_FAILURE;
            }

            std::vector<int8_t> tensorData;
            PopulateTensorWithDataGeneric<int8_t>(tensorData,
                                                  params.m_InputTensorShapes[inputIndex]->GetNumElements(),
                                                  dataFile,
                                                  [](const std::string& s)
                                                  { return armnn::numeric_cast<int8_t>(std::stoi(s)); });

            std::copy(tensorData.begin(), tensorData.end(), inputData);
        }
        else if (params.m_InputTypes[inputIndex].compare("int") == 0)
        {
            auto inputData = tfLiteInterpreter->typed_tensor<int32_t>(input);

            if(inputData == NULL)
            {
                ARMNN_LOG(fatal) << "Input tensor is null, input type: "
                                    "\"" << params.m_InputTypes[inputIndex] << "\" may be incorrect.";
                return EXIT_FAILURE;
            }

            std::vector<int32_t> tensorData;
            PopulateTensorWithDataGeneric<int32_t>(tensorData,
                                                   params.m_InputTensorShapes[inputIndex]->GetNumElements(),
                                                   dataFile,
                                                   [](const std::string& s)
                                                   { return std::stoi(s); });

            std::copy(tensorData.begin(), tensorData.end(), inputData);
        }
        else if (params.m_InputTypes[inputIndex].compare("qasymm8") == 0)
        {
            auto inputData = tfLiteInterpreter->typed_tensor<uint8_t>(input);

            if(inputData == NULL)
            {
                ARMNN_LOG(fatal) << "Input tensor is null, input type: "
                                    "\"" << params.m_InputTypes[inputIndex] << "\" may be incorrect.";
                return EXIT_FAILURE;
            }

            std::vector<uint8_t> tensorData;
            PopulateTensorWithDataGeneric<uint8_t>(tensorData,
                                                   params.m_InputTensorShapes[inputIndex]->GetNumElements(),
                                                   dataFile,
                                                   [](const std::string& s)
                                                   { return armnn::numeric_cast<uint8_t>(std::stoi(s)); });

            std::copy(tensorData.begin(), tensorData.end(), inputData);
        }
        else
        {
            ARMNN_LOG(fatal) << "Unsupported input tensor data type \"" << params.m_InputTypes[inputIndex] << "\". ";
            return EXIT_FAILURE;
        }
    }

    for (size_t x = 0; x < params.m_Iterations; x++)
    {
        // Run the inference
        status = tfLiteInterpreter->Invoke();

        // Print out the output
        for (unsigned int outputIndex = 0; outputIndex < params.m_OutputNames.size(); ++outputIndex)
        {
            auto tfLiteDelegateOutputId = tfLiteInterpreter->outputs()[outputIndex];
            TfLiteIntArray* outputDims = tfLiteInterpreter->tensor(tfLiteDelegateOutputId)->dims;

            long outputSize = 1;
            for (unsigned int dim = 0; dim < static_cast<unsigned int>(outputDims->size); ++dim)
            {
                outputSize *=  outputDims->data[dim];
            }

            std::cout << params.m_OutputNames[outputIndex] << ": ";
            if (params.m_OutputTypes[outputIndex].compare("float") == 0)
            {
                auto tfLiteDelageOutputData = tfLiteInterpreter->typed_tensor<float>(tfLiteDelegateOutputId);
                if(tfLiteDelageOutputData == NULL)
                {
                    ARMNN_LOG(fatal) << "Output tensor is null, output type: "
                                        "\"" << params.m_OutputTypes[outputIndex] << "\" may be incorrect.";
                    return EXIT_FAILURE;
                }

                for (int i = 0; i < outputSize; ++i)
                {
                    printf("%f ", tfLiteDelageOutputData[i]);
                }
            }
            else if (params.m_OutputTypes[outputIndex].compare("int") == 0)
            {
                auto tfLiteDelageOutputData = tfLiteInterpreter->typed_tensor<int32_t>(tfLiteDelegateOutputId);
                if(tfLiteDelageOutputData == NULL)
                {
                    ARMNN_LOG(fatal) << "Output tensor is null, output type: "
                                        "\"" << params.m_OutputTypes[outputIndex] << "\" may be incorrect.";
                    return EXIT_FAILURE;
                }

                for (int i = 0; i < outputSize; ++i)
                {
                    printf("%d ", tfLiteDelageOutputData[i]);
                }
            }
            else if (params.m_OutputTypes[outputIndex].compare("qsymms8") == 0)
            {
                auto tfLiteDelageOutputData = tfLiteInterpreter->typed_tensor<int8_t>(tfLiteDelegateOutputId);
                if(tfLiteDelageOutputData == NULL)
                {
                    ARMNN_LOG(fatal) << "Output tensor is null, output type: "
                                        "\"" << params.m_OutputTypes[outputIndex] << "\" may be incorrect.";
                    return EXIT_FAILURE;
                }

                for (int i = 0; i < outputSize; ++i)
                {
                    printf("%d ", tfLiteDelageOutputData[i]);
                }
            }
            else if (params.m_OutputTypes[outputIndex].compare("qasymm8") == 0)
            {
                auto tfLiteDelageOutputData = tfLiteInterpreter->typed_tensor<uint8_t>(tfLiteDelegateOutputId);
                if(tfLiteDelageOutputData == NULL)
                {
                    ARMNN_LOG(fatal) << "Output tensor is null, output type: "
                                        "\"" << params.m_OutputTypes[outputIndex] << "\" may be incorrect.";
                    return EXIT_FAILURE;
                }

                for (int i = 0; i < outputSize; ++i)
                {
                    printf("%u ", tfLiteDelageOutputData[i]);
                }
            }
            else
            {
                ARMNN_LOG(fatal) << "Output tensor is null, output type: "
                                    "\"" << params.m_OutputTypes[outputIndex] <<
                                 "\" may be incorrect. Output type can be specified with -z argument";
                return EXIT_FAILURE;
            }
            std::cout << std::endl;
        }
    }

    return status;
}
#endif
template<typename TParser, typename TDataType>
int MainImpl(const ExecuteNetworkParams& params,
             const std::shared_ptr<armnn::IRuntime>& runtime = nullptr)
{
    using TContainer =
           mapbox::util::variant<std::vector<float>, std::vector<int>, std::vector<unsigned char>, std::vector<int8_t>>;

    std::vector<TContainer> inputDataContainers;

    try
    {
        // Creates an InferenceModel, which will parse the model and load it into an IRuntime.
        typename InferenceModel<TParser, TDataType>::Params inferenceModelParams;
        inferenceModelParams.m_ModelPath                      = params.m_ModelPath;
        inferenceModelParams.m_IsModelBinary                  = params.m_IsModelBinary;
        inferenceModelParams.m_ComputeDevices                 = params.m_ComputeDevices;
        inferenceModelParams.m_DynamicBackendsPath            = params.m_DynamicBackendsPath;
        inferenceModelParams.m_PrintIntermediateLayers        = params.m_PrintIntermediate;
        inferenceModelParams.m_VisualizePostOptimizationModel = params.m_EnableLayerDetails;
        inferenceModelParams.m_ParseUnsupported               = params.m_ParseUnsupported;
        inferenceModelParams.m_InferOutputShape               = params.m_InferOutputShape;
        inferenceModelParams.m_EnableFastMath                 = params.m_EnableFastMath;
        inferenceModelParams.m_SaveCachedNetwork              = params.m_SaveCachedNetwork;
        inferenceModelParams.m_CachedNetworkFilePath          = params.m_CachedNetworkFilePath;
        inferenceModelParams.m_NumberOfThreads                = params.m_NumberOfThreads;
        inferenceModelParams.m_MLGOTuningFilePath             = params.m_MLGOTuningFilePath;

        for(const std::string& inputName: params.m_InputNames)
        {
            inferenceModelParams.m_InputBindings.push_back(inputName);
        }

        for(unsigned int i = 0; i < params.m_InputTensorShapes.size(); ++i)
        {
            inferenceModelParams.m_InputShapes.push_back(*params.m_InputTensorShapes[i]);
        }

        for(const std::string& outputName: params.m_OutputNames)
        {
            inferenceModelParams.m_OutputBindings.push_back(outputName);
        }

        inferenceModelParams.m_SubgraphId          = params.m_SubgraphId;
        inferenceModelParams.m_EnableFp16TurboMode = params.m_EnableFp16TurboMode;
        inferenceModelParams.m_EnableBf16TurboMode = params.m_EnableBf16TurboMode;

        InferenceModel<TParser, TDataType> model(inferenceModelParams,
                                                 params.m_EnableProfiling,
                                                 params.m_DynamicBackendsPath,
                                                 runtime);

        const size_t numInputs = inferenceModelParams.m_InputBindings.size();
        for(unsigned int i = 0; i < numInputs; ++i)
        {
            armnn::Optional<QuantizationParams> qParams = params.m_QuantizeInput ?
                                                          armnn::MakeOptional<QuantizationParams>(
                                                                  model.GetInputQuantizationParams()) :
                                                          armnn::EmptyOptional();

            armnn::Optional<std::string> dataFile = params.m_GenerateTensorData ?
                                                    armnn::EmptyOptional() :
                                                    armnn::MakeOptional<std::string>(
                                                            params.m_InputTensorDataFilePaths[i]);

            unsigned int numElements = model.GetInputSize(i);
            if (params.m_InputTensorShapes.size() > i && params.m_InputTensorShapes[i])
            {
                // If the user has provided a tensor shape for the current input,
                // override numElements
                numElements = params.m_InputTensorShapes[i]->GetNumElements();
            }

            TContainer tensorData;
            PopulateTensorWithData(tensorData,
                                   numElements,
                                   params.m_InputTypes[i],
                                   qParams,
                                   dataFile);

            inputDataContainers.push_back(tensorData);
        }

        const size_t numOutputs = inferenceModelParams.m_OutputBindings.size();
        std::vector<TContainer> outputDataContainers;

        for (unsigned int i = 0; i < numOutputs; ++i)
        {
            if (params.m_OutputTypes[i].compare("float") == 0)
            {
                outputDataContainers.push_back(std::vector<float>(model.GetOutputSize(i)));
            }
            else if (params.m_OutputTypes[i].compare("int") == 0)
            {
                outputDataContainers.push_back(std::vector<int>(model.GetOutputSize(i)));
            }
            else if (params.m_OutputTypes[i].compare("qasymm8") == 0)
            {
                outputDataContainers.push_back(std::vector<uint8_t>(model.GetOutputSize(i)));
            }
            else if (params.m_OutputTypes[i].compare("qsymms8") == 0)
            {
                outputDataContainers.push_back(std::vector<int8_t>(model.GetOutputSize(i)));
            }
            else
            {
                ARMNN_LOG(fatal) << "Unsupported tensor data type \"" << params.m_OutputTypes[i] << "\". ";
                return EXIT_FAILURE;
            }
        }

        for (size_t x = 0; x < params.m_Iterations; x++)
        {
            // model.Run returns the inference time elapsed in EnqueueWorkload (in milliseconds)
            auto inference_duration = model.Run(inputDataContainers, outputDataContainers);

            if (params.m_GenerateTensorData)
            {
                ARMNN_LOG(warning) << "The input data was generated, note that the output will not be useful";
            }

            // Print output tensors
            const auto& infosOut = model.GetOutputBindingInfos();
            for (size_t i = 0; i < numOutputs; i++)
            {
                const armnn::TensorInfo& infoOut = infosOut[i].second;
                auto outputTensorFile = params.m_OutputTensorFiles.empty() ? "" : params.m_OutputTensorFiles[i];

                TensorPrinter printer(inferenceModelParams.m_OutputBindings[i],
                                      infoOut,
                                      outputTensorFile,
                                      params.m_DequantizeOutput);
                mapbox::util::apply_visitor(printer, outputDataContainers[i]);
            }

            ARMNN_LOG(info) << "\nInference time: " << std::setprecision(2)
                            << std::fixed << inference_duration.count() << " ms\n";

            // If thresholdTime == 0.0 (default), then it hasn't been supplied at command line
            if (params.m_ThresholdTime != 0.0)
            {
                ARMNN_LOG(info) << "Threshold time: " << std::setprecision(2)
                                << std::fixed << params.m_ThresholdTime << " ms";
                auto thresholdMinusInference = params.m_ThresholdTime - inference_duration.count();
                ARMNN_LOG(info) << "Threshold time - Inference time: " << std::setprecision(2)
                                << std::fixed << thresholdMinusInference << " ms" << "\n";

                if (thresholdMinusInference < 0)
                {
                    std::string errorMessage = "Elapsed inference time is greater than provided threshold time.";
                    ARMNN_LOG(fatal) << errorMessage;
                }
            }
        }
    }
    catch (const armnn::Exception& e)
    {
        ARMNN_LOG(fatal) << "Armnn Error: " << e.what();
        return EXIT_FAILURE;
    }

    return EXIT_SUCCESS;
}


// MAIN
int main(int argc, const char* argv[])
{
    // Configures logging for both the ARMNN library and this test program.
    #ifdef NDEBUG
    armnn::LogSeverity level = armnn::LogSeverity::Info;
    #else
    armnn::LogSeverity level = armnn::LogSeverity::Debug;
    #endif
    armnn::ConfigureLogging(true, true, level);


    // Get ExecuteNetwork parameters and runtime options from command line
    ProgramOptions ProgramOptions(argc, argv);

    // Create runtime
    std::shared_ptr<armnn::IRuntime> runtime(armnn::IRuntime::Create(ProgramOptions.m_RuntimeOptions));

    std::string modelFormat = ProgramOptions.m_ExNetParams.m_ModelFormat;

    // Forward to implementation based on the parser type
    if (modelFormat.find("armnn") != std::string::npos)
    {
    #if defined(ARMNN_SERIALIZER)
        return MainImpl<armnnDeserializer::IDeserializer, float>(ProgramOptions.m_ExNetParams, runtime);
    #else
        ARMNN_LOG(fatal) << "Not built with serialization support.";
        return EXIT_FAILURE;
    #endif
    }
    else if (modelFormat.find("caffe") != std::string::npos)
    {
    #if defined(ARMNN_CAFFE_PARSER)
        return MainImpl<armnnCaffeParser::ICaffeParser, float>(ProgramOptions.m_ExNetParams, runtime);
    #else
        ARMNN_LOG(fatal) << "Not built with Caffe parser support.";
        return EXIT_FAILURE;
    #endif
    }
    else if (modelFormat.find("onnx") != std::string::npos)
    {
    #if defined(ARMNN_ONNX_PARSER)
        return MainImpl<armnnOnnxParser::IOnnxParser, float>(ProgramOptions.m_ExNetParams, runtime);
    #else
        ARMNN_LOG(fatal) << "Not built with Onnx parser support.";
        return EXIT_FAILURE;
    #endif
    }
    else if (modelFormat.find("tensorflow") != std::string::npos)
    {
    #if defined(ARMNN_TF_PARSER)
        return MainImpl<armnnTfParser::ITfParser, float>(ProgramOptions.m_ExNetParams, runtime);
    #else
        ARMNN_LOG(fatal) << "Not built with Tensorflow parser support.";
        return EXIT_FAILURE;
    #endif
    }
    else if(modelFormat.find("tflite") != std::string::npos)
    {
        if (ProgramOptions.m_ExNetParams.m_TfLiteExecutor == ExecuteNetworkParams::TfLiteExecutor::ArmNNTfLiteParser)
        {
            #if defined(ARMNN_TF_LITE_PARSER)
                        return MainImpl<armnnTfLiteParser::ITfLiteParser, float>(ProgramOptions.m_ExNetParams, runtime);
            #else
                        ARMNN_LOG(fatal) << "Not built with Tensorflow-Lite parser support.";
                        return EXIT_FAILURE;
            #endif
        }
        else if (ProgramOptions.m_ExNetParams.m_TfLiteExecutor ==
                    ExecuteNetworkParams::TfLiteExecutor::ArmNNTfLiteDelegate ||
                ProgramOptions.m_ExNetParams.m_TfLiteExecutor ==
                    ExecuteNetworkParams::TfLiteExecutor::TfliteInterpreter)
        {
        #if defined(ARMNN_TF_LITE_DELEGATE)
            return TfLiteDelegateMainImpl(ProgramOptions.m_ExNetParams, runtime);
        #else
            ARMNN_LOG(fatal) << "Not built with Arm NN Tensorflow-Lite delegate support.";
            return EXIT_FAILURE;
        #endif
        }
    }
    else
    {
        ARMNN_LOG(fatal) << "Unknown model format: '" << modelFormat
                         << "'. Please include 'caffe', 'tensorflow', 'tflite' or 'onnx'";
        return EXIT_FAILURE;
    }
}