aboutsummaryrefslogtreecommitdiff
path: root/tests/ExecuteNetwork/ExecuteNetwork.cpp
blob: f321a260091dd96029e4472438b753580d3d360a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
//
// Copyright © 2017 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//

#include "NetworkExecutionUtils/NetworkExecutionUtils.hpp"
#include "ExecuteNetworkProgramOptions.hpp"
#include <armnn/IAsyncExecutionCallback.hpp>
#include <AsyncExecutionCallback.hpp>

#include <armnn/Logging.hpp>
#include <armnnUtils/Filesystem.hpp>
#include <armnnUtils/TContainer.hpp>
#include <InferenceTest.hpp>

#if defined(ARMNN_SERIALIZER)
#include "armnnDeserializer/IDeserializer.hpp"
#endif
#if defined(ARMNN_TF_LITE_PARSER)
#include "armnnTfLiteParser/ITfLiteParser.hpp"
#endif
#if defined(ARMNN_ONNX_PARSER)
#include "armnnOnnxParser/IOnnxParser.hpp"
#endif
#if defined(ARMNN_TFLITE_DELEGATE)
#include <armnn_delegate.hpp>
#include <DelegateOptions.hpp>

#include <tensorflow/lite/builtin_ops.h>
#include <tensorflow/lite/c/builtin_op_data.h>
#include <tensorflow/lite/c/common.h>
#include <tensorflow/lite/optional_debug_tools.h>
#include <tensorflow/lite/kernels/builtin_op_kernels.h>
#include <tensorflow/lite/interpreter.h>
#include <tensorflow/lite/kernels/register.h>
#endif

#include <future>

/**
 * Given a measured duration and a threshold time tell the user whether we succeeded or not.
 *
 * @param duration the measured inference duration.
 * @param thresholdTime the threshold time in milliseconds.
 * @return false if the measured time exceeded the threshold.
 */
bool CheckInferenceTimeThreshold(const std::chrono::duration<double, std::milli>& duration,
                                 const double& thresholdTime)
{
    ARMNN_LOG(info) << "Inference time: " << std::setprecision(2)
                    << std::fixed << duration.count() << " ms\n";
    // If thresholdTime == 0.0 (default), then it hasn't been supplied at command line
    if (thresholdTime != 0.0)
    {
        ARMNN_LOG(info) << "Threshold time: " << std::setprecision(2)
                        << std::fixed << thresholdTime << " ms";
        auto thresholdMinusInference = thresholdTime - duration.count();
        ARMNN_LOG(info) << "Threshold time - Inference time: " << std::setprecision(2)
                        << std::fixed << thresholdMinusInference << " ms" << "\n";
       if (thresholdMinusInference < 0)
        {
            std::string errorMessage = "Elapsed inference time is greater than provided threshold time.";
            ARMNN_LOG(fatal) << errorMessage;
            return false;
        }
    }
    return true;
}

#if defined(ARMNN_TFLITE_DELEGATE)
int TfLiteDelegateMainImpl(const ExecuteNetworkParams& params, const armnn::IRuntime::CreationOptions runtimeOptions)
{
    // Build model and corresponding interpreter
    using namespace tflite;

    std::unique_ptr<tflite::FlatBufferModel> model = tflite::FlatBufferModel::BuildFromFile(params.m_ModelPath.c_str());

    auto tfLiteInterpreter =  std::make_unique<Interpreter>();
    tflite::ops::builtin::BuiltinOpResolver resolver;

    tflite::InterpreterBuilder builder(*model, resolver);
    builder(&tfLiteInterpreter);
    tfLiteInterpreter->AllocateTensors();

    int status = 0;

    // Create & populate Armnn Delegate, then register it to TfLiteInterpreter
    if (params.m_TfLiteExecutor == ExecuteNetworkParams::TfLiteExecutor::ArmNNTfLiteDelegate)
    {
        // Create the Armnn Delegate
        // Populate a DelegateOptions from the ExecuteNetworkParams.
        armnnDelegate::DelegateOptions delegateOptions = params.ToDelegateOptions();
        delegateOptions.SetExternalProfilingParams(runtimeOptions.m_ProfilingOptions);

        std::unique_ptr<TfLiteDelegate, decltype(&armnnDelegate::TfLiteArmnnDelegateDelete)>
                theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions),
                                 armnnDelegate::TfLiteArmnnDelegateDelete);
        // Register armnn_delegate to TfLiteInterpreter
        status = tfLiteInterpreter->ModifyGraphWithDelegate(std::move(theArmnnDelegate));
        if (status == kTfLiteError)
        {
            ARMNN_LOG(fatal) << "Could not register ArmNN TfLite Delegate to TfLiteInterpreter!";
            return EXIT_FAILURE;
        }
    }
    else
    {
        std::cout << "Running on TfLite without ArmNN delegate\n";
    }

    // Load (or generate) input data for inference
    armnn::Optional<std::string> dataFile = params.m_GenerateTensorData
                                            ? armnn::EmptyOptional()
                                            : armnn::MakeOptional<std::string>(params.m_InputTensorDataFilePaths[0]);

    const size_t numInputs = params.m_InputNames.size();

    // Populate input tensor of interpreter
    for(unsigned int inputIndex = 0; inputIndex < numInputs; ++inputIndex)
    {
        int input = tfLiteInterpreter->inputs()[inputIndex];
        TfLiteIntArray* inputDims = tfLiteInterpreter->tensor(input)->dims;

        unsigned int inputSize = 1;
        if (params.m_InputTensorShapes.size() > 0)
        {
            inputSize = params.m_InputTensorShapes[inputIndex]->GetNumElements();
        }
        else
        {
            for (unsigned int dim = 0; dim < static_cast<unsigned int>(inputDims->size); ++dim)
            {
                inputSize *= inputDims->data[dim];
            }
        }

        if (params.m_InputTypes[inputIndex].compare("float") == 0)
        {
            auto inputData = tfLiteInterpreter->typed_tensor<float>(input);

            if(inputData == NULL)
            {
                ARMNN_LOG(fatal) << "Input tensor is null, input type: "
                                    "\"" << params.m_InputTypes[inputIndex] << "\" may be incorrect.";
                return EXIT_FAILURE;
            }

            std::vector<float> tensorData;
            PopulateTensorWithDataGeneric<float>(tensorData,
                                                 inputSize,
                                                 dataFile,
                                                 [](const std::string& s)
                                                 { return std::stof(s); });

            std::copy(tensorData.begin(), tensorData.end(), inputData);
        }
        else if (params.m_InputTypes[inputIndex].compare("qsymms8") == 0 ||
                 params.m_InputTypes[inputIndex].compare("qasymms8") == 0)
        {
            auto inputData = tfLiteInterpreter->typed_tensor<int8_t>(input);

            if(inputData == NULL)
            {
                ARMNN_LOG(fatal) << "Input tensor is null, input type: "
                                    "\"" << params.m_InputTypes[inputIndex] << "\" may be incorrect.";
                return EXIT_FAILURE;
            }

            std::vector<int8_t> tensorData;
            PopulateTensorWithDataGeneric<int8_t>(tensorData,
                                                  inputSize,
                                                  dataFile,
                                                  [](const std::string& s)
                                                  { return armnn::numeric_cast<int8_t>(std::stoi(s)); });

            std::copy(tensorData.begin(), tensorData.end(), inputData);
        }
        else if (params.m_InputTypes[inputIndex].compare("int") == 0)
        {
            auto inputData = tfLiteInterpreter->typed_tensor<int32_t>(input);

            if(inputData == NULL)
            {
                ARMNN_LOG(fatal) << "Input tensor is null, input type: "
                                    "\"" << params.m_InputTypes[inputIndex] << "\" may be incorrect.";
                return EXIT_FAILURE;
            }

            std::vector<int32_t> tensorData;
            PopulateTensorWithDataGeneric<int32_t>(tensorData,
                                                   inputSize,
                                                   dataFile,
                                                   [](const std::string& s)
                                                   { return std::stoi(s); });

            std::copy(tensorData.begin(), tensorData.end(), inputData);
        }
        else if (params.m_InputTypes[inputIndex].compare("qasymm8") == 0 ||
                 params.m_InputTypes[inputIndex].compare("qasymmu8") == 0)
        {
            auto inputData = tfLiteInterpreter->typed_tensor<uint8_t>(input);

            if(inputData == NULL)
            {
                ARMNN_LOG(fatal) << "Input tensor is null, input type: "
                                    "\"" << params.m_InputTypes[inputIndex] << "\" may be incorrect.";
                return EXIT_FAILURE;
            }

            std::vector<uint8_t> tensorData;
            PopulateTensorWithDataGeneric<uint8_t>(tensorData,
                                                   inputSize,
                                                   dataFile,
                                                   [](const std::string& s)
                                                   { return armnn::numeric_cast<uint8_t>(std::stoi(s)); });

            std::copy(tensorData.begin(), tensorData.end(), inputData);
        }
        else
        {
            ARMNN_LOG(fatal) << "Unsupported input tensor data type \"" << params.m_InputTypes[inputIndex] << "\". ";
            return EXIT_FAILURE;
        }
    }

    // Run inference, print the output of the inference
    for (size_t x = 0; x < params.m_Iterations; x++)
    {
        // Start timer to record inference time in milliseconds.
        const auto start_time = armnn::GetTimeNow();
        // Run the inference
        status = tfLiteInterpreter->Invoke();
        const auto duration = armnn::GetTimeDuration(start_time);

        // The TFLite interpreter's outputs might be in a different order than the user inputted output names.
        std::map<unsigned int, int> paramToTfliteOutputIndex;
        for (unsigned int paramIndex = 0; paramIndex < params.m_OutputNames.size(); ++paramIndex)
        {
            paramToTfliteOutputIndex[paramIndex] = -1;
            for (unsigned int tfLiteIndex = 0; tfLiteIndex < tfLiteInterpreter->outputs().size(); ++tfLiteIndex)
            {
                if (params.m_OutputNames[paramIndex] == tfLiteInterpreter->GetOutputName(tfLiteIndex))
                {
                    paramToTfliteOutputIndex[paramIndex] = tfLiteIndex;
                }
            }
        }

        // Print out the output
        for (unsigned int paramOutputIndex = 0; paramOutputIndex < params.m_OutputNames.size(); ++paramOutputIndex)
        {
            int outputIndex = paramToTfliteOutputIndex[paramOutputIndex];
            if (outputIndex == -1)
            {
                std::cout << fmt::format("Output name: {} doesn't exist.", params.m_OutputNames[paramOutputIndex]) <<
                std::endl;
                continue;
            }
            auto tfLiteDelegateOutputId = tfLiteInterpreter->outputs()[outputIndex];
            TfLiteIntArray* outputDims = tfLiteInterpreter->tensor(tfLiteDelegateOutputId)->dims;
            // If we've been asked to write to a file then set a file output stream. Otherwise use stdout.
            FILE* outputTensorFile = stdout;
            if (!params.m_OutputTensorFiles.empty())
            {
                outputTensorFile = fopen(params.m_OutputTensorFiles[outputIndex].c_str(), "w");
                if (outputTensorFile == NULL)
                {
                    ARMNN_LOG(fatal) << "Specified output tensor file, \"" <<
                                     params.m_OutputTensorFiles[outputIndex] <<
                                     "\", cannot be created. Defaulting to stdout. " <<
                                     "Error was: " << std::strerror(errno);
                    outputTensorFile = stdout;
                }
                else
                {
                    ARMNN_LOG(info) << "Writing output " << outputIndex << "' of iteration: " << x+1 << " to file: '"
                                    << params.m_OutputTensorFiles[outputIndex] << "'";
                }
            }
            long outputSize = 1;
            for (unsigned int dim = 0; dim < static_cast<unsigned int>(outputDims->size); ++dim)
            {
                outputSize *=  outputDims->data[dim];
            }

            std::cout << tfLiteInterpreter->GetOutputName(outputIndex) << ": ";
            if (params.m_OutputTypes[outputIndex].compare("float") == 0)
            {
                auto tfLiteDelageOutputData = tfLiteInterpreter->typed_tensor<float>(tfLiteDelegateOutputId);
                if(tfLiteDelageOutputData == NULL)
                {
                    ARMNN_LOG(fatal) << "Output tensor is null, output type: "
                                        "\"" << params.m_OutputTypes[outputIndex] << "\" may be incorrect.";
                    return EXIT_FAILURE;
                }

                if (!params.m_DontPrintOutputs)
                {
                    for (int i = 0; i < outputSize; ++i)
                    {
                        fprintf(outputTensorFile, "%f ", tfLiteDelageOutputData[i]);
                    }
                }
            }
            else if (params.m_OutputTypes[outputIndex].compare("int") == 0)
            {
                auto tfLiteDelageOutputData = tfLiteInterpreter->typed_tensor<int32_t>(tfLiteDelegateOutputId);
                if(tfLiteDelageOutputData == NULL)
                {
                    ARMNN_LOG(fatal) << "Output tensor is null, output type: "
                                        "\"" << params.m_OutputTypes[outputIndex] << "\" may be incorrect.";
                    return EXIT_FAILURE;
                }

                if (!params.m_DontPrintOutputs)
                {
                    for (int i = 0; i < outputSize; ++i)
                    {
                        fprintf(outputTensorFile, "%d ", tfLiteDelageOutputData[i]);
                    }
                }
            }
            else if (params.m_OutputTypes[outputIndex].compare("qsymms8") == 0 ||
                     params.m_OutputTypes[outputIndex].compare("qasymms8") == 0)
            {
                auto tfLiteDelageOutputData = tfLiteInterpreter->typed_tensor<int8_t>(tfLiteDelegateOutputId);
                if(tfLiteDelageOutputData == NULL)
                {
                    ARMNN_LOG(fatal) << "Output tensor is null, output type: "
                                        "\"" << params.m_OutputTypes[outputIndex] << "\" may be incorrect.";
                    return EXIT_FAILURE;
                }

                if (!params.m_DontPrintOutputs)
                {
                    for (int i = 0; i < outputSize; ++i)
                    {
                        fprintf(outputTensorFile, "%d ", tfLiteDelageOutputData[i]);
                    }
                }
            }
            else if (params.m_OutputTypes[outputIndex].compare("qasymm8") == 0 ||
                     params.m_OutputTypes[outputIndex].compare("qasymmu8") == 0)
            {
                auto tfLiteDelageOutputData = tfLiteInterpreter->typed_tensor<uint8_t>(tfLiteDelegateOutputId);
                if(tfLiteDelageOutputData == NULL)
                {
                    ARMNN_LOG(fatal) << "Output tensor is null, output type: "
                                        "\"" << params.m_OutputTypes[outputIndex] << "\" may be incorrect.";
                    return EXIT_FAILURE;
                }

                if (!params.m_DontPrintOutputs)
                {
                    for (int i = 0; i < outputSize; ++i)
                    {
                        fprintf(outputTensorFile, "%u ", tfLiteDelageOutputData[i]);
                    }
                }
            }
            else
            {
                ARMNN_LOG(fatal) << "Output tensor is null, output type: "
                                    "\"" << params.m_OutputTypes[outputIndex] <<
                                 "\" may be incorrect. Output type can be specified with -z argument";
                return EXIT_FAILURE;
            }
            std::cout << std::endl;
        }
        CheckInferenceTimeThreshold(duration, params.m_ThresholdTime);
    }

    return status;
}
#endif
template<typename TParser, typename TDataType>
int MainImpl(const ExecuteNetworkParams& params,
             const std::shared_ptr<armnn::IRuntime>& runtime = nullptr)
{
    using namespace std::chrono;

    std::vector<std::vector<armnnUtils::TContainer>> inputs;
    std::vector<std::vector<armnnUtils::TContainer>> outputs;

    try
    {
        // Creates an InferenceModel, which will parse the model and load it into an IRuntime.
        typename InferenceModel<TParser, TDataType>::Params inferenceModelParams;
        inferenceModelParams.m_ModelPath                      = params.m_ModelPath;
        inferenceModelParams.m_IsModelBinary                  = params.m_IsModelBinary;
        inferenceModelParams.m_ComputeDevices                 = params.m_ComputeDevices;
        inferenceModelParams.m_DynamicBackendsPath            = params.m_DynamicBackendsPath;
        inferenceModelParams.m_PrintIntermediateLayers        = params.m_PrintIntermediate;
        inferenceModelParams.m_VisualizePostOptimizationModel = params.m_EnableLayerDetails;
        inferenceModelParams.m_ParseUnsupported               = params.m_ParseUnsupported;
        inferenceModelParams.m_InferOutputShape               = params.m_InferOutputShape;
        inferenceModelParams.m_EnableFastMath                 = params.m_EnableFastMath;
        inferenceModelParams.m_SaveCachedNetwork              = params.m_SaveCachedNetwork;
        inferenceModelParams.m_CachedNetworkFilePath          = params.m_CachedNetworkFilePath;
        inferenceModelParams.m_NumberOfThreads                = params.m_NumberOfThreads;
        inferenceModelParams.m_MLGOTuningFilePath             = params.m_MLGOTuningFilePath;
        inferenceModelParams.m_AsyncEnabled                   = params.m_Concurrent;
        inferenceModelParams.m_ThreadPoolSize                 = params.m_ThreadPoolSize;
        inferenceModelParams.m_OutputDetailsToStdOut          = params.m_OutputDetailsToStdOut;
        inferenceModelParams.m_OutputDetailsOnlyToStdOut      = params.m_OutputDetailsOnlyToStdOut;

        for(const std::string& inputName: params.m_InputNames)
        {
            inferenceModelParams.m_InputBindings.push_back(inputName);
        }

        for(unsigned int i = 0; i < params.m_InputTensorShapes.size(); ++i)
        {
            inferenceModelParams.m_InputShapes.push_back(*params.m_InputTensorShapes[i]);
        }

        for(const std::string& outputName: params.m_OutputNames)
        {
            inferenceModelParams.m_OutputBindings.push_back(outputName);
        }

        inferenceModelParams.m_SubgraphId          = params.m_SubgraphId;
        inferenceModelParams.m_EnableFp16TurboMode = params.m_EnableFp16TurboMode;
        inferenceModelParams.m_EnableBf16TurboMode = params.m_EnableBf16TurboMode;

        InferenceModel<TParser, TDataType> model(inferenceModelParams,
                                                 params.m_EnableProfiling,
                                                 params.m_DynamicBackendsPath,
                                                 runtime);

        const size_t numInputs = inferenceModelParams.m_InputBindings.size();

        armnn::Optional<QuantizationParams> qParams = params.m_QuantizeInput ?
                                                      armnn::MakeOptional<QuantizationParams>(
                                                          model.GetInputQuantizationParams()) :
                                                      armnn::EmptyOptional();

        if (params.m_InputTensorDataFilePaths.size() > numInputs)
        {
            ARMNN_LOG(info) << "Given network has " << numInputs << " input/s. One input-tensor-data file is required "
                            << "for each input. The user provided "
                            << params.m_InputTensorDataFilePaths.size()
                            << " input-tensor-data file/s which will be used to fill the input/s.\n";
        }

        for(unsigned int j = 0; j < params.m_Iterations ; ++j)
        {
            std::vector<armnnUtils::TContainer> inputDataContainers;
            for(unsigned int i = 0; i < numInputs; ++i)
            {
                // If there are fewer input files given than required for the execution of
                // params.m_Iterations we simply start with the first input file again
                size_t inputFileIndex = j * numInputs + i;
                if (!params.m_InputTensorDataFilePaths.empty())
                {
                    inputFileIndex = inputFileIndex % params.m_InputTensorDataFilePaths.size();
                }

                armnn::Optional<std::string> dataFile = params.m_GenerateTensorData ?
                                                        armnn::EmptyOptional() :
                                                        armnn::MakeOptional<std::string>(
                                                            params.m_InputTensorDataFilePaths.at(inputFileIndex));

                unsigned int numElements = model.GetInputSize(i);
                if (params.m_InputTensorShapes.size() > i && params.m_InputTensorShapes[i])
                {
                    // If the user has provided a tensor shape for the current input,
                    // override numElements
                    numElements = params.m_InputTensorShapes[i]->GetNumElements();
                }

                armnnUtils::TContainer tensorData;
                PopulateTensorWithData(tensorData,
                                       numElements,
                                       params.m_InputTypes[i],
                                       qParams,
                                       dataFile);

                inputDataContainers.push_back(tensorData);
            }
            inputs.push_back(inputDataContainers);
        }

        const size_t numOutputs = inferenceModelParams.m_OutputBindings.size();

        // The user is allowed to specify the data type of each output tensor. It is used here to construct the
        // result tensors for each iteration. It is possible for the user to specify a type that does not match
        // the data type of the corresponding model output. It may not make sense, but it is historically allowed.
        // The potential problem here is a buffer overrun when a larger data type is written into the space for a
        // smaller one. Issue a warning to highlight the potential problem.
        for (unsigned int outputIdx = 0; outputIdx < model.GetOutputBindingInfos().size(); ++outputIdx)
        {
            armnn::DataType type = model.GetOutputBindingInfo(outputIdx).second.GetDataType();
            switch (type)
            {
                // --output-type only supports float, int,  qasymms8 or qasymmu8.
                case armnn::DataType::Float32:
                    if (params.m_OutputTypes[outputIdx].compare("float") != 0)
                    {
                        ARMNN_LOG(warning) << "Model output index: " << outputIdx << " has data type Float32. The " <<
                                           "corresponding --output-type is " << params.m_OutputTypes[outputIdx] <<
                                           ". This may cause unexpected problems or random failures.";
                    }
                    break;
                case armnn::DataType::QAsymmU8:
                    if (params.m_OutputTypes[outputIdx].compare("qasymmu8") != 0)
                    {
                        ARMNN_LOG(warning) << "Model output index: " << outputIdx << " has data type QAsymmU8. The " <<
                                           "corresponding --output-type is " << params.m_OutputTypes[outputIdx] <<
                                           ". This may cause unexpected problemsor random failures.";
                    }
                    break;
                case armnn::DataType::Signed32:
                    if (params.m_OutputTypes[outputIdx].compare("int") != 0)
                    {
                        ARMNN_LOG(warning) << "Model output index: " << outputIdx << " has data type Signed32. The " <<
                                           "corresponding --output-type is " << params.m_OutputTypes[outputIdx] <<
                                           ". This may cause unexpected problems or random failures.";
                    }
                    break;
                case armnn::DataType::QAsymmS8:
                    if (params.m_OutputTypes[outputIdx].compare("qasymms8") != 0)
                    {
                        ARMNN_LOG(warning) << "Model output index: " << outputIdx << " has data type QAsymmS8. The " <<
                                           "corresponding --output-type is " << params.m_OutputTypes[outputIdx] <<
                                           ". This may cause unexpected problems or random failures.";
                    }
                    break;
                default:
                    break;
            }
        }
        for (unsigned int j = 0; j < params.m_Iterations; ++j)
        {
            std::vector <armnnUtils::TContainer> outputDataContainers;
            for (unsigned int i = 0; i < numOutputs; ++i)
            {
                if (params.m_OutputTypes[i].compare("float") == 0)
                {
                    outputDataContainers.push_back(std::vector<float>(model.GetOutputSize(i)));
                }
                else if (params.m_OutputTypes[i].compare("int") == 0)
                {
                    outputDataContainers.push_back(std::vector<int>(model.GetOutputSize(i)));
                }
                else if (params.m_OutputTypes[i].compare("qasymm8") == 0 ||
                         params.m_OutputTypes[i].compare("qasymmu8") == 0)
                {
                    outputDataContainers.push_back(std::vector<uint8_t>(model.GetOutputSize(i)));
                }
                else if (params.m_OutputTypes[i].compare("qasymms8") == 0)
                {
                    outputDataContainers.push_back(std::vector<int8_t>(model.GetOutputSize(i)));
                } else
                {
                    ARMNN_LOG(fatal) << "Unsupported tensor data type \"" << params.m_OutputTypes[i] << "\". ";
                    return EXIT_FAILURE;
                }
            }
            outputs.push_back(outputDataContainers);
        }

        if (params.m_Iterations > 1)
        {
            std::stringstream msg;
            msg << "Network will be executed " << params.m_Iterations;
            if (params.m_Concurrent)
            {
                msg << " times in an asynchronous manner. ";
            }
            else
            {
                msg << " times successively. ";
            }
            msg << "The input-tensor-data files will be reused recursively if the user didn't provide enough to "
                   "cover each execution.";
            ARMNN_LOG(info) << msg.str();
        }

        // Synchronous execution
        if (!params.m_Concurrent)
        {
            for (size_t x = 0; x < params.m_Iterations; x++)
            {
                // model.Run returns the inference time elapsed in EnqueueWorkload (in milliseconds)
                auto inference_duration = model.Run(inputs[x], outputs[x]);

                if (params.m_GenerateTensorData)
                {
                    ARMNN_LOG(warning) << "The input data was generated, note that the output will not be useful";
                }
                if (params.m_DontPrintOutputs)
                {
                    ARMNN_LOG(info) << "Printing outputs to console is disabled.";
                }

                // Print output tensors
                const auto& infosOut = model.GetOutputBindingInfos();
                for (size_t i = 0; i < numOutputs; i++)
                {
                    const armnn::TensorInfo& infoOut = infosOut[i].second;

                    // We've made sure before that the number of output files either equals numOutputs, in which
                    // case we override those files when processing the results of each iteration (only the result
                    // of the last iteration will be stored), or there are enough
                    // output files for each output of each iteration.
                    size_t outputFileIndex = x * numOutputs + i;
                    if (!params.m_OutputTensorFiles.empty())
                    {
                        outputFileIndex = outputFileIndex % params.m_OutputTensorFiles.size();
                        ARMNN_LOG(info) << "Writing output " << i << " named: '"
                                        << inferenceModelParams.m_OutputBindings[i]
                                        << "' of iteration: " << x+1 << " to file: '"
                                        << params.m_OutputTensorFiles[outputFileIndex] << "'";
                    }
                    auto outputTensorFile = params.m_OutputTensorFiles.empty()
                                            ? ""
                                            : params.m_OutputTensorFiles[outputFileIndex];

                    TensorPrinter printer(inferenceModelParams.m_OutputBindings[i],
                                          infoOut,
                                          outputTensorFile,
                                          params.m_DequantizeOutput,
                                          !params.m_DontPrintOutputs);
                    mapbox::util::apply_visitor(printer, outputs[x][i]);
                }

                ARMNN_LOG(info) << "\nInference time: " << std::setprecision(2)
                                << std::fixed << inference_duration.count() << " ms\n";

                // If thresholdTime == 0.0 (default), then it hasn't been supplied at command line
                if (params.m_ThresholdTime != 0.0)
                {
                    ARMNN_LOG(info) << "Threshold time: " << std::setprecision(2)
                                    << std::fixed << params.m_ThresholdTime << " ms";
                    auto thresholdMinusInference = params.m_ThresholdTime - inference_duration.count();
                    ARMNN_LOG(info) << "Threshold time - Inference time: " << std::setprecision(2)
                                    << std::fixed << thresholdMinusInference << " ms" << "\n";

                    if (thresholdMinusInference < 0)
                    {
                        std::string errorMessage = "Elapsed inference time is greater than provided threshold time.";
                        ARMNN_LOG(fatal) << errorMessage;
                    }
                }
            }
        }
        // Asynchronous execution using the Arm NN thread pool
        else if (params.m_ThreadPoolSize >= 1)
        {
            try
            {
                ARMNN_LOG(info) << "Asynchronous execution with Arm NN thread pool...  \n";
                armnn::AsyncCallbackManager callbackManager;
                std::unordered_map<armnn::InferenceId, std::vector<armnnUtils::TContainer>&> inferenceOutputMap;

                // Declare the latest and earliest inference times here to be used when calculating overall time
                std::chrono::high_resolution_clock::time_point earliestStartTime;
                std::chrono::high_resolution_clock::time_point latestEndTime =
                    std::chrono::high_resolution_clock::now();

                // For the asynchronous execution, we are adding a pool of working memory handles (1 per thread) in the
                // LoadedNetwork with each scheduled inference having a specific priority
                for (size_t i = 0; i < params.m_Iterations; ++i)
                {
                    std::shared_ptr<armnn::AsyncExecutionCallback> cb = callbackManager.GetNewCallback();
                    inferenceOutputMap.insert({cb->GetInferenceId(), outputs[i]});
                    model.RunAsync(inputs[i], outputs[i], cb);
                }

                // Check the results
                unsigned int j = 0;
                for (size_t iteration = 0; iteration < params.m_Iterations; ++iteration)
                {
                    auto cb = callbackManager.GetNotifiedCallback();

                    // Get the results
                    auto endTime = time_point_cast<std::chrono::milliseconds>(cb->GetEndTime());
                    auto startTime = time_point_cast<std::chrono::milliseconds>(cb->GetStartTime());
                    auto inferenceDuration = endTime - startTime;

                    if (latestEndTime < cb->GetEndTime())
                    {
                        latestEndTime = cb->GetEndTime();
                    }

                    if (earliestStartTime.time_since_epoch().count() == 0)
                    {
                        earliestStartTime = cb->GetStartTime();
                    }
                    else if (earliestStartTime > cb->GetStartTime())
                    {
                        earliestStartTime = cb->GetStartTime();
                    }

                    if (params.m_GenerateTensorData)
                    {
                        ARMNN_LOG(warning) << "The input data was generated, note that the output will not be useful";
                    }
                    if (params.m_DontPrintOutputs)
                    {
                        ARMNN_LOG(info) << "Printing outputs to console is disabled.";
                    }

                    // Print output tensors
                    const auto& infosOut = model.GetOutputBindingInfos();
                    for (size_t i = 0; i < numOutputs; i++)
                    {
                        // We've made sure before that the number of output files either equals numOutputs, in which
                        // case we override those files when processing the results of each iteration (only the
                        // result of the last iteration will be stored), or there are enough
                        // output files for each output of each iteration.
                        size_t outputFileIndex = iteration * numOutputs + i;
                        if (!params.m_OutputTensorFiles.empty())
                        {
                            outputFileIndex = outputFileIndex % params.m_OutputTensorFiles.size();
                            ARMNN_LOG(info) << "Writing output " << i << " named: '"
                                            << inferenceModelParams.m_OutputBindings[i]
                                            << "' of iteration: " << iteration+1 << " to file: '"
                                            << params.m_OutputTensorFiles[outputFileIndex] << "'";
                        }

                        const armnn::TensorInfo& infoOut = infosOut[i].second;
                        auto outputTensorFile = params.m_OutputTensorFiles.empty()
                                                ? ""
                                                : params.m_OutputTensorFiles[outputFileIndex];

                        TensorPrinter printer(inferenceModelParams.m_OutputBindings[i],
                                              infoOut,
                                              outputTensorFile,
                                              params.m_DequantizeOutput,
                                              !params.m_DontPrintOutputs);
                        mapbox::util::apply_visitor(printer, inferenceOutputMap.at(cb->GetInferenceId())[i]);
                    }

                    CheckInferenceTimeThreshold(inferenceDuration, params.m_ThresholdTime);
                    ++j;
                }
                //print duration difference between overallStartTime and overallEndTime
                auto overallEndTime = time_point_cast<std::chrono::milliseconds>(latestEndTime);
                auto overallStartTime = time_point_cast<std::chrono::milliseconds>(earliestStartTime);
                auto totalInferenceDuration = overallEndTime - overallStartTime;
                ARMNN_LOG(info) << "\nOverall Inference time: " << std::setprecision(2)
                                << std::fixed << totalInferenceDuration.count() << " ms\n";
            }
            catch (const armnn::Exception& e)
            {
                ARMNN_LOG(fatal) << "Armnn Error: " << e.what();
                return EXIT_FAILURE;
            }
        }
        // Asynchronous execution using std::launch::async
        else
        {
            try
            {
                ARMNN_LOG(info) << "Asynchronous Execution with std::launch:async...  \n";
                std::vector<std::future<std::tuple<unsigned int,
                    std::chrono::duration<double, std::milli>>>> inferenceResults;
                inferenceResults.reserve(params.m_Iterations);

                // Create WorkingMemHandles for each inference
                std::vector<std::unique_ptr<armnn::experimental::IWorkingMemHandle>> workingMemHandles;
                workingMemHandles.reserve(params.m_Iterations);
                for (unsigned int i = 0; i < params.m_Iterations; ++i)
                {
                    workingMemHandles.push_back(model.CreateWorkingMemHandle());
                }

                // Run each inference in its own thread
                // start a timer
                const auto start_time = armnn::GetTimeNow();
                for (unsigned int i = 0; i < params.m_Iterations; ++i)
                {
                    armnn::experimental::IWorkingMemHandle& workingMemHandleRef = *workingMemHandles[i].get();

                    inferenceResults.push_back(std::async(
                        std::launch::async, [&model, &workingMemHandleRef, &inputs, &outputs, i]() {
                            return model.RunAsync(workingMemHandleRef, inputs[i], outputs[i], i);
                        }
                        ));
                }

                // Check the results
                for (unsigned int j = 0; j < inferenceResults.size(); ++j)
                {
                    // Get the results
                    auto inferenceResult = inferenceResults[j].get();
                    auto inferenceDuration = std::get<1>(inferenceResult);
                    auto inferenceID = std::get<0>(inferenceResult);

                    if (params.m_GenerateTensorData)
                    {
                        ARMNN_LOG(warning) << "The input data was generated, note that the output will not be useful";
                    }
                    if (params.m_DontPrintOutputs)
                    {
                        ARMNN_LOG(info) << "Printing outputs to console is disabled.";
                    }

                    // Print output tensors
                    const auto& infosOut = model.GetOutputBindingInfos();
                    for (size_t i = 0; i < numOutputs; i++)
                    {
                        // We've made sure before that the number of output files either equals numOutputs, in which
                        // case we override those files when processing the results of each iteration (only the
                        // result of the last iteration will be stored), or there are enough
                        // output files for each output of each iteration.
                        size_t outputFileIndex = j * numOutputs + i;
                        if (!params.m_OutputTensorFiles.empty())
                        {
                            outputFileIndex = outputFileIndex % params.m_OutputTensorFiles.size();
                            ARMNN_LOG(info) << "Writing output " << i << " named: '"
                                            << inferenceModelParams.m_OutputBindings[i]
                                            << "' of iteration: " << j+1 << " to file: '"
                                            << params.m_OutputTensorFiles[outputFileIndex] << "'";
                        }
                        const armnn::TensorInfo& infoOut = infosOut[i].second;
                        auto outputTensorFile = params.m_OutputTensorFiles.empty()
                                                ? ""
                                                : params.m_OutputTensorFiles[outputFileIndex];

                        TensorPrinter printer(inferenceModelParams.m_OutputBindings[i],
                                              infoOut,
                                              outputTensorFile,
                                              params.m_DequantizeOutput,
                                              !params.m_DontPrintOutputs);
                        mapbox::util::apply_visitor(printer, outputs[j][i]);
                    }
                    CheckInferenceTimeThreshold(inferenceDuration, params.m_ThresholdTime);
                    ARMNN_LOG(info) << "Asynchronous Execution is finished for Inference ID: " << inferenceID << " \n";
                }
                // finish timer
                const auto duration = armnn::GetTimeDuration(start_time);
                ARMNN_LOG(info) << "\nOverall Inference time: " << std::setprecision(2)
                                << std::fixed << duration.count() << " ms\n";
            }
            catch (const armnn::Exception& e)
            {
                ARMNN_LOG(fatal) << "Armnn Error: " << e.what();
                return EXIT_FAILURE;
            }
        }
    }
    catch (const armnn::Exception& e)
    {
        ARMNN_LOG(fatal) << "Armnn Error: " << e.what();
        return EXIT_FAILURE;
    }

    return EXIT_SUCCESS;
}

// MAIN
int main(int argc, const char* argv[])
{
    // Configures logging for both the ARMNN library and this test program.
    #ifdef NDEBUG
    armnn::LogSeverity level = armnn::LogSeverity::Info;
    #else
    armnn::LogSeverity level = armnn::LogSeverity::Debug;
    #endif
    armnn::ConfigureLogging(true, true, level);


    // Get ExecuteNetwork parameters and runtime options from command line
    // This might throw an InvalidArgumentException if the user provided invalid inputs
    ProgramOptions ProgramOptions;
    try {
        ProgramOptions.ParseOptions(argc, argv);
    } catch (const std::exception &e){
        ARMNN_LOG(fatal) << e.what();
        return EXIT_FAILURE;
    }

    if ((ProgramOptions.m_ExNetParams.m_OutputDetailsToStdOut ||
         ProgramOptions.m_ExNetParams.m_OutputDetailsOnlyToStdOut)
         && !ProgramOptions.m_ExNetParams.m_EnableProfiling)
    {
        ARMNN_LOG(fatal) << "You must enable profiling if you would like to output layer details";
        return EXIT_FAILURE;
    }

    std::string modelFormat = ProgramOptions.m_ExNetParams.m_ModelFormat;

    // Forward to implementation based on the parser type
    if (modelFormat.find("armnn") != std::string::npos)
    {
    #if defined(ARMNN_SERIALIZER)
        std::shared_ptr<armnn::IRuntime> runtime(armnn::IRuntime::Create(ProgramOptions.m_RuntimeOptions));
        return MainImpl<armnnDeserializer::IDeserializer, float>(ProgramOptions.m_ExNetParams, runtime);
    #else
        ARMNN_LOG(fatal) << "Not built with serialization support.";
        return EXIT_FAILURE;
    #endif
    }
    else if (modelFormat.find("onnx") != std::string::npos)
    {
    #if defined(ARMNN_ONNX_PARSER)
        std::shared_ptr<armnn::IRuntime> runtime(armnn::IRuntime::Create(ProgramOptions.m_RuntimeOptions));
        return MainImpl<armnnOnnxParser::IOnnxParser, float>(ProgramOptions.m_ExNetParams, runtime);
    #else
        ARMNN_LOG(fatal) << "Not built with Onnx parser support.";
        return EXIT_FAILURE;
    #endif
    }
    else if(modelFormat.find("tflite") != std::string::npos)
    {
        if (ProgramOptions.m_ExNetParams.m_TfLiteExecutor == ExecuteNetworkParams::TfLiteExecutor::ArmNNTfLiteParser)
        {
            #if defined(ARMNN_TF_LITE_PARSER)
                std::shared_ptr<armnn::IRuntime> runtime(armnn::IRuntime::Create(ProgramOptions.m_RuntimeOptions));
                return MainImpl<armnnTfLiteParser::ITfLiteParser, float>(ProgramOptions.m_ExNetParams, runtime);
            #else
                ARMNN_LOG(fatal) << "Not built with Tensorflow-Lite parser support.";
                return EXIT_FAILURE;
            #endif
        }
        else if (ProgramOptions.m_ExNetParams.m_TfLiteExecutor ==
                    ExecuteNetworkParams::TfLiteExecutor::ArmNNTfLiteDelegate ||
                ProgramOptions.m_ExNetParams.m_TfLiteExecutor ==
                    ExecuteNetworkParams::TfLiteExecutor::TfliteInterpreter)
        {
        #if defined(ARMNN_TF_LITE_DELEGATE)
            return TfLiteDelegateMainImpl(ProgramOptions.m_ExNetParams, ProgramOptions.m_RuntimeOptions);
        #else
            ARMNN_LOG(fatal) << "Not built with Arm NN Tensorflow-Lite delegate support.";
            return EXIT_FAILURE;
        #endif
        }
    }
    else
    {
        ARMNN_LOG(fatal) << "Unknown model format: '" << modelFormat
                         << "'. Please include 'tflite' or 'onnx'";
        return EXIT_FAILURE;
    }
}