aboutsummaryrefslogtreecommitdiff
path: root/src/backends/neon/workloads/NeonNormalizationFloatWorkload.cpp
blob: 18940487887a9122dc33ffb26923688e7ec5251b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//

#include "NeonNormalizationFloatWorkload.hpp"
#include <backends/neon/NeonLayerSupport.hpp>
#include <backends/aclCommon/ArmComputeUtils.hpp>
#include <backends/aclCommon/ArmComputeTensorUtils.hpp>

using namespace armnn::armcomputetensorutils;

namespace armnn
{

namespace
{

bool IsNeonNormalizationDescriptorSupported(const NormalizationDescriptor& parameters,
                                            Optional<std::string&> reasonIfUnsupported)
{
    if (parameters.m_NormMethodType != NormalizationAlgorithmMethod::LocalBrightness)
    {
        if (reasonIfUnsupported)
        {
            reasonIfUnsupported.value() = "Unsupported normalisation method type, only LocalBrightness is supported";
        }
        return false;
    }
    if (parameters.m_NormSize % 2 == 0)
    {
        if (reasonIfUnsupported)
        {
            reasonIfUnsupported.value() = "Normalization size must be an odd number.";
        }
        return false;
    }

    return true;
}

} // anonymous namespace

arm_compute::Status NeonNormalizationWorkloadValidate(const TensorInfo& input,
                                                      const TensorInfo& output,
                                                      const NormalizationDescriptor& descriptor)
{
    const arm_compute::TensorInfo aclInput = BuildArmComputeTensorInfo(input, descriptor.m_DataLayout);
    const arm_compute::TensorInfo aclOutput = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout);

    arm_compute::NormalizationLayerInfo normalizationInfo = BuildArmComputeNormalizationLayerInfo(descriptor);

    return arm_compute::NENormalizationLayer::validate(&aclInput, &aclOutput, normalizationInfo);
}

NeonNormalizationFloatWorkload::NeonNormalizationFloatWorkload(const NormalizationQueueDescriptor& descriptor,
                                                   const WorkloadInfo& info,
                                                   std::shared_ptr<arm_compute::MemoryManagerOnDemand>& memoryManager)
    : FloatWorkload<NormalizationQueueDescriptor>(descriptor, info)
    , m_NormalizationLayer(memoryManager)
{
    m_Data.ValidateInputsOutputs("NeonNormalizationFloatWorkload", 1, 1);
    std::string reasonIfUnsupported;
    if (!IsNeonNormalizationDescriptorSupported(m_Data.m_Parameters, Optional<std::string&>(reasonIfUnsupported)))
    {
        throw UnimplementedException(reasonIfUnsupported);
    }

    // Input and output tensors have to have the same dimensionality.
    if (info.m_InputTensorInfos[0].GetShape()[1] != info.m_OutputTensorInfos[0].GetShape()[1]
        || info.m_InputTensorInfos[0].GetShape()[0] != info.m_OutputTensorInfos[0].GetShape()[0]
        || info.m_InputTensorInfos[0].GetShape()[3] != info.m_OutputTensorInfos[0].GetShape()[3]
        || info.m_InputTensorInfos[0].GetShape()[2] != info.m_OutputTensorInfos[0].GetShape()[2])
    {
        throw InvalidArgumentException("Normalization requires input and output tensors to have equal dimensionality.");
    }

    arm_compute::ITensor& input = boost::polymorphic_downcast<INeonTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
    arm_compute::ITensor& output = boost::polymorphic_downcast<INeonTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
    arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout);
    input.info()->set_data_layout(aclDataLayout);
    output.info()->set_data_layout(aclDataLayout);

    const arm_compute::NormType normType =
        ConvertNormalizationAlgorithmChannelToAclNormType(m_Data.m_Parameters.m_NormChannelType);
    arm_compute::NormalizationLayerInfo normalizationInfo(normType,
                                                          m_Data.m_Parameters.m_NormSize,
                                                          m_Data.m_Parameters.m_Alpha,
                                                          m_Data.m_Parameters.m_Beta,
                                                          m_Data.m_Parameters.m_K,
                                                          false);

    m_NormalizationLayer.configure(&input, &output, normalizationInfo);
}

void NeonNormalizationFloatWorkload::Execute() const
{
    ARMNN_SCOPED_PROFILING_EVENT_NEON("NeonNormalizationFloatWorkload_Execute");
    m_NormalizationLayer.run();
}

} //namespace armnn