aboutsummaryrefslogtreecommitdiff
path: root/src/backends/neon/test/NeonEndToEndTests.cpp
blob: 15f5fc330e27b4bef42f974283ed5e295c444590 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//

#include <backendsCommon/test/EndToEndTestImpl.hpp>
#include <backendsCommon/test/ConcatTestImpl.hpp>
#include <backendsCommon/test/ArithmeticTestImpl.hpp>
#include <backendsCommon/test/SplitterEndToEndTestImpl.hpp>

#include <boost/test/unit_test.hpp>

BOOST_AUTO_TEST_SUITE(NeonEndToEnd)

std::vector<armnn::BackendId> defaultBackends = {armnn::Compute::CpuAcc};

BOOST_AUTO_TEST_CASE(ConstantUsage_Neon_Float32)
{
    BOOST_TEST(ConstantUsageFloat32Test(defaultBackends));
}

BOOST_AUTO_TEST_CASE(FallbackToCpuRef)
{
    using namespace armnn;

    // Create runtime in which test will run and allow fallback to CpuRef.
    IRuntime::CreationOptions options;
    IRuntimePtr runtime(IRuntime::Create(options));

    // Builds up the structure of the network.
    INetworkPtr net(INetwork::Create());

    IConnectableLayer* input = net->AddInputLayer(0);

    // This layer configuration isn't supported by CpuAcc but we allow fallback to CpuRef so it shoud pass.
    NormalizationDescriptor descriptor;
    IConnectableLayer* pooling = net->AddNormalizationLayer(descriptor);

    IConnectableLayer* output = net->AddOutputLayer(0);

    input->GetOutputSlot(0).Connect(pooling->GetInputSlot(0));
    pooling->GetOutputSlot(0).Connect(output->GetInputSlot(0));

    input->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 4, 4 }, DataType::Float32));
    pooling->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 4, 4 }, DataType::Float32));

    // optimize the network
    std::vector<BackendId> backends = {Compute::CpuAcc, Compute::CpuRef};
    IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec());

    // Load it into the runtime. It should pass.
    NetworkId netId;
    BOOST_TEST(runtime->LoadNetwork(netId, std::move(optNet)) == Status::Success);
}

BOOST_AUTO_TEST_CASE(NeonGreaterSimpleEndToEndTest)
{
    const std::vector<uint8_t> expectedOutput({ 0, 0, 0, 0,  1, 1, 1, 1,
                                                0, 0, 0, 0,  0, 0, 0, 0 });

    ArithmeticSimpleEndToEnd<armnn::DataType::Float32, armnn::DataType::Boolean>(defaultBackends,
                                                                                 LayerType::Greater,
                                                                                 expectedOutput);
}

BOOST_AUTO_TEST_CASE(NeonGreaterSimpleEndToEndUint8Test)
{
    const std::vector<uint8_t> expectedOutput({ 0, 0, 0, 0,  1, 1, 1, 1,
                                                0, 0, 0, 0,  0, 0, 0, 0 });

    ArithmeticSimpleEndToEnd<armnn::DataType::QuantisedAsymm8, armnn::DataType::Boolean>(defaultBackends,
                                                                                         LayerType::Greater,
                                                                                         expectedOutput);
}

BOOST_AUTO_TEST_CASE(NeonGreaterBroadcastEndToEndTest)
{
    const std::vector<uint8_t> expectedOutput({ 0, 1, 0, 0, 0, 1,
                                                1, 1, 1, 1, 1, 1 });

    ArithmeticBroadcastEndToEnd<armnn::DataType::Float32, armnn::DataType::Boolean>(defaultBackends,
                                                                                    LayerType::Greater,
                                                                                    expectedOutput);
}

BOOST_AUTO_TEST_CASE(NeonGreaterBroadcastEndToEndUint8Test)
{
    const std::vector<uint8_t> expectedOutput({ 0, 1, 0, 0, 0, 1,
                                                1, 1, 1, 1, 1, 1 });

    ArithmeticBroadcastEndToEnd<armnn::DataType::QuantisedAsymm8, armnn::DataType::Boolean>(defaultBackends,
                                                                                            LayerType::Greater,
                                                                                            expectedOutput);
}

BOOST_AUTO_TEST_CASE(NeonConcatEndToEndDim0Test)
{
    ConcatDim0EndToEnd<armnn::DataType::Float32>(defaultBackends);
}

BOOST_AUTO_TEST_CASE(NeonConcatEndToEndDim0Uint8Test)
{
    ConcatDim0EndToEnd<armnn::DataType::QuantisedAsymm8>(defaultBackends);
}

BOOST_AUTO_TEST_CASE(NeonConcatEndToEndDim1Test)
{
    ConcatDim1EndToEnd<armnn::DataType::Float32>(defaultBackends);
}

BOOST_AUTO_TEST_CASE(NeonConcatEndToEndDim1Uint8Test)
{
    ConcatDim1EndToEnd<armnn::DataType::QuantisedAsymm8>(defaultBackends);
}

BOOST_AUTO_TEST_CASE(NeonConcatEndToEndDim3Test)
{
    ConcatDim3EndToEnd<armnn::DataType::Float32>(defaultBackends);
}

BOOST_AUTO_TEST_CASE(NeonConcatEndToEndDim3Uint8Test)
{
    ConcatDim3EndToEnd<armnn::DataType::QuantisedAsymm8>(defaultBackends);
}

BOOST_AUTO_TEST_CASE(NeonSplitDim0EndToEndTest)
{
    SplitterDim0EndToEnd<armnn::DataType::Float32>(defaultBackends);
}

BOOST_AUTO_TEST_CASE(NeonSplitDim1EndToEndTest)
{
    SplitterDim1EndToEnd<armnn::DataType::Float32>(defaultBackends);
}

BOOST_AUTO_TEST_CASE(NeonSplitDim2EndToEndTest)
{
    SplitterDim2EndToEnd<armnn::DataType::Float32>(defaultBackends);
}

BOOST_AUTO_TEST_CASE(NeonSplitDim3EndToEndTest)
{
    SplitterDim3EndToEnd<armnn::DataType::Float32>(defaultBackends);
}

BOOST_AUTO_TEST_CASE(NeonSplitDim0EndToEndUint8Test)
{
    SplitterDim0EndToEnd<armnn::DataType::QuantisedAsymm8>(defaultBackends);
}

BOOST_AUTO_TEST_CASE(NeonSplitDim1EndToEndUint8Test)
{
    SplitterDim1EndToEnd<armnn::DataType::QuantisedAsymm8>(defaultBackends);
}

BOOST_AUTO_TEST_CASE(NeonSplitDim2EndToEndUint8Test)
{
    SplitterDim2EndToEnd<armnn::DataType::QuantisedAsymm8>(defaultBackends);
}

BOOST_AUTO_TEST_CASE(NeonSplitDim3EndToEndUint8Test)
{
    SplitterDim3EndToEnd<armnn::DataType::QuantisedAsymm8>(defaultBackends);
}

BOOST_AUTO_TEST_SUITE_END()