aboutsummaryrefslogtreecommitdiff
path: root/src/backends/cl/test/ClImportTensorHandleTests.cpp
blob: 3d702642aa73fc2a179318a5d14b224f6d6d0e77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
//
// Copyright © 2021 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//

#include <arm_compute/runtime/CL/functions/CLActivationLayer.h>

#include <cl/ClImportTensorHandle.hpp>
#include <cl/ClImportTensorHandleFactory.hpp>
#include <cl/test/ClContextControlFixture.hpp>

#include <doctest/doctest.h>


#include <armnn/IRuntime.hpp>
#include <armnn/INetwork.hpp>

using namespace armnn;

TEST_SUITE("ClImportTensorHandleTests")
{
TEST_CASE_FIXTURE(ClContextControlFixture, "ClMallocImport")
{
    ClImportTensorHandleFactory handleFactory(static_cast<MemorySourceFlags>(MemorySource::Malloc),
                                              static_cast<MemorySourceFlags>(MemorySource::Malloc));

    TensorInfo info({ 1, 24, 16, 3 }, DataType::Float32);
    unsigned int numElements = info.GetNumElements();

    // create TensorHandle for memory import
    auto handle = handleFactory.CreateTensorHandle(info);

    // Get CLtensor
    arm_compute::CLTensor& tensor = PolymorphicDowncast<ClImportTensorHandle*>(handle.get())->GetTensor();

    // Create and configure activation function
    const arm_compute::ActivationLayerInfo act_info(arm_compute::ActivationLayerInfo::ActivationFunction::RELU);
    arm_compute::CLActivationLayer act_func;
    act_func.configure(&tensor, nullptr, act_info);

    // Allocate user memory
    const size_t totalBytes = tensor.info()->total_size();
    const size_t alignment =
        arm_compute::CLKernelLibrary::get().get_device().getInfo<CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE>();
    size_t space = totalBytes + alignment + alignment;
    auto testData = std::make_unique<uint8_t[]>(space);
    void* alignedPtr = testData.get();
    CHECK(std::align(alignment, totalBytes, alignedPtr, space));

    // Import memory
    CHECK(handle->Import(alignedPtr, armnn::MemorySource::Malloc));

    // Input with negative values
    auto* typedPtr = reinterpret_cast<float*>(alignedPtr);
    std::fill_n(typedPtr, numElements, -5.0f);

    // Execute function and sync
    act_func.run();
    arm_compute::CLScheduler::get().sync();

    // Validate result by checking that the output has no negative values
    for(unsigned int i = 0; i < numElements; ++i)
    {
        CHECK(typedPtr[i] == 0);
    }
}

TEST_CASE_FIXTURE(ClContextControlFixture, "ClIncorrectMemorySourceImport")
{
    ClImportTensorHandleFactory handleFactory(static_cast<MemorySourceFlags>(MemorySource::Malloc),
                                              static_cast<MemorySourceFlags>(MemorySource::Malloc));

    TensorInfo info({ 1, 24, 16, 3 }, DataType::Float32);

    // create TensorHandle for memory import
    auto handle = handleFactory.CreateTensorHandle(info);

    // Get CLtensor
    arm_compute::CLTensor& tensor = PolymorphicDowncast<ClImportTensorHandle*>(handle.get())->GetTensor();

    // Allocate user memory
    const size_t totalBytes = tensor.info()->total_size();
    const size_t alignment =
        arm_compute::CLKernelLibrary::get().get_device().getInfo<CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE>();
    size_t space = totalBytes + alignment + alignment;
    auto testData = std::make_unique<uint8_t[]>(space);
    void* alignedPtr = testData.get();
    CHECK(std::align(alignment, totalBytes, alignedPtr, space));

    // Import memory
    CHECK_THROWS_AS(handle->Import(alignedPtr, armnn::MemorySource::Undefined), MemoryImportException);
}

TEST_CASE_FIXTURE(ClContextControlFixture, "ClInvalidMemorySourceImport")
{
    MemorySource invalidMemSource = static_cast<MemorySource>(256);
    ClImportTensorHandleFactory handleFactory(static_cast<MemorySourceFlags>(invalidMemSource),
                                              static_cast<MemorySourceFlags>(invalidMemSource));

    TensorInfo info({ 1, 2, 2, 1 }, DataType::Float32);

    // create TensorHandle for memory import
    auto handle = handleFactory.CreateTensorHandle(info);

    // Allocate user memory
    std::vector<float> inputData
    {
        1.0f, 2.0f, 3.0f, 4.0f
    };

    // Import non-support memory
    CHECK_THROWS_AS(handle->Import(inputData.data(), invalidMemSource), MemoryImportException);
}

TEST_CASE_FIXTURE(ClContextControlFixture, "ClImportEndToEnd")
{
    // Create runtime in which test will run
    IRuntime::CreationOptions options;
    IRuntimePtr runtime(armnn::IRuntime::Create(options));

    // build up the structure of the network
    INetworkPtr net(INetwork::Create());

    IConnectableLayer* input = net->AddInputLayer(0, "Input");

    ActivationDescriptor descriptor;
    descriptor.m_Function = ActivationFunction::ReLu;
    IConnectableLayer* activation = net->AddActivationLayer(descriptor, "Activation");

    IConnectableLayer* output = net->AddOutputLayer(0, "Output");

    input->GetOutputSlot(0).Connect(activation->GetInputSlot(0));
    activation->GetOutputSlot(0).Connect(output->GetInputSlot(0));

    TensorInfo tensorInfo = TensorInfo({ 1, 24, 16, 3 }, DataType::Float32);
    unsigned int numElements = tensorInfo.GetNumElements();
    size_t totalBytes = numElements * sizeof(float);

    input->GetOutputSlot(0).SetTensorInfo(tensorInfo);
    activation->GetOutputSlot(0).SetTensorInfo(tensorInfo);

    // Optimize the network
    OptimizerOptions optOptions;
    optOptions.m_ImportEnabled = true;
    std::vector<armnn::BackendId> backends = {armnn::Compute::GpuAcc};
    IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec(), optOptions);
    CHECK(optNet);

    // Loads it into the runtime.
    NetworkId netId;
    std::string ignoredErrorMessage;
    // Enable Importing
    INetworkProperties networkProperties(false, MemorySource::Malloc, MemorySource::Malloc);
    runtime->LoadNetwork(netId, std::move(optNet), ignoredErrorMessage, networkProperties);

    // Creates structures for input & output
    const size_t alignment =
        arm_compute::CLKernelLibrary::get().get_device().getInfo<CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE>();
    size_t space = totalBytes + alignment + alignment;
    auto inputData = std::make_unique<uint8_t[]>(space);
    void* alignedInputPtr = inputData.get();
    CHECK(std::align(alignment, totalBytes, alignedInputPtr, space));

    // Input with negative values
    auto* intputPtr = reinterpret_cast<float*>(alignedInputPtr);
    std::fill_n(intputPtr, numElements, -5.0f);

    auto outputData = std::make_unique<uint8_t[]>(space);
    void* alignedOutputPtr = outputData.get();
    CHECK(std::align(alignment, totalBytes, alignedOutputPtr, space));
    auto* outputPtr = reinterpret_cast<float*>(alignedOutputPtr);
    std::fill_n(outputPtr, numElements, -10.0f);

    TensorInfo inputTensorInfo = runtime->GetInputTensorInfo(netId, 0);
    inputTensorInfo.SetConstant(true);
    InputTensors inputTensors
    {
        {0,armnn::ConstTensor(inputTensorInfo, alignedInputPtr)},
    };
    OutputTensors outputTensors
    {
        {0,armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), alignedOutputPtr)}
    };

    runtime->GetProfiler(netId)->EnableProfiling(true);

    // Do the inference
    runtime->EnqueueWorkload(netId, inputTensors, outputTensors);

    // Retrieve the Profiler.Print() output to get the workload execution
    ProfilerManager& profilerManager = armnn::ProfilerManager::GetInstance();
    std::stringstream ss;
    profilerManager.GetProfiler()->Print(ss);;
    std::string dump = ss.str();

    // Contains ActivationWorkload
    std::size_t found = dump.find("ActivationWorkload");
    CHECK(found != std::string::npos);

    // Contains SyncMemGeneric
    found = dump.find("SyncMemGeneric");
    CHECK(found != std::string::npos);

    // Does not contain CopyMemGeneric
    found = dump.find("CopyMemGeneric");
    CHECK(found == std::string::npos);

    runtime->UnloadNetwork(netId);

    // Check output is as expected
    // Validate result by checking that the output has no negative values
    auto* outputResult = reinterpret_cast<float*>(alignedOutputPtr);
    CHECK(outputResult);
    for(unsigned int i = 0; i < numElements; ++i)
    {
        CHECK(outputResult[i] >= 0);
    }
}

TEST_CASE_FIXTURE(ClContextControlFixture, "ClCanBeImported")
{
    ClImportTensorHandleFactory handleFactory(static_cast<MemorySourceFlags>(MemorySource::Malloc),
                                              static_cast<MemorySourceFlags>(MemorySource::Malloc));

    TensorInfo info({ 1, 24, 16, 3 }, DataType::Float32);

    // create TensorHandle for memory import
    auto handle = handleFactory.CreateTensorHandle(info);

    // Get CLtensor
    arm_compute::CLTensor& tensor = PolymorphicDowncast<ClImportTensorHandle*>(handle.get())->GetTensor();

    // Allocate user memory
    const size_t totalBytes = tensor.info()->total_size();
    const size_t alignment =
            arm_compute::CLKernelLibrary::get().get_device().getInfo<CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE>();
    size_t space = totalBytes + alignment + alignment;
    auto testData = std::make_unique<uint8_t[]>(space);
    void* alignedPtr = testData.get();
    CHECK(std::align(alignment, totalBytes, alignedPtr, space));

    // Import memory
    CHECK_THROWS_AS(handle->CanBeImported(alignedPtr, armnn::MemorySource::Undefined), MemoryImportException);

}

TEST_CASE("ClCanBeImportedAlignedMemory")
{
    ClImportTensorHandleFactory handleFactory(static_cast<MemorySourceFlags>(MemorySource::Malloc),
                                              static_cast<MemorySourceFlags>(MemorySource::Malloc));

    TensorInfo info({ 1, 1, 1, 1 }, DataType::Float32);

    // create TensorHandle (Memory Managed status is irrelevant)
    auto handle = handleFactory.CreateTensorHandle(info);
    // Get CLtensor
    arm_compute::CLTensor& tensor = PolymorphicDowncast<ClImportTensorHandle*>(handle.get())->GetTensor();

    // Create an aligned buffer
    const size_t totalBytes = tensor.info()->total_size();
    const size_t alignment =
            arm_compute::CLKernelLibrary::get().get_device().getInfo<CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE>();
    size_t space = totalBytes + alignment + alignment;
    auto testData = std::make_unique<uint8_t[]>(space);
    void* alignedPtr = testData.get();
    CHECK(std::align(alignment, totalBytes, alignedPtr, space));

    // Check aligned buffers return true
    CHECK(handle->CanBeImported(alignedPtr, MemorySource::Malloc) == true);

    // Due to the nature of how GPU memory is mapped it is entirely possible for memory which is misaligned on cpu
    // to be successfully import on GPU. As such there is no way to create a misaligned pointer that will always fail.
    // Rather it will succeed on some devices and fail on others. As long as a correctly aligned buffer returns true
    // we can be confident that it will be successfully imported. All other cases will need to be handled by the user.
}

}