aboutsummaryrefslogtreecommitdiff
path: root/src/backends/backendsCommon/test/WorkloadDataValidation.cpp
blob: fed21eb91122773b9718389417d20835892fa62f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//

#include <armnnTestUtils/WorkloadTestUtils.hpp>

#include <armnn/Exceptions.hpp>

#include <armnn/backends/TensorHandle.hpp>
#include <armnn/backends/Workload.hpp>

#include <reference/workloads/RefWorkloads.hpp>
#include <reference/RefWorkloadFactory.hpp>

#include <doctest/doctest.h>

using namespace armnn;

TEST_SUITE("WorkloadInfoValidation")
{
TEST_CASE("BatchNormalizationQueueDescriptor_Validate_DifferentQuantizationData")
{
    TensorShape inputShape { 1, 3, 2, 2 };
    TensorShape outputShape { 1, 3, 2, 2 };

    TensorInfo inputTensorInfo(inputShape, armnn::DataType::QAsymmU8, .1f, 125);
    TensorInfo outputTensorInfo(outputShape, armnn::DataType::QAsymmU8, .2f, 120);

    BatchNormalizationQueueDescriptor invalidData;
    WorkloadInfo                      invalidInfo;

    unsigned int sameShape[] = { 10 };
    TensorInfo sameInfo = armnn::TensorInfo(1, sameShape, armnn::DataType::QAsymmU8);
    ScopedTensorHandle sameTensor(sameInfo);

    AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
    AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);

    invalidData.m_Mean = &sameTensor;
    invalidData.m_Variance = &sameTensor;
    invalidData.m_Beta= &sameTensor;
    invalidData.m_Gamma = &sameTensor;

    CHECK_NOTHROW(RefBatchNormalizationWorkload(invalidData, invalidInfo));
}

TEST_CASE("QueueDescriptor_Validate_WrongNumOfInputsOutputs")
{
    InputQueueDescriptor invalidData;
    WorkloadInfo invalidInfo;
    //Invalid argument exception is expected, because no inputs and no outputs were defined.
    CHECK_THROWS_AS(RefWorkloadFactory().CreateWorkload(LayerType::Input, invalidData, invalidInfo),
                    armnn::InvalidArgumentException);
}

TEST_CASE("RefPooling2dFloat32Workload_Validate_WrongDimTensor")
{
    armnn::TensorInfo inputTensorInfo;
    armnn::TensorInfo outputTensorInfo;

    unsigned int inputShape[]  = {2, 3, 4}; // <- Invalid - input tensor has to be 4D.
    unsigned int outputShape[] = {2, 3, 4, 5};

    outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
    inputTensorInfo  = armnn::TensorInfo(3, inputShape, armnn::DataType::Float32);

    Pooling2dQueueDescriptor invalidData;
    WorkloadInfo           invalidInfo;

    AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
    AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);

    // Invalid argument exception is expected, input tensor has to be 4D.
    CHECK_THROWS_AS(RefPooling2dWorkload(invalidData, invalidInfo), armnn::InvalidArgumentException);
}

TEST_CASE("RefPooling3dFloat32Workload_Validate_WrongDimTensor")
{
    armnn::TensorInfo inputTensorInfo;
    armnn::TensorInfo outputTensorInfo;

    unsigned int inputShape[]  = {2, 3, 4, 5}; // <- Invalid - input tensor has to be 5D.
    unsigned int outputShape[] = {2, 3, 4, 5, 6};

    outputTensorInfo = armnn::TensorInfo(5, outputShape, armnn::DataType::Float32);
    inputTensorInfo  = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);

    Pooling3dQueueDescriptor invalidData;
    WorkloadInfo           invalidInfo;

    AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
    AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);

    // Invalid argument exception is expected, input tensor has to be 5D.
    CHECK_THROWS_AS(RefPooling3dWorkload(invalidData, invalidInfo), armnn::InvalidArgumentException);
}

TEST_CASE("SoftmaxQueueDescriptor_Validate_WrongInputHeight")
{
    unsigned int inputHeight = 1;
    unsigned int inputWidth = 1;
    unsigned int inputChannels = 4;
    unsigned int inputNum = 2;

    unsigned int outputChannels = inputChannels;
    unsigned int outputHeight = inputHeight + 1;    //Makes data invalid - Softmax expects height and width to be 1.
    unsigned int outputWidth = inputWidth;
    unsigned int outputNum = inputNum;

    armnn::TensorInfo inputTensorInfo;
    armnn::TensorInfo outputTensorInfo;

    unsigned int inputShape[] = { inputNum, inputChannels, inputHeight, inputWidth };
    unsigned int outputShape[] = { outputNum, outputChannels, outputHeight, outputWidth };

    inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
    outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);

    SoftmaxQueueDescriptor invalidData;
    WorkloadInfo           invalidInfo;

    AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
    AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);

    //Invalid argument exception is expected, because height != 1.
    CHECK_THROWS_AS(RefSoftmaxWorkload(invalidData, invalidInfo), armnn::InvalidArgumentException);
}

TEST_CASE("FullyConnectedQueueDescriptor_Validate_RequiredDataMissing")
{
    unsigned int inputWidth = 1;
    unsigned int inputHeight = 1;
    unsigned int inputChannels = 5;
    unsigned int inputNum = 2;

    unsigned int outputWidth = 1;
    unsigned int outputHeight = 1;
    unsigned int outputChannels = 3;
    unsigned int outputNum = 2;

    // Define the tensor descriptors.
    armnn::TensorInfo inputTensorInfo;
    armnn::TensorInfo outputTensorInfo;
    armnn::TensorInfo weightsDesc;
    armnn::TensorInfo biasesDesc;

    unsigned int inputShape[] = { inputNum, inputChannels, inputHeight, inputWidth };
    unsigned int outputShape[] = { outputNum, outputChannels, outputHeight, outputWidth };
    unsigned int weightsShape[] = { 1, 1, inputChannels, outputChannels };
    unsigned int biasShape[] = { 1, outputChannels, outputHeight, outputWidth };

    inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
    outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
    weightsDesc = armnn::TensorInfo(4, weightsShape, armnn::DataType::Float32);
    biasesDesc = armnn::TensorInfo(4, biasShape, armnn::DataType::Float32);

    FullyConnectedQueueDescriptor invalidData;
    WorkloadInfo                  invalidInfo;

    ScopedTensorHandle weightTensor(weightsDesc);
    ScopedTensorHandle biasTensor(biasesDesc);

    AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
    AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
    invalidData.m_Weight = &weightTensor;
    invalidData.m_Bias = &biasTensor;
    invalidData.m_Parameters.m_BiasEnabled = true;
    invalidData.m_Parameters.m_TransposeWeightMatrix = false;


    //Invalid argument exception is expected, because not all required fields have been provided.
    //In particular inputsData[0], outputsData[0] and weightsData can not be null.
    CHECK_THROWS_AS(RefFullyConnectedWorkload(invalidData, invalidInfo), armnn::InvalidArgumentException);
}


TEST_CASE("NormalizationQueueDescriptor_Validate_WrongInputHeight")
{
    constexpr unsigned int inputNum = 5;
    constexpr unsigned int inputHeight   = 32;
    constexpr unsigned int inputWidth    = 24;
    constexpr unsigned int inputChannels = 3;

    constexpr unsigned int outputNum = inputNum;
    constexpr unsigned int outputChannels = inputChannels;
    constexpr unsigned int outputHeight = inputHeight + 1; //Makes data invalid - normalization requires.
                                                           //Input and output to have the same dimensions.
    constexpr unsigned int outputWidth  = inputWidth;


    armnn::TensorInfo inputTensorInfo;
    armnn::TensorInfo outputTensorInfo;

    unsigned int inputShape[]  = {inputNum, inputChannels, inputHeight, inputWidth};
    unsigned int outputShape[] = {outputNum, outputChannels, outputHeight, outputWidth};

    inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
    outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);


    armnn::NormalizationAlgorithmMethod normMethod = armnn::NormalizationAlgorithmMethod::LocalBrightness;
    armnn::NormalizationAlgorithmChannel normChannel = armnn::NormalizationAlgorithmChannel::Across;
    float alpha = 1.f;
    float beta = 1.f;
    float kappa = 1.f;
    uint32_t normSize = 5;

    NormalizationQueueDescriptor invalidData;
    WorkloadInfo                 invalidInfo;

    AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
    AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
    invalidData.m_Parameters.m_NormChannelType = normChannel;
    invalidData.m_Parameters.m_NormMethodType  = normMethod;
    invalidData.m_Parameters.m_NormSize        = normSize;
    invalidData.m_Parameters.m_Alpha           = alpha;
    invalidData.m_Parameters.m_Beta            = beta;
    invalidData.m_Parameters.m_K               = kappa;

    //Invalid argument exception is expected, because input height != output height.
    CHECK_THROWS_AS(RefNormalizationWorkload(invalidData, invalidInfo), armnn::InvalidArgumentException);
}

TEST_CASE("SplitterQueueDescriptor_Validate_WrongWindow")
{
    constexpr unsigned int inputNum = 1;
    constexpr unsigned int inputHeight   = 32;
    constexpr unsigned int inputWidth    = 24;
    constexpr unsigned int inputChannels = 3;

    constexpr unsigned int outputNum = inputNum;
    constexpr unsigned int outputChannels = inputChannels;
    constexpr unsigned int outputHeight = 18;
    constexpr unsigned int outputWidth  = inputWidth;


    armnn::TensorInfo inputTensorInfo;
    armnn::TensorInfo outputTensorInfo;

    unsigned int inputShape[]  = {inputNum, inputChannels, inputHeight, inputWidth};
    unsigned int outputShape[] = {outputNum, outputChannels, outputHeight, outputWidth};

    inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
    outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);

    SplitterQueueDescriptor invalidData;
    WorkloadInfo            invalidInfo;

    AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
    AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);

    // Invalid, since it has only 3 dimensions while the input tensor is 4d.
    std::vector<unsigned int> wOrigin = {0, 0, 0};
    armnn::SplitterQueueDescriptor::ViewOrigin window(wOrigin);
    invalidData.m_ViewOrigins.push_back(window);

    INFO("Invalid argument exception is expected, because split window dimensionality does not match input.");
    CHECK_THROWS_AS(RefSplitterWorkload(invalidData, invalidInfo), armnn::InvalidArgumentException);

    // Invalid, since window extends past the boundary of input tensor.
    std::vector<unsigned int> wOrigin3 = {0, 0, 15, 0};
    armnn::SplitterQueueDescriptor::ViewOrigin window3(wOrigin3);
    invalidData.m_ViewOrigins[0] = window3;
    INFO("Invalid argument exception is expected (wOrigin3[2]+ outputHeight > inputHeight");
    CHECK_THROWS_AS(RefSplitterWorkload(invalidData, invalidInfo), armnn::InvalidArgumentException);


    std::vector<unsigned int> wOrigin4 = {0, 0, 0, 0};
    armnn::SplitterQueueDescriptor::ViewOrigin window4(wOrigin4);
    invalidData.m_ViewOrigins[0] = window4;

    std::vector<unsigned int> wOrigin5 = {1, 16, 20, 2};
    armnn::SplitterQueueDescriptor::ViewOrigin window5(wOrigin4);
    invalidData.m_ViewOrigins.push_back(window5);

    INFO("Invalid exception due to number of split windows not matching number of outputs.");
    CHECK_THROWS_AS(RefSplitterWorkload(invalidData, invalidInfo), armnn::InvalidArgumentException);
}


TEST_CASE("ConcatQueueDescriptor_Validate_WrongWindow")
{
    constexpr unsigned int inputNum = 1;
    constexpr unsigned int inputChannels = 3;
    constexpr unsigned int inputHeight   = 32;
    constexpr unsigned int inputWidth    = 24;

    constexpr unsigned int outputNum = 1;
    constexpr unsigned int outputChannels = 3;
    constexpr unsigned int outputHeight = 32;
    constexpr unsigned int outputWidth  = 24;


    armnn::TensorInfo inputTensorInfo;
    armnn::TensorInfo outputTensorInfo;

    unsigned int inputShape[]  = {inputNum, inputChannels, inputHeight, inputWidth};
    unsigned int outputShape[] = {outputNum, outputChannels, outputHeight, outputWidth};

    inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
    outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);

    ConcatQueueDescriptor invalidData;
    WorkloadInfo          invalidInfo;

    AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
    AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);

    // Invalid, since it has only 3 dimensions while the input tensor is 4d.
    std::vector<unsigned int> wOrigin = {0, 0, 0};
    armnn::ConcatQueueDescriptor::ViewOrigin window(wOrigin);
    invalidData.m_ViewOrigins.push_back(window);

    INFO("Invalid argument exception is expected, because merge window dimensionality does not match input.");
    CHECK_THROWS_AS(RefConcatWorkload(invalidData, invalidInfo), armnn::InvalidArgumentException);

    // Invalid, since window extends past the boundary of output tensor.
    std::vector<unsigned int> wOrigin3 = {0, 0, 15, 0};
    armnn::ConcatQueueDescriptor::ViewOrigin window3(wOrigin3);
    invalidData.m_ViewOrigins[0] = window3;
    INFO("Invalid argument exception is expected (wOrigin3[2]+ inputHeight > outputHeight");
    CHECK_THROWS_AS(RefConcatWorkload(invalidData, invalidInfo), armnn::InvalidArgumentException);


    std::vector<unsigned int> wOrigin4 = {0, 0, 0, 0};
    armnn::ConcatQueueDescriptor::ViewOrigin window4(wOrigin4);
    invalidData.m_ViewOrigins[0] = window4;

    std::vector<unsigned int> wOrigin5 = {1, 16, 20, 2};
    armnn::ConcatQueueDescriptor::ViewOrigin window5(wOrigin4);
    invalidData.m_ViewOrigins.push_back(window5);

    INFO("Invalid exception due to number of merge windows not matching number of inputs.");
    CHECK_THROWS_AS(RefConcatWorkload(invalidData, invalidInfo), armnn::InvalidArgumentException);
}

TEST_CASE("AdditionQueueDescriptor_Validate_InputNumbers")
{
    armnn::TensorInfo input1TensorInfo;
    armnn::TensorInfo input2TensorInfo;
    armnn::TensorInfo input3TensorInfo;
    armnn::TensorInfo outputTensorInfo;

    unsigned int shape[]  = {1, 1, 1, 1};

    input1TensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
    input2TensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
    input3TensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
    outputTensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);

    AdditionQueueDescriptor invalidData;
    WorkloadInfo            invalidInfo;

    AddInputToWorkload(invalidData, invalidInfo, input1TensorInfo, nullptr);
    AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);

    // Too few inputs.
    CHECK_THROWS_AS(RefAdditionWorkload<>(invalidData, invalidInfo), armnn::InvalidArgumentException);

    AddInputToWorkload(invalidData, invalidInfo, input2TensorInfo, nullptr);

    // Correct.
    CHECK_NOTHROW(RefAdditionWorkload<>(invalidData, invalidInfo));

    AddInputToWorkload(invalidData, invalidInfo, input3TensorInfo, nullptr);

    // Too many inputs.
    CHECK_THROWS_AS(RefAdditionWorkload<>(invalidData, invalidInfo), armnn::InvalidArgumentException);
}

TEST_CASE("AdditionQueueDescriptor_Validate_InputShapes")
{
    armnn::TensorInfo input1TensorInfo;
    armnn::TensorInfo input2TensorInfo;
    armnn::TensorInfo outputTensorInfo;

    unsigned int shape1[] = {1, 1, 2, 1};
    unsigned int shape2[] = {1, 1, 3, 2};

    // Incompatible shapes even with broadcasting.
    {
        input1TensorInfo = armnn::TensorInfo(4, shape1, armnn::DataType::Float32);
        input2TensorInfo = armnn::TensorInfo(4, shape2, armnn::DataType::Float32);
        outputTensorInfo = armnn::TensorInfo(4, shape1, armnn::DataType::Float32);

        AdditionQueueDescriptor invalidData;
        WorkloadInfo            invalidInfo;

        AddInputToWorkload(invalidData, invalidInfo, input1TensorInfo, nullptr);
        AddInputToWorkload(invalidData, invalidInfo, input2TensorInfo, nullptr);
        AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);

        CHECK_THROWS_AS(RefAdditionWorkload<>(invalidData, invalidInfo), armnn::InvalidArgumentException);
    }

    // Output size not compatible with input sizes.
    {
        input1TensorInfo = armnn::TensorInfo(4, shape1, armnn::DataType::Float32);
        input2TensorInfo = armnn::TensorInfo(4, shape1, armnn::DataType::Float32);
        outputTensorInfo = armnn::TensorInfo(4, shape2, armnn::DataType::Float32);

        AdditionQueueDescriptor invalidData;
        WorkloadInfo            invalidInfo;

        AddInputToWorkload(invalidData, invalidInfo, input1TensorInfo, nullptr);
        AddInputToWorkload(invalidData, invalidInfo, input2TensorInfo, nullptr);
        AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);

        // Output differs.
        CHECK_THROWS_AS(RefAdditionWorkload<>(invalidData, invalidInfo), armnn::InvalidArgumentException);
    }
}

TEST_CASE("MultiplicationQueueDescriptor_Validate_InputTensorDimensionMismatch")
{
    armnn::TensorInfo input0TensorInfo;
    armnn::TensorInfo input1TensorInfo;
    armnn::TensorInfo outputTensorInfo;

    constexpr unsigned int input0Shape[] = { 2, 2, 4, 4 };
    constexpr std::size_t dimensionCount = std::extent<decltype(input0Shape)>::value;

    // Checks dimension consistency for input tensors.
    for (unsigned int dimIndex = 0; dimIndex < dimensionCount; ++dimIndex)
    {
        unsigned int input1Shape[dimensionCount];
        for (unsigned int i = 0; i < dimensionCount; ++i)
        {
            input1Shape[i] = input0Shape[i];
        }

        ++input1Shape[dimIndex];

        input0TensorInfo = armnn::TensorInfo(dimensionCount, input0Shape, armnn::DataType::Float32);
        input1TensorInfo = armnn::TensorInfo(dimensionCount, input1Shape, armnn::DataType::Float32);
        outputTensorInfo = armnn::TensorInfo(dimensionCount, input0Shape, armnn::DataType::Float32);

        MultiplicationQueueDescriptor invalidData;
        WorkloadInfo                  invalidInfo;

        AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
        AddInputToWorkload(invalidData, invalidInfo, input0TensorInfo, nullptr);
        AddInputToWorkload(invalidData, invalidInfo, input1TensorInfo, nullptr);

        CHECK_THROWS_AS(RefMultiplicationWorkload<>(invalidData, invalidInfo), armnn::InvalidArgumentException);
    }

    // Checks dimension consistency for input and output tensors.
    for (unsigned int dimIndex = 0; dimIndex < dimensionCount; ++dimIndex)
    {
        unsigned int outputShape[dimensionCount];
        for (unsigned int i = 0; i < dimensionCount; ++i)
        {
            outputShape[i] = input0Shape[i];
        }

        ++outputShape[dimIndex];

        input0TensorInfo = armnn::TensorInfo(dimensionCount, input0Shape, armnn::DataType::Float32);
        input1TensorInfo = armnn::TensorInfo(dimensionCount, input0Shape, armnn::DataType::Float32);
        outputTensorInfo = armnn::TensorInfo(dimensionCount, outputShape, armnn::DataType::Float32);

        MultiplicationQueueDescriptor invalidData;
        WorkloadInfo                  invalidInfo;

        AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
        AddInputToWorkload(invalidData, invalidInfo, input0TensorInfo, nullptr);
        AddInputToWorkload(invalidData, invalidInfo, input1TensorInfo, nullptr);

        CHECK_THROWS_AS(RefMultiplicationWorkload<>(invalidData, invalidInfo), armnn::InvalidArgumentException);
    }
}

TEST_CASE("ReshapeQueueDescriptor_Validate_MismatchingNumElements")
{
    armnn::TensorInfo inputTensorInfo;
    armnn::TensorInfo outputTensorInfo;

    // The input and output shapes should have the same number of elements, but these don't.
    unsigned int inputShape[] = { 1, 1, 2, 3 };
    unsigned int outputShape[] = { 1, 1, 1, 2 };

    inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
    outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);

    ReshapeQueueDescriptor invalidData;
    WorkloadInfo           invalidInfo;

    AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
    AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);

    // InvalidArgumentException is expected, because the number of elements don't match.
    CHECK_THROWS_AS(RefReshapeWorkload(invalidData, invalidInfo), armnn::InvalidArgumentException);
}


TEST_CASE("LstmQueueDescriptor_Validate")
{
    armnn::DataType dataType = armnn::DataType::Float32;

    float qScale = 0.0f;
    int32_t qOffset = 0;

    unsigned int batchSize = 2;
    unsigned int outputSize = 3;
    unsigned int inputSize = 5;
    unsigned numUnits = 4;

    armnn::TensorInfo inputTensorInfo({batchSize , inputSize}, dataType,  qScale, qOffset );
    armnn::TensorInfo outputStateInTensorInfo({batchSize , outputSize}, dataType, qScale, qOffset);
    armnn::TensorInfo cellStateInTensorInfo({batchSize , numUnits}, dataType, qScale, qOffset);

    // Scratch buffer size with CIFG [batchSize, numUnits * 4]
    armnn::TensorInfo scratchBufferTensorInfo({batchSize, numUnits * 4}, dataType, qScale, qOffset);
    armnn::TensorInfo cellStateOutTensorInfo({batchSize, numUnits}, dataType, qScale, qOffset);
    armnn::TensorInfo outputStateOutTensorInfo({batchSize, outputSize}, dataType, qScale, qOffset);
    armnn::TensorInfo outputTensorInfo({batchSize, outputSize}, dataType, qScale, qOffset);

    armnn::TensorInfo tensorInfo3({outputSize}, dataType, qScale, qOffset);
    armnn::TensorInfo tensorInfo4({numUnits}, dataType, qScale, qOffset);
    armnn::TensorInfo tensorInfo4x5({numUnits, inputSize}, dataType, qScale, qOffset);
    armnn::TensorInfo tensorInfo4x3({numUnits, outputSize}, dataType, qScale, qOffset);
    armnn::TensorInfo tensorInfo3x4({outputSize, numUnits}, dataType, qScale, qOffset);

    LstmQueueDescriptor data;
    WorkloadInfo        info;

    AddInputToWorkload(data, info, inputTensorInfo, nullptr);
    AddInputToWorkload(data, info, outputStateInTensorInfo, nullptr);
    AddInputToWorkload(data, info, cellStateInTensorInfo, nullptr);

    AddOutputToWorkload(data, info, scratchBufferTensorInfo, nullptr);
    AddOutputToWorkload(data, info, outputStateOutTensorInfo, nullptr);
    AddOutputToWorkload(data, info, cellStateOutTensorInfo, nullptr);
    // AddOutputToWorkload(data, info, outputTensorInfo, nullptr); is left out

    armnn::ScopedTensorHandle inputToInputWeightsTensor(tensorInfo4x5);
    armnn::ScopedTensorHandle inputToForgetWeightsTensor(tensorInfo4x5);
    armnn::ScopedTensorHandle inputToCellWeightsTensor(tensorInfo4x5);
    armnn::ScopedTensorHandle inputToOutputWeightsTensor(tensorInfo4x5);
    armnn::ScopedTensorHandle recurrentToForgetWeightsTensor(tensorInfo4x3);
    armnn::ScopedTensorHandle recurrentToInputWeightsTensor(tensorInfo4x3);
    armnn::ScopedTensorHandle recurrentToCellWeightsTensor(tensorInfo4x3);
    armnn::ScopedTensorHandle recurrentToOutputWeightsTensor(tensorInfo4x3);
    armnn::ScopedTensorHandle cellToInputWeightsTensor(tensorInfo4);
    armnn::ScopedTensorHandle inputGateBiasTensor(tensorInfo4);
    armnn::ScopedTensorHandle forgetGateBiasTensor(tensorInfo4);
    armnn::ScopedTensorHandle cellBiasTensor(tensorInfo4);
    armnn::ScopedTensorHandle outputGateBiasTensor(tensorInfo4);
    armnn::ScopedTensorHandle cellToForgetWeightsTensor(tensorInfo4);
    armnn::ScopedTensorHandle cellToOutputWeightsTensor(tensorInfo4);
    armnn::ScopedTensorHandle projectionWeightsTensor(tensorInfo3x4);
    armnn::ScopedTensorHandle projectionBiasTensor(tensorInfo3);
    armnn::ScopedTensorHandle inputLayerNormWeightsTensor(tensorInfo4);
    armnn::ScopedTensorHandle forgetLayerNormWeightsTensor(tensorInfo4);
    armnn::ScopedTensorHandle cellLayerNormWeightsTensor(tensorInfo4);
    armnn::ScopedTensorHandle outputLayerNormWeightsTensor(tensorInfo4);

    data.m_InputToInputWeights = &inputToInputWeightsTensor;
    data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
    data.m_InputToCellWeights = &inputToCellWeightsTensor;
    data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
    data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
    data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
    data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
    data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
    data.m_CellToInputWeights = &cellToInputWeightsTensor;
    data.m_InputGateBias = &inputGateBiasTensor;
    data.m_ForgetGateBias = &forgetGateBiasTensor;
    data.m_CellBias = &cellBiasTensor;
    data.m_OutputGateBias = &outputGateBiasTensor;
    data.m_CellToForgetWeights = &cellToForgetWeightsTensor;
    data.m_CellToOutputWeights = &cellToOutputWeightsTensor;
    data.m_ProjectionWeights = &projectionWeightsTensor;
    data.m_ProjectionBias = &projectionBiasTensor;

    data.m_InputLayerNormWeights = &inputLayerNormWeightsTensor;
    data.m_ForgetLayerNormWeights = &forgetLayerNormWeightsTensor;
    data.m_CellLayerNormWeights = &cellLayerNormWeightsTensor;
    data.m_OutputLayerNormWeights = &outputLayerNormWeightsTensor;

    // Flags to set test configuration
    data.m_Parameters.m_ActivationFunc = 4;
    data.m_Parameters.m_CifgEnabled = false;
    data.m_Parameters.m_PeepholeEnabled = true;
    data.m_Parameters.m_ProjectionEnabled = true;
    data.m_Parameters.m_LayerNormEnabled = true;

    // check wrong number of outputs
    CHECK_THROWS_AS(data.Validate(info), armnn::InvalidArgumentException);
    AddOutputToWorkload(data, info, outputTensorInfo, nullptr);

    // check wrong cifg parameter configuration
    data.m_Parameters.m_CifgEnabled = true;
    armnn::TensorInfo scratchBufferTensorInfo2({batchSize, numUnits * 3}, dataType, qScale, qOffset);
    SetWorkloadOutput(data, info, 0, scratchBufferTensorInfo2, nullptr);
    CHECK_THROWS_AS(data.Validate(info), armnn::InvalidArgumentException);
    data.m_Parameters.m_CifgEnabled = false;
    SetWorkloadOutput(data, info, 0, scratchBufferTensorInfo, nullptr);

    // check wrong inputGateBias configuration
    data.m_InputGateBias = nullptr;
    CHECK_THROWS_AS(data.Validate(info), armnn::InvalidArgumentException);
    data.m_InputGateBias = &inputGateBiasTensor;

    // check inconsistant projection parameters
    data.m_Parameters.m_ProjectionEnabled = false;
    CHECK_THROWS_AS(data.Validate(info), armnn::InvalidArgumentException);
    data.m_Parameters.m_ProjectionEnabled = true;
    data.m_ProjectionWeights = nullptr;
    CHECK_THROWS_AS(data.Validate(info), armnn::InvalidArgumentException);
    data.m_ProjectionWeights = &projectionWeightsTensor;

    // check missing input layer normalisation weights
    data.m_InputLayerNormWeights = nullptr;
    CHECK_THROWS_AS(data.Validate(info), armnn::InvalidArgumentException);
    data.m_InputLayerNormWeights = &inputLayerNormWeightsTensor;

    // layer norm disabled but normalisation weights are present
    data.m_Parameters.m_LayerNormEnabled = false;
    CHECK_THROWS_AS(data.Validate(info), armnn::InvalidArgumentException);
    data.m_Parameters.m_LayerNormEnabled = true;

    // check invalid outputTensor shape
    armnn::TensorInfo incorrectOutputTensorInfo({batchSize, outputSize + 1}, dataType, qScale, qOffset);
    SetWorkloadOutput(data, info, 3, incorrectOutputTensorInfo, nullptr);
    CHECK_THROWS_AS(data.Validate(info), armnn::InvalidArgumentException);
    SetWorkloadOutput(data, info, 3, outputTensorInfo, nullptr);

    // check invalid cell clipping parameters
    data.m_Parameters.m_ClippingThresCell = -1.0f;
    CHECK_THROWS_AS(data.Validate(info), armnn::InvalidArgumentException);
    data.m_Parameters.m_ClippingThresCell = 0.0f;

    // check invalid projection clipping parameters
    data.m_Parameters.m_ClippingThresProj = -1.0f;
    CHECK_THROWS_AS(data.Validate(info), armnn::InvalidArgumentException);
    data.m_Parameters.m_ClippingThresProj = 0.0f;

    // check correct configuration
    CHECK_NOTHROW(data.Validate(info));
}

TEST_CASE("BiasPerAxisQuantization_ValidateCorrectValues")
{
    constexpr unsigned int nInput  = 1u;
    constexpr unsigned int cInput  = 3u;
    constexpr unsigned int hInput  = 3u;
    constexpr unsigned int wInput  = 3u;

    constexpr unsigned int nOutput = nInput;
    constexpr unsigned int cOutput = cInput;
    constexpr unsigned int hOutput = 1u;
    constexpr unsigned int wOutput = 1u;

    const TensorShape inputShape { nInput,  cInput,  hInput,  wInput  };
    const TensorShape outputShape{ nOutput, cOutput, hOutput, wOutput };
    const TensorShape weightShape{ cOutput, cInput,  hInput,  wInput  };
    const TensorShape biasShape  { cOutput                            };

    constexpr DataType inputType  = DataType::QAsymmU8;
    constexpr DataType weightType = DataType::QSymmS8;
    constexpr DataType biasType   = DataType::Signed32;

    constexpr float perTensorScale = 1.5f;
    const TensorInfo inputInfo (inputShape,  inputType, perTensorScale);
    const TensorInfo outputInfo(outputShape, inputType, perTensorScale);

    const std::vector<float> weightPerAxisScales = { 2.50f, 3.50f };
    const TensorInfo weightInfo(weightShape, weightType, weightPerAxisScales, 0);

    Convolution2dQueueDescriptor queueDescriptor;
    queueDescriptor.m_Parameters.m_BiasEnabled = true;

    WorkloadInfo workloadInfo;
    AddInputToWorkload(queueDescriptor, workloadInfo, inputInfo, nullptr);
    AddInputToWorkload(queueDescriptor, workloadInfo, weightInfo, nullptr);
    AddOutputToWorkload(queueDescriptor, workloadInfo, outputInfo, nullptr);

    ScopedTensorHandle weightTensor(weightInfo);
    queueDescriptor.m_Weight = &weightTensor;

    // Test 1: correct per-axis quantization values
    const std::vector<float> biasPerAxisScales1  = { 3.75f, 5.25f };
    const TensorInfo biasInfo1(biasShape, biasType, biasPerAxisScales1, 0);

    ScopedTensorHandle biasHandle1(biasInfo1);
    queueDescriptor.m_Bias = &biasHandle1;

    AddInputToWorkload(queueDescriptor, workloadInfo, biasInfo1, nullptr);

    CHECK_NOTHROW(queueDescriptor.Validate(workloadInfo));
}

TEST_CASE("BiasPerAxisQuantization_ValidateIncorrectValues")
{
    constexpr unsigned int nInput  = 1u;
    constexpr unsigned int cInput  = 3u;
    constexpr unsigned int hInput  = 3u;
    constexpr unsigned int wInput  = 3u;

    constexpr unsigned int nOutput = nInput;
    constexpr unsigned int cOutput = cInput;
    constexpr unsigned int hOutput = 1u;
    constexpr unsigned int wOutput = 1u;

    const TensorShape inputShape { nInput,  cInput,  hInput,  wInput  };
    const TensorShape outputShape{ nOutput, cOutput, hOutput, wOutput };
    const TensorShape weightShape{ cOutput, cInput,  hInput,  wInput  };
    const TensorShape biasShape  { cOutput                            };

    constexpr DataType inputType  = DataType::QAsymmU8;
    constexpr DataType weightType = DataType::QSymmS8;
    constexpr DataType biasType   = DataType::Signed32;

    constexpr float perTensorScale = 1.5f;
    const TensorInfo inputInfo (inputShape,  inputType, perTensorScale);
    const TensorInfo outputInfo(outputShape, inputType, perTensorScale);

    const std::vector<float> weightPerAxisScales = { 2.50f, 3.50f };
    const TensorInfo weightInfo(weightShape, weightType, weightPerAxisScales, 0);

    Convolution2dQueueDescriptor queueDescriptor;
    queueDescriptor.m_Parameters.m_BiasEnabled = true;

    WorkloadInfo workloadInfo;
    AddInputToWorkload(queueDescriptor, workloadInfo, inputInfo, nullptr);
    AddInputToWorkload(queueDescriptor, workloadInfo, weightInfo, nullptr);
    AddOutputToWorkload(queueDescriptor, workloadInfo, outputInfo, nullptr);

    ScopedTensorHandle weightTensor(weightInfo);
    queueDescriptor.m_Weight = &weightTensor;

   // Test 2: wrong per-axis quantization values
    const std::vector<float> biasPerAxisScales2 = { 4.00f, 5.00f };
    const TensorInfo biasInfo2(biasShape, biasType, biasPerAxisScales2, 0);

    ScopedTensorHandle biasHandle2(biasInfo2);
    queueDescriptor.m_Bias = &biasHandle2;

    AddInputToWorkload(queueDescriptor, workloadInfo, biasInfo2, nullptr);

    CHECK_NOTHROW(queueDescriptor.Validate(workloadInfo));

}

TEST_CASE("BiasPerAxisQuantization_ValidateInvalidArgumentException")
{
    constexpr unsigned int nInput  = 1u;
    constexpr unsigned int cInput  = 3u;
    constexpr unsigned int hInput  = 3u;
    constexpr unsigned int wInput  = 3u;

    constexpr unsigned int nOutput = nInput;
    constexpr unsigned int cOutput = cInput;
    constexpr unsigned int hOutput = 1u;
    constexpr unsigned int wOutput = 1u;

    const TensorShape inputShape { nInput,  cInput,  hInput,  wInput  };
    const TensorShape outputShape{ nOutput, cOutput, hOutput, wOutput };
    const TensorShape weightShape{ cOutput, cInput,  hInput,  wInput  };
    const TensorShape biasShape  { cOutput                            };

    constexpr DataType inputType  = DataType::QAsymmU8;
    constexpr DataType weightType = DataType::QSymmS8;
    constexpr DataType biasType   = DataType::Signed32;

    constexpr float perTensorScale = 1.5f;
    const TensorInfo inputInfo (inputShape,  inputType, perTensorScale);
    const TensorInfo outputInfo(outputShape, inputType, perTensorScale);

    const std::vector<float> weightPerAxisScales = { 2.50f, 3.50f };
    const TensorInfo weightInfo(weightShape, weightType, weightPerAxisScales, 0);

    Convolution2dQueueDescriptor queueDescriptor;
    queueDescriptor.m_Parameters.m_BiasEnabled = true;

    WorkloadInfo workloadInfo;
    AddInputToWorkload(queueDescriptor, workloadInfo, inputInfo, nullptr);
    AddInputToWorkload(queueDescriptor, workloadInfo, weightInfo, nullptr);
    AddOutputToWorkload(queueDescriptor, workloadInfo, outputInfo, nullptr);

    ScopedTensorHandle weightTensor(weightInfo);
    queueDescriptor.m_Weight = &weightTensor;

    // Test 3: mismatched number of quantization scales
    const std::vector<float> biasPerAxisScales3 = { 3.75f, 5.25f, 5.25f };
    const TensorInfo biasInfo3(biasShape, biasType, biasPerAxisScales3, 0);

    ScopedTensorHandle biasHandle3(biasInfo3);
    queueDescriptor.m_Bias = &biasHandle3;

    AddInputToWorkload(queueDescriptor, workloadInfo, biasInfo3, nullptr);

    CHECK_THROWS_AS(queueDescriptor.Validate(workloadInfo), InvalidArgumentException);
}


}