aboutsummaryrefslogtreecommitdiff
path: root/src/backends/backendsCommon/test/EndToEndTestImpl.hpp
blob: d17b61e8fb56f18905d72d3be99af727789c701d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once

#include "TypeUtils.hpp"

#include <armnn/ArmNN.hpp>
#include <armnn/INetwork.hpp>

#include <backendsCommon/test/QuantizeHelper.hpp>

#include <boost/test/unit_test.hpp>

#include <vector>

namespace
{

using namespace armnn;

template<typename T>
bool ConstantUsageTest(const std::vector<BackendId>& computeDevice,
                       const TensorInfo& commonTensorInfo,
                       const std::vector<T>& inputData,
                       const std::vector<T>& constantData,
                       const std::vector<T>& expectedOutputData)
{
    // Create runtime in which test will run
    IRuntime::CreationOptions options;
    IRuntimePtr runtime(IRuntime::Create(options));

    // Builds up the structure of the network.
    INetworkPtr net(INetwork::Create());

    IConnectableLayer* input = net->AddInputLayer(0);
    IConnectableLayer* constant = net->AddConstantLayer(ConstTensor(commonTensorInfo, constantData));
    IConnectableLayer* add = net->AddAdditionLayer();
    IConnectableLayer* output = net->AddOutputLayer(0);

    input->GetOutputSlot(0).Connect(add->GetInputSlot(0));
    constant->GetOutputSlot(0).Connect(add->GetInputSlot(1));
    add->GetOutputSlot(0).Connect(output->GetInputSlot(0));

    // Sets the tensors in the network.
    input->GetOutputSlot(0).SetTensorInfo(commonTensorInfo);
    constant->GetOutputSlot(0).SetTensorInfo(commonTensorInfo);
    add->GetOutputSlot(0).SetTensorInfo(commonTensorInfo);

    // optimize the network
    IOptimizedNetworkPtr optNet = Optimize(*net, computeDevice, runtime->GetDeviceSpec());

    // Loads it into the runtime.
    NetworkId netId;
    runtime->LoadNetwork(netId, std::move(optNet));

    // Creates structures for input & output.
    std::vector<T> outputData(inputData.size());

    InputTensors inputTensors
    {
        {0, ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputData.data())}
    };
    OutputTensors outputTensors
    {
        {0, Tensor(runtime->GetOutputTensorInfo(netId, 0), outputData.data())}
    };

    // Does the inference.
    runtime->EnqueueWorkload(netId, inputTensors, outputTensors);

    // Checks the results.
    return outputData == expectedOutputData;
}

inline bool ConstantUsageFloat32Test(const std::vector<BackendId>& backends)
{
    const TensorInfo commonTensorInfo({ 2, 3 }, DataType::Float32);

    return ConstantUsageTest(backends,
        commonTensorInfo,
        std::vector<float>{ 1.f, 2.f, 3.f, 4.f, 5.f, 6.f }, // Input.
        std::vector<float>{ 6.f, 5.f, 4.f, 3.f, 2.f, 1.f }, // Const input.
        std::vector<float>{ 7.f, 7.f, 7.f, 7.f, 7.f, 7.f }  // Expected output.
    );
}

inline bool ConstantUsageUint8Test(const std::vector<BackendId>& backends)
{
    TensorInfo commonTensorInfo({ 2, 3 }, DataType::QuantisedAsymm8);

    const float scale = 0.023529f;
    const int8_t offset = -43;

    commonTensorInfo.SetQuantizationScale(scale);
    commonTensorInfo.SetQuantizationOffset(offset);

    return ConstantUsageTest(backends,
        commonTensorInfo,
        QuantizedVector<uint8_t>(scale, offset, { 1.f, 2.f, 3.f, 4.f, 5.f, 6.f }), // Input.
        QuantizedVector<uint8_t>(scale, offset, { 6.f, 5.f, 4.f, 3.f, 2.f, 1.f }), // Const input.
        QuantizedVector<uint8_t>(scale, offset, { 7.f, 7.f, 7.f, 7.f, 7.f, 7.f })  // Expected output.
    );
}

template<typename T>
bool CompareBoolean(T a, T b)
{
    return (a == 0 && b == 0) ||(a != 0 && b != 0);
};

template<DataType ArmnnIType, DataType ArmnnOType,
         typename TInput = ResolveType<ArmnnIType>, typename TOutput = ResolveType<ArmnnOType>>
void EndToEndLayerTestImpl(INetworkPtr network,
                           const std::map<int, std::vector<TInput>>& inputTensorData,
                           const std::map<int, std::vector<TOutput>>& expectedOutputData,
                           std::vector<BackendId> backends)
{
    // Create runtime in which test will run
    IRuntime::CreationOptions options;
    IRuntimePtr runtime(IRuntime::Create(options));

    // optimize the network
    IOptimizedNetworkPtr optNet = Optimize(*network, backends, runtime->GetDeviceSpec());

    // Loads it into the runtime.
    NetworkId netId;
    runtime->LoadNetwork(netId, std::move(optNet));

    InputTensors inputTensors;
    inputTensors.reserve(inputTensorData.size());
    for (auto&& it : inputTensorData)
    {
        inputTensors.push_back({it.first,
                                ConstTensor(runtime->GetInputTensorInfo(netId, it.first), it.second.data())});
    }
    OutputTensors outputTensors;
    outputTensors.reserve(expectedOutputData.size());
    std::map<int, std::vector<TOutput>> outputStorage;
    for (auto&& it : expectedOutputData)
    {
        std::vector<TOutput> out(it.second.size());
        outputStorage.emplace(it.first, out);
        outputTensors.push_back({it.first,
                                 Tensor(runtime->GetOutputTensorInfo(netId, it.first),
                                               outputStorage.at(it.first).data())});
    }

    // Does the inference.
    runtime->EnqueueWorkload(netId, inputTensors, outputTensors);

    // Checks the results.
    for (auto&& it : expectedOutputData)
    {
        std::vector<TOutput> out = outputStorage.at(it.first);
        if (ArmnnOType == DataType::Boolean)
        {
            for (unsigned int i = 0; i < out.size(); ++i)
            {
                BOOST_TEST(CompareBoolean<TOutput>(it.second[i], out[i]));
            }
        }
        else
        {
            BOOST_TEST(it.second == out);
        }
    }
}

} // anonymous namespace