aboutsummaryrefslogtreecommitdiff
path: root/src/backends/aclCommon/ArmComputeTensorUtils.cpp
blob: 1960332ccf6d270e088471257ae5011a25c8bc1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
//
// Copyright © 2017 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include <aclCommon/ArmComputeTensorUtils.hpp>
#include <aclCommon/ArmComputeUtils.hpp>

#include "armnn/Exceptions.hpp"
#include <armnn/Descriptors.hpp>

#include <fmt/format.h>

namespace armnn
{
namespace armcomputetensorutils
{

arm_compute::DataType GetArmComputeDataType(armnn::DataType dataType, bool multiScales)
{
    switch(dataType)
    {
        case armnn::DataType::BFloat16:
            return arm_compute::DataType::BFLOAT16;
        case armnn::DataType::Boolean:
            return arm_compute::DataType::U8;
        case armnn::DataType::Float16:
            return arm_compute::DataType::F16;
        case armnn::DataType::Float32:
            return arm_compute::DataType::F32;
        case armnn::DataType::QAsymmS8:
            return arm_compute::DataType::QASYMM8_SIGNED;
        case armnn::DataType::QAsymmU8:
            return arm_compute::DataType::QASYMM8;
        case armnn::DataType::QSymmS16:
            return arm_compute::DataType::QSYMM16;
        case armnn::DataType::Signed64:
            return arm_compute::DataType::S64;
        case armnn::DataType::QSymmS8:
        {
            return multiScales ? arm_compute::DataType::QSYMM8_PER_CHANNEL : arm_compute::DataType::QSYMM8;
        }
        case armnn::DataType::Signed32:
            return arm_compute::DataType::S32;
        default:
            ARMNN_ASSERT_MSG(false, "Unknown data type");
            return arm_compute::DataType::UNKNOWN;
    }
}

armnn::DataType GetArmNNDataType(arm_compute::DataType dataType)
{
    switch(dataType)
    {
        case arm_compute::DataType::BFLOAT16:
            return armnn::DataType::BFloat16;
        case arm_compute::DataType::U8:
            return armnn::DataType::Boolean;
        case arm_compute::DataType::F16:
            return armnn::DataType::Float16;
        case arm_compute::DataType::F32:
            return armnn::DataType::Float32;
        case arm_compute::DataType::QASYMM8_SIGNED:
            return armnn::DataType::QAsymmS8;
        case arm_compute::DataType::QASYMM8:
            return armnn::DataType::QAsymmU8;
        case arm_compute::DataType::QSYMM16:
            return armnn::DataType::QSymmS16;
        case arm_compute::DataType::S64:
            return armnn::DataType::Signed64;
        case arm_compute::DataType::QSYMM8_PER_CHANNEL:
            return armnn::DataType::QSymmS8;
        case arm_compute::DataType::QSYMM8:
            return armnn::DataType::QSymmS8;
        case arm_compute::DataType::S32:
            return armnn::DataType::Signed32;
        default:
            ARMNN_ASSERT_MSG(false, "Unknown data type");
            return armnn::DataType::Float32;
    }
}

arm_compute::Coordinates BuildArmComputeReductionCoordinates(size_t inputDimensions,
                                                             unsigned int originalInputRank,
                                                             const std::vector<unsigned int>& armnnAxes)
{
    arm_compute::Coordinates outAclCoords;

    if (armnnAxes.empty())
    {
        // If no reduction axes were provided, then the input must be reduced along all dimensions.
        // Since Compute Library does not accept an empty vector as the reduction dimensions, we then
        // manually create a vector including all the input dimensions (in reversed order) as:
        //
        // { inputDimensions - 1, inputDimensions - 2, ..., 1, 0 }
        //
        outAclCoords.set_num_dimensions(inputDimensions);
        std::generate(outAclCoords.begin(), outAclCoords.end(), [d = inputDimensions - 1] () mutable { return d--; });
    }
    else
    {
        // Create a vector of reduction dimensions (in reversed order) with the given reduction axes.
        //
        // Adjust the given reduction axes according to the original rank of the input tensor (before ACL applied any
        // dimension correction).
        // For example, if the input tensor originally had 4 dimensions, and one of the reduction axes was 2, then the
        // new value for that reduction axis should be 1.
        //
        // Example:
        // ArmNN input shape = { 1, 1, 3, 2 } -> ACL input shape = { 2, 3 }
        // ArmNN reduction axis = { 2 }       -> ACL reduction axis = { 1 }
        // ArmNN reduction axis = { 3 }       -> ACL reduction axis = { 0 }
        //
        // The transformation: ACL reduction axis index = original rank - ArmNN reduction axis index - 1
        //
        outAclCoords.set_num_dimensions(armnnAxes.size());
        std::transform(armnnAxes.begin(), armnnAxes.end(),
                       outAclCoords.begin(),
                       [originalInputRank](unsigned int i){ return originalInputRank - i - 1; });
    }

    return outAclCoords;
}

arm_compute::TensorShape BuildArmComputeTensorShape(const armnn::TensorShape& tensorShape)
{
    arm_compute::TensorShape shape;

    // armnn tensors are (batch, channels, height, width).
    // arm_compute tensors are (width, height, channels, batch).
    for (unsigned int i = 0; i < tensorShape.GetNumDimensions(); i++)
    {
        // Note that our dimensions are stored in the opposite order to ACL's.
        shape.set(tensorShape.GetNumDimensions() - i - 1, tensorShape[i], false);

        // TensorShape::set() flattens leading ones, so that batch size 1 cannot happen.
        // arm_compute tensors expect this.
    }

    // prevent arm_compute issue where tensor is flattened to nothing
    if (shape.num_dimensions() == 0)
    {
        shape.set_num_dimensions(1);
    }

    return shape;
}

// Utility function used to build a TensorInfo object, that can be used to initialise
// ARM Compute Tensor and CLTensor allocators.
arm_compute::TensorInfo BuildArmComputeTensorInfo(const armnn::TensorInfo& tensorInfo)
{
    bool multiScales = tensorInfo.HasMultipleQuantizationScales();
    const arm_compute::TensorShape aclTensorShape = BuildArmComputeTensorShape(tensorInfo.GetShape());
    const arm_compute::DataType aclDataType       = GetArmComputeDataType(tensorInfo.GetDataType(), multiScales);

    const arm_compute::QuantizationInfo aclQuantizationInfo = multiScales ?
        arm_compute::QuantizationInfo(tensorInfo.GetQuantizationScales()) :
        arm_compute::QuantizationInfo(tensorInfo.GetQuantizationScale(), tensorInfo.GetQuantizationOffset());

    return arm_compute::TensorInfo(aclTensorShape, 1, aclDataType, aclQuantizationInfo);
}

arm_compute::TensorInfo BuildArmComputeTensorInfo(const armnn::TensorInfo& tensorInfo,
                                                  armnn::DataLayout dataLayout)
{
    arm_compute::TensorInfo aclTensorInfo = BuildArmComputeTensorInfo(tensorInfo);
    aclTensorInfo.set_data_layout(ConvertDataLayout(dataLayout));

    return aclTensorInfo;
}

arm_compute::DataLayout ConvertDataLayout(armnn::DataLayout dataLayout)
{
    switch(dataLayout)
    {
        case armnn::DataLayout::NHWC : return arm_compute::DataLayout::NHWC;

        case armnn::DataLayout::NCHW : return arm_compute::DataLayout::NCHW;

        case armnn::DataLayout::NDHWC : return arm_compute::DataLayout::NDHWC;

        case armnn::DataLayout::NCDHW : return arm_compute::DataLayout::NCDHW;

        default: throw InvalidArgumentException("Unknown armnn::DataLayout: [" +
                                                std::to_string(static_cast<int>(dataLayout)) + "]");
    }
}

arm_compute::PoolingLayerInfo BuildArmComputePoolingLayerInfo(const Pooling2dDescriptor& descriptor,
                                                              bool fpMixedPrecision)
{
    // Resolve ARM Compute layer parameters.
    const arm_compute::PoolingType poolingType = ConvertPoolingAlgorithmToAclPoolingType(descriptor.m_PoolType);

    const arm_compute::DataLayout dataLayout = ConvertDataLayout(descriptor.m_DataLayout);

    bool isGlobalPooling = (descriptor.m_StrideX==0 && descriptor.m_StrideY==0);
    //use specific constructor if global pooling
    if(isGlobalPooling)
    {
        return arm_compute::PoolingLayerInfo(poolingType, dataLayout);
    }

    const arm_compute::DimensionRoundingType rounding = ConvertOutputShapeRoundingToAclDimensionRoundingType(
                                                                                    descriptor.m_OutputShapeRounding);
    const arm_compute::PadStrideInfo padStrideInfo(descriptor.m_StrideX,
                                      descriptor.m_StrideY,
                                      descriptor.m_PadLeft,
                                      descriptor.m_PadRight,
                                      descriptor.m_PadTop,
                                      descriptor.m_PadBottom,
                                      rounding);

    const bool excludePadding = (descriptor.m_PaddingMethod == PaddingMethod::Exclude);

    const arm_compute::Size2D poolSize(descriptor.m_PoolWidth, descriptor.m_PoolHeight);

    return arm_compute::PoolingLayerInfo(poolingType, poolSize, dataLayout, padStrideInfo, excludePadding,
                                         fpMixedPrecision);
}

arm_compute::Pooling3dLayerInfo BuildArmComputePooling3dLayerInfo(const Pooling3dDescriptor& descriptor,
                                                                  bool fpMixedPrecision)
{
    const arm_compute::PoolingType poolingType = ConvertPoolingAlgorithmToAclPoolingType(descriptor.m_PoolType);

    bool isGlobalPooling = (descriptor.m_StrideX==0 && descriptor.m_StrideY==0 && descriptor.m_StrideZ==0);
    //use specific constructor if global pooling
    if(isGlobalPooling)
    {
        return arm_compute::Pooling3dLayerInfo(poolingType);
    }

    const arm_compute::Size3D poolSize(descriptor.m_PoolWidth, descriptor.m_PoolHeight, descriptor.m_PoolDepth);

    const arm_compute::Size3D stride(descriptor.m_StrideX,
                        descriptor.m_StrideY,
                        descriptor.m_StrideZ);

    const arm_compute::Padding3D padding(descriptor.m_PadLeft,
                            descriptor.m_PadRight,
                            descriptor.m_PadTop,
                            descriptor.m_PadBottom,
                            descriptor.m_PadFront,
                            descriptor.m_PadBack);

    const bool excludePadding = (descriptor.m_PaddingMethod == PaddingMethod::Exclude);

    const arm_compute::DimensionRoundingType rounding = ConvertOutputShapeRoundingToAclDimensionRoundingType(
            descriptor.m_OutputShapeRounding);

    return arm_compute::Pooling3dLayerInfo(poolingType,
                                           poolSize,
                                           stride,
                                           padding,
                                           excludePadding,
                                           fpMixedPrecision,
                                           rounding);
}

arm_compute::NormalizationLayerInfo BuildArmComputeNormalizationLayerInfo(const NormalizationDescriptor& descriptor)
{
    const arm_compute::NormType normType =
        ConvertNormalizationAlgorithmChannelToAclNormType(descriptor.m_NormChannelType);
    return arm_compute::NormalizationLayerInfo(normType,
                                               descriptor.m_NormSize,
                                               descriptor.m_Alpha,
                                               descriptor.m_Beta,
                                               descriptor.m_K,
                                               false);
}

arm_compute::PermutationVector BuildArmComputePermutationVector(const armnn::PermutationVector& perm)
{
    arm_compute::PermutationVector aclPerm;

    unsigned int start = 0;
    while ((start < perm.GetSize()) && (start == perm[start]))
    {
        ++start;
    }

    for (unsigned int i = start; i < perm.GetSize(); ++i)
    {
        aclPerm.set(i - start, perm[i] - start);
    }
    return aclPerm;
}

arm_compute::PermutationVector BuildArmComputeTransposeVector(const armnn::PermutationVector& perm)
{
    arm_compute::PermutationVector aclPerm;
    std::map<unsigned int, unsigned int> permuteMappings;
    for (unsigned int i = 0; i < perm.GetSize(); ++i)
    {
        permuteMappings[perm[i]] = i;
    }

    std::vector<unsigned int> permuteVector;
    for (unsigned int i = 0; i < perm.GetSize(); ++i)
    {
        permuteVector.push_back(permuteMappings.at(i));
    }

    unsigned int start = 0;
    while ((start < perm.GetSize()) && (start == permuteVector[start]))
    {
        ++start;
    }

    for (unsigned int i = start; i < perm.GetSize(); ++i)
    {
        aclPerm.set(i - start, permuteVector[i] - start);
    }
    return aclPerm;
}

arm_compute::Size2D BuildArmComputeSize2D(const unsigned int width, const unsigned int height)
{
    return arm_compute::Size2D(width, height);
}

arm_compute::PixelValue GetPixelValue(const arm_compute::ITensorInfo* tensorInfo, float pixelValue)
{
    switch (tensorInfo->data_type())
    {
        case arm_compute::DataType::F16:
            return arm_compute::PixelValue(static_cast<Half>(pixelValue));
        case arm_compute::DataType::F32:
            return arm_compute::PixelValue(pixelValue);
        case arm_compute::DataType::QASYMM8:
            return arm_compute::PixelValue(static_cast<uint8_t>(pixelValue));
        case arm_compute::DataType::QSYMM16:
            return arm_compute::PixelValue(static_cast<int16_t>(pixelValue));
        case arm_compute::DataType::QSYMM8:
        case arm_compute::DataType::QASYMM8_SIGNED:
        case arm_compute::DataType::QSYMM8_PER_CHANNEL:
            return arm_compute::PixelValue(static_cast<int8_t>(pixelValue));
        case arm_compute::DataType::S32:
            return arm_compute::PixelValue(static_cast<int32_t>(pixelValue));
        default:
            throw InvalidArgumentException("Unsupported DataType: [" +
                                           std::to_string(static_cast<int>(tensorInfo->data_type())) + "]");
    }
}

unsigned int ComputeDepthwiseConv2dDepthMultiplier(armnn::DataLayout layout,
                                                   const arm_compute::TensorShape& weightsShape,
                                                   const arm_compute::TensorShape& inputShape)
{
    unsigned int depthMultiplier;
    if (layout == armnn::DataLayout::NHWC)
    {
        depthMultiplier = static_cast<uint32_t>(weightsShape[0]) / static_cast<uint32_t>(inputShape[0]);
    }
    else if (layout == armnn::DataLayout::NCHW)
    {
        depthMultiplier = static_cast<uint32_t>(weightsShape[2]) / static_cast<uint32_t>(inputShape[2]);
    }
    else
    {
        throw InvalidArgumentException(fmt::format("Unknown data layout for tensor conversion: {}",
                                                   GetDataLayoutName(layout)));
    }
    return depthMultiplier;
}

} // namespace armcomputetensorutils
} // namespace armnn