aboutsummaryrefslogtreecommitdiff
path: root/src/armnnTfLiteParser/test/ParserFlatbuffersFixture.hpp
blob: 50e674ef2c97bd2e510bab1f5eb5cf42f10c8d7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//

#pragma once

#include "Schema.hpp"
#include <boost/filesystem.hpp>
#include <boost/assert.hpp>
#include <boost/format.hpp>
#include <experimental/filesystem>
#include <armnn/IRuntime.hpp>
#include <armnn/TypesUtils.hpp>
#include "test/TensorHelpers.hpp"

#include "TypeUtils.hpp"
#include "armnnTfLiteParser/ITfLiteParser.hpp"

#include <backendsCommon/BackendRegistry.hpp>

#include "flatbuffers/idl.h"
#include "flatbuffers/util.h"

#include <schema_generated.h>
#include <iostream>

using armnnTfLiteParser::ITfLiteParser;
using TensorRawPtr = const tflite::TensorT *;

struct ParserFlatbuffersFixture
{
    ParserFlatbuffersFixture() :
        m_Parser(ITfLiteParser::Create()),
        m_Runtime(armnn::IRuntime::Create(armnn::IRuntime::CreationOptions())),
        m_NetworkIdentifier(-1)
    {
    }

    std::vector<uint8_t> m_GraphBinary;
    std::string m_JsonString;
    std::unique_ptr<ITfLiteParser, void (*)(ITfLiteParser *parser)> m_Parser;
    armnn::IRuntimePtr m_Runtime;
    armnn::NetworkId m_NetworkIdentifier;

    /// If the single-input-single-output overload of Setup() is called, these will store the input and output name
    /// so they don't need to be passed to the single-input-single-output overload of RunTest().
    std::string m_SingleInputName;
    std::string m_SingleOutputName;

    void Setup()
    {
        bool ok = ReadStringToBinary();
        if (!ok) {
            throw armnn::Exception("LoadNetwork failed while reading binary input");
        }

        armnn::INetworkPtr network =
                m_Parser->CreateNetworkFromBinary(m_GraphBinary);

        if (!network) {
            throw armnn::Exception("The parser failed to create an ArmNN network");
        }

        auto optimized = Optimize(*network, { armnn::Compute::CpuRef },
                                  m_Runtime->GetDeviceSpec());
        std::string errorMessage;

        armnn::Status ret = m_Runtime->LoadNetwork(m_NetworkIdentifier, move(optimized), errorMessage);

        if (ret != armnn::Status::Success)
        {
            throw armnn::Exception(
                boost::str(
                    boost::format("The runtime failed to load the network. "
                                    "Error was: %1%. in %2% [%3%:%4%]") %
                    errorMessage %
                    __func__ %
                    __FILE__ %
                    __LINE__));
        }
    }

    void SetupSingleInputSingleOutput(const std::string& inputName, const std::string& outputName)
    {
        // Store the input and output name so they don't need to be passed to the single-input-single-output RunTest().
        m_SingleInputName = inputName;
        m_SingleOutputName = outputName;
        Setup();
    }

    bool ReadStringToBinary()
    {
        std::string schemafile(&tflite_schema_start, &tflite_schema_end);

        // parse schema first, so we can use it to parse the data after
        flatbuffers::Parser parser;

        bool ok = parser.Parse(schemafile.c_str());
        BOOST_ASSERT_MSG(ok, "Failed to parse schema file");

        ok &= parser.Parse(m_JsonString.c_str());
        BOOST_ASSERT_MSG(ok, "Failed to parse json input");

        if (!ok)
        {
            return false;
        }

        {
            const uint8_t * bufferPtr = parser.builder_.GetBufferPointer();
            size_t size = static_cast<size_t>(parser.builder_.GetSize());
            m_GraphBinary.assign(bufferPtr, bufferPtr+size);
        }
        return ok;
    }

    /// Executes the network with the given input tensor and checks the result against the given output tensor.
    /// This assumes the network has a single input and a single output.
    template <std::size_t NumOutputDimensions,
              armnn::DataType ArmnnType,
              typename DataType = armnn::ResolveType<ArmnnType>>
    void RunTest(size_t subgraphId,
                 const std::vector<DataType>& inputData,
                 const std::vector<DataType>& expectedOutputData);

    /// Executes the network with the given input tensors and checks the results against the given output tensors.
    /// This overload supports multiple inputs and multiple outputs, identified by name.
    template <std::size_t NumOutputDimensions,
              armnn::DataType ArmnnType,
              typename DataType = armnn::ResolveType<ArmnnType>>
    void RunTest(size_t subgraphId,
                 const std::map<std::string, std::vector<DataType>>& inputData,
                 const std::map<std::string, std::vector<DataType>>& expectedOutputData);

    /// Multiple Inputs, Multiple Outputs w/ Variable Datatypes and different dimension sizes.
    /// Executes the network with the given input tensors and checks the results against the given output tensors.
    /// This overload supports multiple inputs and multiple outputs, identified by name along with the allowance for
    /// the input datatype to be different to the output
    template <std::size_t NumOutputDimensions,
              armnn::DataType ArmnnType1,
              armnn::DataType ArmnnType2,
              typename DataType1 = armnn::ResolveType<ArmnnType1>,
              typename DataType2 = armnn::ResolveType<ArmnnType2>>
    void RunTest(size_t subgraphId,
                 const std::map<std::string, std::vector<DataType1>>& inputData,
                 const std::map<std::string, std::vector<DataType2>>& expectedOutputData);


    /// Multiple Inputs, Multiple Outputs w/ Variable Datatypes and different dimension sizes.
    /// Executes the network with the given input tensors and checks the results against the given output tensors.
    /// This overload supports multiple inputs and multiple outputs, identified by name along with the allowance for
    /// the input datatype to be different to the output
    template<armnn::DataType ArmnnType1,
             armnn::DataType ArmnnType2,
             typename DataType1 = armnn::ResolveType<ArmnnType1>,
             typename DataType2 = armnn::ResolveType<ArmnnType2>>
    void RunTest(std::size_t subgraphId,
                 const std::map<std::string, std::vector<DataType1>>& inputData,
                 const std::map<std::string, std::vector<DataType2>>& expectedOutputData);

    void CheckTensors(const TensorRawPtr& tensors, size_t shapeSize, const std::vector<int32_t>& shape,
                      tflite::TensorType tensorType, uint32_t buffer, const std::string& name,
                      const std::vector<float>& min, const std::vector<float>& max,
                      const std::vector<float>& scale, const std::vector<int64_t>& zeroPoint)
    {
        BOOST_CHECK(tensors);
        BOOST_CHECK_EQUAL(shapeSize, tensors->shape.size());
        BOOST_CHECK_EQUAL_COLLECTIONS(shape.begin(), shape.end(), tensors->shape.begin(), tensors->shape.end());
        BOOST_CHECK_EQUAL(tensorType, tensors->type);
        BOOST_CHECK_EQUAL(buffer, tensors->buffer);
        BOOST_CHECK_EQUAL(name, tensors->name);
        BOOST_CHECK(tensors->quantization);
        BOOST_CHECK_EQUAL_COLLECTIONS(min.begin(), min.end(), tensors->quantization.get()->min.begin(),
                                      tensors->quantization.get()->min.end());
        BOOST_CHECK_EQUAL_COLLECTIONS(max.begin(), max.end(), tensors->quantization.get()->max.begin(),
                                      tensors->quantization.get()->max.end());
        BOOST_CHECK_EQUAL_COLLECTIONS(scale.begin(), scale.end(), tensors->quantization.get()->scale.begin(),
                                      tensors->quantization.get()->scale.end());
        BOOST_CHECK_EQUAL_COLLECTIONS(zeroPoint.begin(), zeroPoint.end(),
                                      tensors->quantization.get()->zero_point.begin(),
                                      tensors->quantization.get()->zero_point.end());
    }
};

/// Single Input, Single Output
/// Executes the network with the given input tensor and checks the result against the given output tensor.
/// This overload assumes the network has a single input and a single output.
template <std::size_t NumOutputDimensions,
          armnn::DataType armnnType,
          typename DataType>
void ParserFlatbuffersFixture::RunTest(size_t subgraphId,
                                       const std::vector<DataType>& inputData,
                                       const std::vector<DataType>& expectedOutputData)
{
    RunTest<NumOutputDimensions, armnnType>(subgraphId,
                                            { { m_SingleInputName, inputData } },
                                            { { m_SingleOutputName, expectedOutputData } });
}

/// Multiple Inputs, Multiple Outputs
/// Executes the network with the given input tensors and checks the results against the given output tensors.
/// This overload supports multiple inputs and multiple outputs, identified by name.
template <std::size_t NumOutputDimensions,
          armnn::DataType armnnType,
          typename DataType>
void ParserFlatbuffersFixture::RunTest(size_t subgraphId,
                                       const std::map<std::string, std::vector<DataType>>& inputData,
                                       const std::map<std::string, std::vector<DataType>>& expectedOutputData)
{
    RunTest<NumOutputDimensions, armnnType, armnnType>(subgraphId, inputData, expectedOutputData);
}

/// Multiple Inputs, Multiple Outputs w/ Variable Datatypes
/// Executes the network with the given input tensors and checks the results against the given output tensors.
/// This overload supports multiple inputs and multiple outputs, identified by name along with the allowance for
/// the input datatype to be different to the output
template <std::size_t NumOutputDimensions,
          armnn::DataType armnnType1,
          armnn::DataType armnnType2,
          typename DataType1,
          typename DataType2>
void ParserFlatbuffersFixture::RunTest(size_t subgraphId,
                                       const std::map<std::string, std::vector<DataType1>>& inputData,
                                       const std::map<std::string, std::vector<DataType2>>& expectedOutputData)
{
    using BindingPointInfo = std::pair<armnn::LayerBindingId, armnn::TensorInfo>;

    // Setup the armnn input tensors from the given vectors.
    armnn::InputTensors inputTensors;
    for (auto&& it : inputData)
    {
        BindingPointInfo bindingInfo = m_Parser->GetNetworkInputBindingInfo(subgraphId, it.first);
        armnn::VerifyTensorInfoDataType(bindingInfo.second, armnnType1);
        inputTensors.push_back({ bindingInfo.first, armnn::ConstTensor(bindingInfo.second, it.second.data()) });
    }

    // Allocate storage for the output tensors to be written to and setup the armnn output tensors.
    std::map<std::string, boost::multi_array<DataType2, NumOutputDimensions>> outputStorage;
    armnn::OutputTensors outputTensors;
    for (auto&& it : expectedOutputData)
    {
        BindingPointInfo bindingInfo = m_Parser->GetNetworkOutputBindingInfo(subgraphId, it.first);
        armnn::VerifyTensorInfoDataType(bindingInfo.second, armnnType2);
        outputStorage.emplace(it.first, MakeTensor<DataType2, NumOutputDimensions>(bindingInfo.second));
        outputTensors.push_back(
                { bindingInfo.first, armnn::Tensor(bindingInfo.second, outputStorage.at(it.first).data()) });
    }

    m_Runtime->EnqueueWorkload(m_NetworkIdentifier, inputTensors, outputTensors);

    // Compare each output tensor to the expected values
    for (auto&& it : expectedOutputData)
    {
        BindingPointInfo bindingInfo = m_Parser->GetNetworkOutputBindingInfo(subgraphId, it.first);
        auto outputExpected = MakeTensor<DataType2, NumOutputDimensions>(bindingInfo.second, it.second);
        BOOST_TEST(CompareTensors(outputExpected, outputStorage[it.first]));
    }
}

/// Multiple Inputs, Multiple Outputs w/ Variable Datatypes and different dimension sizes.
/// Executes the network with the given input tensors and checks the results against the given output tensors.
/// This overload supports multiple inputs and multiple outputs, identified by name along with the allowance for
/// the input datatype to be different to the output.
template <armnn::DataType armnnType1,
          armnn::DataType armnnType2,
          typename DataType1,
          typename DataType2>
void ParserFlatbuffersFixture::RunTest(std::size_t subgraphId,
                                       const std::map<std::string, std::vector<DataType1>>& inputData,
                                       const std::map<std::string, std::vector<DataType2>>& expectedOutputData)
{
    using BindingPointInfo = std::pair<armnn::LayerBindingId, armnn::TensorInfo>;

    // Setup the armnn input tensors from the given vectors.
    armnn::InputTensors inputTensors;
    for (auto&& it : inputData)
    {
        BindingPointInfo bindingInfo = m_Parser->GetNetworkInputBindingInfo(subgraphId, it.first);
        armnn::VerifyTensorInfoDataType(bindingInfo.second, armnnType1);

        inputTensors.push_back({ bindingInfo.first, armnn::ConstTensor(bindingInfo.second, it.second.data()) });
    }

    armnn::OutputTensors outputTensors;
    outputTensors.reserve(expectedOutputData.size());
    std::map<std::string, std::vector<DataType2>> outputStorage;
    for (auto&& it : expectedOutputData)
    {
        BindingPointInfo bindingInfo = m_Parser->GetNetworkOutputBindingInfo(subgraphId, it.first);
        armnn::VerifyTensorInfoDataType(bindingInfo.second, armnnType2);

        std::vector<DataType2> out(it.second.size());
        outputStorage.emplace(it.first, out);
        outputTensors.push_back({ bindingInfo.first,
                                  armnn::Tensor(bindingInfo.second,
                                  outputStorage.at(it.first).data()) });
    }

    m_Runtime->EnqueueWorkload(m_NetworkIdentifier, inputTensors, outputTensors);

    // Checks the results.
    for (auto&& it : expectedOutputData)
    {
        std::vector<DataType2> out = outputStorage.at(it.first);
        {
            for (unsigned int i = 0; i < out.size(); ++i)
            {
                BOOST_TEST(it.second[i] == out[i], boost::test_tools::tolerance(0.000001f));
            }
        }
    }
}