aboutsummaryrefslogtreecommitdiff
path: root/src/armnn/Network.cpp
blob: 0d06042abe5ed7e70bbd85339bbcee5c0595c025 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//

#include "Network.hpp"
#include "Graph.hpp"
#include "Layer.hpp"
#include "DeviceSpec.hpp"
#include "Optimizer.hpp"
#include "SubgraphViewSelector.hpp"
#include "BackendSettings.hpp"
#include "optimizations/All.hpp"

#include <backendsCommon/CpuTensorHandle.hpp>
#include <backendsCommon/WorkloadFactory.hpp>
#include <backendsCommon/BackendRegistry.hpp>
#include <backendsCommon/IBackendInternal.hpp>

#include <armnn/Exceptions.hpp>
#include <armnn/Utils.hpp>
#include <armnn/TypesUtils.hpp>

#include <fcntl.h>
#include <algorithm>
#include <fstream>
#include <memory>
#include <vector>
#include <algorithm>

#include <boost/assert.hpp>
#include <boost/format.hpp>
#include <boost/log/trivial.hpp>
#include <boost/numeric/conversion/converter_policies.hpp>
#include <boost/cast.hpp>

namespace armnn
{

armnn::INetwork* INetwork::CreateRaw()
{
    return new Network();
}

armnn::INetworkPtr INetwork::Create()
{
    return INetworkPtr(CreateRaw(), &INetwork::Destroy);
}

void INetwork::Destroy(INetwork* network)
{
    delete boost::polymorphic_downcast<Network*>(network);
}

Status Network::PrintGraph()
{
    m_Graph->Print();
    return Status::Success;
}

void IOptimizedNetwork::Destroy(IOptimizedNetwork* network)
{
    delete boost::polymorphic_downcast<OptimizedNetwork*>(network);
}

Status OptimizedNetwork::PrintGraph()
{
    m_Graph->Print();
    return Status::Success;
}

Status OptimizedNetwork::SerializeToDot(std::ostream& stream) const
{
    return m_Graph->SerializeToDot(stream);
}

struct OptimizationResult
{
    bool m_Warning;
    bool m_Error;

    OptimizationResult()
        : m_Warning(false)
        , m_Error(false)
    {}
};

void ReportError(const std::string& errorMessage,
                 Optional<std::vector<std::string>&> errorMessages)
{
    std::stringstream fullErrorMessage;
    fullErrorMessage << "ERROR: " << errorMessage;
    BOOST_LOG_TRIVIAL(warning) << fullErrorMessage.str();
    if (errorMessages)
    {
        errorMessages.value().push_back(fullErrorMessage.str());
    }
}

void ReportWarning(const std::string& warningMessage,
                   Optional<std::vector<std::string>&> warningMessages)
{
    std::stringstream fullWarningMessage;
    fullWarningMessage << "WARNING: " << warningMessage;
    BOOST_LOG_TRIVIAL(warning) << fullWarningMessage.str();
    if (warningMessages)
    {
        warningMessages.value().push_back(fullWarningMessage.str());
    }
}

bool CheckScaleSetOnQuantizedType(Layer* layer, Optional<std::vector<std::string>&> errMessages)
{
    bool noErrors = true;
    unsigned int numOutputs = layer->GetNumOutputSlots();
    for (unsigned int i = 0; i < numOutputs; i++) {
        OutputSlot& outputSlot = layer->GetOutputSlot(i);
        TensorInfo info = outputSlot.GetTensorInfo();
        if (DataType::QuantisedAsymm8 == info.GetDataType()) {
            if (0.f == info.GetQuantizationScale()) {
                noErrors = false;
                std::stringstream ss;
                ss << "output " << i << " of layer " << GetLayerTypeAsCString(layer->GetType())
                   << " (" << layer->GetNameStr() << ") is of type"
                   << " Quantized 8 bit but its scale parameter has not been set";
                ReportError(ss.str(), errMessages);
            }
            // Softmax under QuantisedAsymm8 must always be scale (1.0f/256.0f) and offset 0
            if ((info.GetQuantizationScale() != (1.0f / 256.0f) ||
                 info.GetQuantizationOffset() != 0) &&
                 layer->GetType() == armnn::LayerType::Softmax)
            {
                std::stringstream ss;
                ss << "Quantization parameters for Softmax layer (Scale: " <<
                info.GetQuantizationScale() << " and Offset: " << info.GetQuantizationOffset() <<
                ") are incorrect and have been updated to Scale: 0.00390625 and Offset: 0";
                BOOST_LOG_TRIVIAL(warning) << ss.str();
                info.SetQuantizationScale((1.0f /256.0f));
                info.SetQuantizationOffset(0);
                outputSlot.SetTensorInfo(info);
            }
        }
    }
    return noErrors;
}

OptimizationResult AssignBackends(OptimizedNetwork* optNetObjPtr,
                                  BackendSettings& backendSettings,
                                  Graph::Iterator& firstLayer,
                                  Graph::Iterator& lastLayer,
                                  Optional<std::vector<std::string>&> errMessages)
{
    OptimizationResult result;

    // Helper lambda to compose meaningful error message before returning with error
    auto ReturnWithError = [&](const Layer* layer)
    {
        std::stringstream failureMsg;
        failureMsg << "Layer of type " << GetLayerTypeAsCString(layer->GetType())
                   << " is not supported on any preferred backend " << backendSettings.m_PreferredBackends;
        ReportError(failureMsg.str(), errMessages);

        result.m_Error = true;
        return result;
    };

    auto availablePreferredBackends = backendSettings.GetAvailablePreferredBackends();
    if (availablePreferredBackends.empty())
    {
        std::stringstream failureMsg;
        failureMsg << "No preferred backends are available";
        ReportError(failureMsg.str(), errMessages);

        result.m_Error = true;
        return result;
    }

    for (auto it = firstLayer; it != lastLayer; ++it)
    {
        auto layer = *it;
        DataType dataType = layer->GetDataType();
        std::string reasonIfUnsupported;
        bool found = false;
        if (!CheckScaleSetOnQuantizedType(layer, errMessages))
        {
            // don't bomb immediately, find all the quantized outputs
            // which haven't had a scale set and report them all back.
            result.m_Error = true;
        }

        for (const auto& backend : availablePreferredBackends)
        {
            // need to set the compute device on the layer
            // before we can check if it is supported
            layer->SetBackendId(backend);
            if (!IWorkloadFactory::IsLayerSupported(*layer, dataType, reasonIfUnsupported))
            {
                if (dataType == DataType::Float16)
                {
                    if (IWorkloadFactory::IsLayerSupported(*layer, DataType::Float32, reasonIfUnsupported)
                        && layer->GetType() != LayerType::ConvertFp32ToFp16
                        && layer->GetType() != LayerType::ConvertFp16ToFp32)
                    {
                        // Insert FP16 -> FP32 conversion layer before current layer
                        std::vector<ConvertFp16ToFp32Layer*> convertFp16ToFp32Layers =
                            InsertConvertFp16ToFp32LayersBefore(optNetObjPtr->GetGraph(), *layer);

                        // Insert FP32 -> FP16 conversion layer after current layer
                        std::vector<ConvertFp32ToFp16Layer*> convertFp32ToFp16Layers =
                            InsertConvertFp32ToFp16LayersAfter(optNetObjPtr->GetGraph(), *layer);

                        // Assign a supported backend to the newly introduced conversion layers
                        auto AssignFirstSupportedBackend = [&](Layer* layer, BackendId preferredBackend)
                        {
                            bool supportedBackendFound = false;
                            std::string reasonIfUnsupported;

                            // Try preferred backend first
                            layer->SetBackendId(preferredBackend);
                            if (IWorkloadFactory::IsLayerSupported(*layer,
                                                                   EmptyOptional(),
                                                                   reasonIfUnsupported))
                            {
                                supportedBackendFound = true;
                            }
                            else
                            {
                                for (const auto& backend : availablePreferredBackends)
                                {
                                    // Skip preferred backend (we already determined that it is not supported)
                                    if (backend == preferredBackend)
                                    {
                                        continue;
                                    }

                                    layer->SetBackendId(backend);
                                    if (IWorkloadFactory::IsLayerSupported(*layer,
                                                                           EmptyOptional(),
                                                                           reasonIfUnsupported))
                                    {
                                        supportedBackendFound = true;
                                        break;
                                    }
                                }
                            }

                            return supportedBackendFound;
                        };

                        for (ConvertFp16ToFp32Layer* convertLayer : convertFp16ToFp32Layers)
                        {
                            if (!AssignFirstSupportedBackend(convertLayer, backend))
                            {
                                return ReturnWithError(convertLayer);
                            }
                        }

                        for (ConvertFp32ToFp16Layer* convertLayer : convertFp32ToFp16Layers)
                        {
                            if (!AssignFirstSupportedBackend(convertLayer, backend))
                            {
                                return ReturnWithError(convertLayer);
                            }
                        }

                        found = true;
                        break;
                    }
                }
                std::stringstream warningMsg;
                warningMsg << "Layer of type " << GetLayerTypeAsCString(layer->GetType())
                           << " is not supported on requested backend " << layer->GetBackendId().Get()
                           << " for data type " << GetDataTypeName(dataType)
                           << " (reason: " << reasonIfUnsupported
                           << "), falling back to the next backend.";
                ReportWarning(warningMsg.str(), errMessages);
            }
            else
            {
                found = true;
                backendSettings.m_SelectedBackends.insert(backend);
                break;
            }
        }

        // If the layer is unsupported by any devices, log and return a null network.
        if (!found)
        {
            // NOTE: if the layer is not an operation queue type AND we have not got CpuRef as a
            //       fallback we should set the compute device on the layer to CpuRef (these are not
            //       available as accelerated operations, or are only available under certain
            //       conditions, currently they comprise MemCopy, Constant, Permute)
            armnn::LayerType layerType = layer->GetType();
            if (!backendSettings.IsCpuRefUsed() && (layerType == armnn::LayerType::MemCopy ||
                                                    layerType == armnn::LayerType::Constant ||
                                                    layerType == armnn::LayerType::Permute))
            {
                BackendId cpuBackendId(armnn::Compute::CpuRef);
                layer->SetBackendId(cpuBackendId);
                backendSettings.m_SelectedBackends.insert(cpuBackendId);
            }
            else
            {
                return ReturnWithError(layer);
            }
        }
    }

    return result;
}

OptimizationResult AssignBackends(OptimizedNetwork* optNetObjPtr,
                                  BackendSettings& backendSettings,
                                  SubgraphView& subgraph,
                                  Optional<std::vector<std::string>&> errMessages)
{
    Graph::Iterator firstLayer = subgraph.begin();
    Graph::Iterator lastLayer  = subgraph.end();
    return AssignBackends(optNetObjPtr,
                          backendSettings,
                          firstLayer,
                          lastLayer,
                          errMessages);
}

OptimizationResult ApplyBackendOptimizations(OptimizedNetwork* optNetObjPtr,
                                             BackendSettings& backendSettings,
                                             Optional<std::vector<std::string>&> errMessages)
{
    BOOST_ASSERT(optNetObjPtr);

    OptimizationResult result;

    // Get the optimized graph
    Graph& optGraph = optNetObjPtr->GetGraph();

    // Run backend specific optimizations
    auto const& backendRegistry = BackendRegistryInstance();
    for (auto&& selectedBackend : backendSettings.m_SelectedBackends)
    {
        auto backendFactory = backendRegistry.GetFactory(selectedBackend);
        auto backendObjPtr  = backendFactory();
        BOOST_ASSERT(backendObjPtr);

        // Select sub-graphs based on backend
        SubgraphViewSelector::Subgraphs subgraphs =
                SubgraphViewSelector::SelectSubgraphs(optGraph,
                                                      // Select layers assigned to the requested backend
                                                      [&backendObjPtr](const Layer& layer)
                                                      {
                                                          return layer.GetType() != LayerType::Input &&
                                                                 layer.GetType() != LayerType::Output &&
                                                                 layer.GetBackendId() == backendObjPtr->GetId();
                                                      });
        if (subgraphs.empty())
        {
            // No sub-graphs found, try with next selected backend
            continue;
        }

        // Try to optimize each sub-graph
        for (auto& subgraph : subgraphs)
        {
            // Try to optimize the current sub-graph
            OptimizationViews optimizationViews = backendObjPtr->OptimizeSubgraphView(*subgraph);
            BOOST_ASSERT(optimizationViews.Validate(*subgraph));

            // Optimization attempted, check the resulting optimized sub-graph
            for (auto& substitution : optimizationViews.GetSubstitutions())
            {
                // Sub-graph optimized, substitute the sub-graph with the new optimized one in the main optimized graph
                SubgraphView& replacementSubgraph   = substitution.m_ReplacementSubgraph;
                SubgraphView& substitutableSubgraph = substitution.m_SubstitutableSubgraph;
                optGraph.SubstituteSubgraph(substitutableSubgraph, replacementSubgraph);

                // Assign the current backend to the optimized sub-graph
                std::for_each(replacementSubgraph.begin(), replacementSubgraph.end(), [&selectedBackend](Layer* l)
                    {
                        BOOST_ASSERT(l);
                        l->SetBackendId(selectedBackend);
                    });
            }

            if (!optimizationViews.GetFailedSubgraphs().empty())
            {
                std::stringstream warningMsg;
                warningMsg << "Some sub-graph(s) failed to optimized on " << backendObjPtr->GetId() << " backend.";
                ReportWarning(warningMsg.str(), errMessages);

                // Failed to optimize the given sub-graph, re-assign the sub-graph layers to other available backends
                BackendSettings settingsCopy(backendSettings);
                if (!backendObjPtr->GetId().IsCpuRef())
                {
                    // Add the current backend to the list of backends to ignore
                    settingsCopy.m_IgnoredBackends.insert(backendObjPtr->GetId());
                }

                int count=0;
                for (auto& failedSubgraph : optimizationViews.GetFailedSubgraphs())
                {
                    // An error occurred: the optimization was attempted but not performed, try different backends
                    std::stringstream subgraphMsg;
                    subgraphMsg << "Re-assigning backends to " << failedSubgraph.GetLayers().size()
                                << " layers inside sub-graph " << count++;
                    ReportWarning(warningMsg.str(), errMessages);

                    OptimizationResult reassignmentResult = AssignBackends(optNetObjPtr,
                                                                           settingsCopy,
                                                                           *subgraph,
                                                                           errMessages);
                    if (reassignmentResult.m_Error)
                    {
                        // Failed to re-assign one of the remaining backends to each layer of the sub-graph
                        result.m_Error = true;
                        return result;
                    }
                }
            }
        }
    }

    return result;
}

IOptimizedNetworkPtr Optimize(const INetwork& inNetwork,
                              const std::vector<BackendId>& backendPreferences,
                              const IDeviceSpec& deviceSpec,
                              const OptimizerOptions& options,
                              Optional<std::vector<std::string>&> errMessages)
{
    if (backendPreferences.empty())
    {
        throw armnn::InvalidArgumentException("Invoked Optimize with no backends specified");
    }

    const Network& network = *boost::polymorphic_downcast<const Network*>(&inNetwork);
    std::unique_ptr<Graph> graph = std::make_unique<Graph>(network.GetGraph());

    auto optNet = IOptimizedNetworkPtr(new OptimizedNetwork(std::move(graph)), &IOptimizedNetwork::Destroy);

    OptimizedNetwork* optNetObjPtr = boost::polymorphic_downcast<OptimizedNetwork*>(optNet.get());

    // Get the optimized graph
    Graph& optGraph = optNetObjPtr->GetGraph();

    // Perform optimisation passes
    using namespace optimizations;
    Optimizer::Pass(optGraph, MakeOptimizations(SquashEqualPermuteSiblings(),
                                                SquashEqualReshapeSiblings(),
                                                OptimizeInversePermutes(),
                                                MovePermuteUp(),
                                                PermuteAsReshape(),
                                                OptimizeConsecutiveReshapes(),
                                                FoldPadIntoConvolution2d()));

    // Infer the tensor infos for all output slots. Throws an exception on failure
    optGraph.InferTensorInfos();

    // If Fp32 to Fp16 optimization is set convert Fp32 network to Fp16
    if (options.m_ReduceFp32ToFp16)
    {
        Optimizer::Pass(optGraph, MakeOptimizations(Fp32NetworkToFp16Converter()));
    }

    // Initialize backend settings
    BackendSettings backendSettings(backendPreferences, deviceSpec);
    if (backendSettings.GetAvailablePreferredBackends().empty())
    {
        std::stringstream failureMsg;
        failureMsg << "None of the preferred backends " << backendPreferences
                   << " are supported. Current platform provides " << backendSettings.m_SupportedBackends;
        ReportError(failureMsg.str(), errMessages);
        return IOptimizedNetworkPtr(nullptr, &IOptimizedNetwork::Destroy);
    }

    // Assign an available backend to each layer
    Graph::Iterator firstLayer = optGraph.begin();
    Graph::Iterator lastLayer  = optGraph.end();
    OptimizationResult assigBackendsResult = AssignBackends(optNetObjPtr,
                                                            backendSettings,
                                                            firstLayer,
                                                            lastLayer,
                                                            errMessages);
    if (assigBackendsResult.m_Error)
    {
        // Failed to assign a backend to each layer
        return IOptimizedNetworkPtr(nullptr, &IOptimizedNetwork::Destroy);
    }

    Optimizer::Pass(optGraph, MakeOptimizations(OptimizeInverseConversionsFp16(),
                                                OptimizeInverseConversionsFp32()));

    // Apply the backend-specific optimizations
    OptimizationResult backendOptimizationResult = ApplyBackendOptimizations(optNetObjPtr,
                                                                             backendSettings,
                                                                             errMessages);
    if (backendOptimizationResult.m_Error)
    {
        // Failed to apply the backend-specific optimizations
        return IOptimizedNetworkPtr(nullptr, &IOptimizedNetwork::Destroy);
    }

    // If the debug flag is set, then insert a DebugLayer after each layer
    // Doing this after applying the backend optimizations as they might have changed some layers
    if (options.m_Debug)
    {
        Optimizer::Pass(optGraph, MakeOptimizations(InsertDebugLayer()));
    }

    optGraph.AddCopyLayers();

    // Convert constants
    Optimizer::Pass(optGraph, MakeOptimizations(ConvertConstantsFloatToHalf()));
    Optimizer::Pass(optGraph, MakeOptimizations(ConvertConstantsHalfToFloat()));

    // Run backend specific optimizations
    for (auto&& chosenBackend : backendSettings.m_SelectedBackends)
    {
        auto factoryFun = BackendRegistryInstance().GetFactory(chosenBackend);
        auto backendPtr = factoryFun();
        BOOST_ASSERT(backendPtr.get() != nullptr);

        ARMNN_NO_DEPRECATE_WARN_BEGIN
        auto backendSpecificOptimizations = backendPtr->GetOptimizations();
        ARMNN_NO_DEPRECATE_WARN_END

        if (!backendSpecificOptimizations.empty())
        {
            Optimizer::Pass(optNetObjPtr->GetGraph(), backendSpecificOptimizations);
        }
    }

    return optNet;
}

Network::Network()
: m_Graph(std::make_unique<Graph>())
{
}

Network::~Network()
{
}

IConnectableLayer* Network::AddInputLayer(LayerBindingId id, const char* name)
{
    return m_Graph->AddLayer<InputLayer>(id, name);
}

IConnectableLayer* Network::AddBatchToSpaceNdLayer(const BatchToSpaceNdDescriptor& batchToSpaceNdDescriptor,
                                            const char* name)
{
    return m_Graph->AddLayer<BatchToSpaceNdLayer>(batchToSpaceNdDescriptor, name);
}

IConnectableLayer* Network::AddFullyConnectedLayerImpl(const FullyConnectedDescriptor& fullyConnectedDescriptor,
                                                       const ConstTensor& weights,
                                                       const Optional<ConstTensor>& biases,
                                                       const char* name)
{
    if (fullyConnectedDescriptor.m_BiasEnabled && !biases.has_value())
    {
        throw InvalidArgumentException("AddFullyConnectedLayer: biases cannot be empty");
    }

    const auto layer = m_Graph->AddLayer<FullyConnectedLayer>(fullyConnectedDescriptor, name);

    layer->m_Weight = std::make_unique<ScopedCpuTensorHandle>(weights);

    if (fullyConnectedDescriptor.m_BiasEnabled)
    {
        layer->m_Bias = std::make_unique<ScopedCpuTensorHandle>(biases.value());
    }

    return layer;
}

IConnectableLayer* Network::AddFullyConnectedLayer(const FullyConnectedDescriptor& fullyConnectedDescriptor,
                                                   const ConstTensor& weights,
                                                   const Optional<ConstTensor>& biases,
                                                   const char* name)
{
    return AddFullyConnectedLayerImpl(fullyConnectedDescriptor, weights, biases, name);
}

IConnectableLayer* Network::AddFullyConnectedLayer(const FullyConnectedDescriptor& fullyConnectedDescriptor,
                                                   const ConstTensor& weights,
                                                   const char* name)
{
    Optional<ConstTensor> biases;
    return AddFullyConnectedLayerImpl(fullyConnectedDescriptor, weights, biases, name);
}

IConnectableLayer* Network::AddFullyConnectedLayer(const FullyConnectedDescriptor& fullyConnectedDescriptor,
                                                   const ConstTensor& weights,
                                                   const ConstTensor& biases,
                                                   const char* name)
{
    Optional<ConstTensor> optionalBiases(biases);
    return AddFullyConnectedLayerImpl(fullyConnectedDescriptor, weights, optionalBiases, name);
}

IConnectableLayer* Network::AddConcatLayer(const OriginsDescriptor& mergerDescriptor,
                                           const char* name)
{
    ARMNN_NO_DEPRECATE_WARN_BEGIN
    return AddMergerLayer(mergerDescriptor, name);
    ARMNN_NO_DEPRECATE_WARN_END
}

IConnectableLayer* Network::AddConvolution2dLayerImpl(const Convolution2dDescriptor& convolution2dDescriptor,
                                                      const ConstTensor& weights,
                                                      const Optional<ConstTensor>& biases,
                                                      const char* name)
{
    if (convolution2dDescriptor.m_BiasEnabled && !biases.has_value())
    {
        throw InvalidArgumentException("AddConvolution2dLayer: biases cannot be empty");
    }

    const auto layer = m_Graph->AddLayer<Convolution2dLayer>(convolution2dDescriptor, name);

    layer->m_Weight = std::make_unique<ScopedCpuTensorHandle>(weights);

    if (convolution2dDescriptor.m_BiasEnabled)
    {
        layer->m_Bias = std::make_unique<ScopedCpuTensorHandle>(biases.value());
    }

    return layer;
}

IConnectableLayer* Network::AddConvolution2dLayer(const Convolution2dDescriptor& convolution2dDescriptor,
                                                  const ConstTensor& weights,
                                                  const Optional<ConstTensor>& biases,
                                                  const char* name)
{
    return AddConvolution2dLayerImpl(convolution2dDescriptor, weights, biases, name);
}

IConnectableLayer* Network::AddConvolution2dLayer(const Convolution2dDescriptor& convolution2dDescriptor,
                                                  const ConstTensor& weights,
                                                  const char* name)
{
    Optional<ConstTensor> biases;
    return AddConvolution2dLayerImpl(convolution2dDescriptor, weights, biases, name);
}

IConnectableLayer* Network::AddConvolution2dLayer(const Convolution2dDescriptor& convolution2dDescriptor,
                                                  const ConstTensor& weights,
                                                  const ConstTensor& biases,
                                                  const char* name)
{
    Optional<ConstTensor> optionalBiases(biases);
    return AddConvolution2dLayerImpl(convolution2dDescriptor, weights, optionalBiases, name);
}

IConnectableLayer* Network::AddDepthwiseConvolution2dLayerImpl(
    const DepthwiseConvolution2dDescriptor& convolution2dDescriptor,
    const ConstTensor& weights,
    const Optional<ConstTensor>& biases,
    const char* name)
{
    if (convolution2dDescriptor.m_BiasEnabled && !biases.has_value())
    {
        throw InvalidArgumentException("AddDepthwiseConvolution2dLayer: biases cannot be empty");
    }

    const auto layer = m_Graph->AddLayer<DepthwiseConvolution2dLayer>(convolution2dDescriptor, name);

    layer->m_Weight = std::make_unique<ScopedCpuTensorHandle>(weights);

    if (convolution2dDescriptor.m_BiasEnabled)
    {
        layer->m_Bias = std::make_unique<ScopedCpuTensorHandle>(biases.value());
    }

    return layer;
}

IConnectableLayer* Network::AddDepthwiseConvolution2dLayer(
        const DepthwiseConvolution2dDescriptor& convolution2dDescriptor,
        const ConstTensor& weights,
        const Optional<ConstTensor>& biases,
        const char* name)
{
    return AddDepthwiseConvolution2dLayerImpl(convolution2dDescriptor, weights, biases, name);
}

IConnectableLayer* Network::AddDepthwiseConvolution2dLayer(
    const DepthwiseConvolution2dDescriptor& convolution2dDescriptor,
    const ConstTensor& weights,
    const char* name)
{
    Optional<ConstTensor> biases;
    return AddDepthwiseConvolution2dLayerImpl(convolution2dDescriptor, weights, biases, name);
}

IConnectableLayer* Network::AddDepthwiseConvolution2dLayer(
    const DepthwiseConvolution2dDescriptor& convolution2dDescriptor,
    const ConstTensor& weights,
    const ConstTensor& biases,
    const char* name)
{
    Optional<ConstTensor> optionalBiases(biases);
    return AddDepthwiseConvolution2dLayerImpl(convolution2dDescriptor, weights, optionalBiases, name);
}

IConnectableLayer* Network::AddDetectionPostProcessLayer(const armnn::DetectionPostProcessDescriptor& descriptor,
                                                         const ConstTensor& anchors, const char* name)
{
    const auto layer = m_Graph->AddLayer<DetectionPostProcessLayer>(descriptor, name);

    layer->m_Anchors = std::make_unique<ScopedCpuTensorHandle>(anchors);

    return layer;
}

IConnectableLayer* Network::AddPermuteLayer(const PermuteDescriptor& permuteDescriptor,
                                            const char* name)
{
    return m_Graph->AddLayer<PermuteLayer>(permuteDescriptor, name);
}

IConnectableLayer* Network::AddPooling2dLayer(const Pooling2dDescriptor& pooling2dDescriptor,
    const char* name)
{
    return m_Graph->AddLayer<Pooling2dLayer>(pooling2dDescriptor, name);
}

IConnectableLayer* Network::AddActivationLayer(const ActivationDescriptor& activationDescriptor,
    const char* name)
{
    return m_Graph->AddLayer<ActivationLayer>(activationDescriptor, name);
}

IConnectableLayer* Network::AddNormalizationLayer(const NormalizationDescriptor&
normalizationDescriptor,
    const char* name)
{
    return m_Graph->AddLayer<NormalizationLayer>(normalizationDescriptor, name);
}

IConnectableLayer* Network::AddSoftmaxLayer(const SoftmaxDescriptor& softmaxDescriptor,
    const char* name)
{
    return m_Graph->AddLayer<SoftmaxLayer>(softmaxDescriptor, name);
}

IConnectableLayer* Network::AddSplitterLayer(const ViewsDescriptor& splitterDescriptor,
    const char* name)
{
    return m_Graph->AddLayer<SplitterLayer>(splitterDescriptor, name);
}

IConnectableLayer* Network::AddMaximumLayer(const char* name)
{
    return m_Graph->AddLayer<MaximumLayer>(name);
}

IConnectableLayer* Network::AddMinimumLayer(const char* name)
{
    return m_Graph->AddLayer<MinimumLayer>(name);
}

IConnectableLayer* Network::AddMergerLayer(const OriginsDescriptor& mergerDescriptor,
                                           const char* name)
{
    return m_Graph->AddLayer<MergerLayer>(mergerDescriptor, name);
}

IConnectableLayer* Network::AddAdditionLayer(const char* name)
{
    return m_Graph->AddLayer<AdditionLayer>(name);
}

IConnectableLayer* Network::AddMultiplicationLayer(const char* name)
{
    return m_Graph->AddLayer<MultiplicationLayer>(name);
}

IConnectableLayer* Network::AddOutputLayer(LayerBindingId id, const char* name)
{
    return m_Graph->AddLayer<OutputLayer>(id, name);
}

IConnectableLayer* Network::AddBatchNormalizationLayer(const BatchNormalizationDescriptor& desc,
                                                       const ConstTensor&                  mean,
                                                       const ConstTensor&                  variance,
                                                       const ConstTensor&                  beta,
                                                       const ConstTensor&                  gamma,
                                                       const char*                         name)
{
    const auto layer = m_Graph->AddLayer<BatchNormalizationLayer>(desc, name);

    layer->m_Mean = std::make_unique<ScopedCpuTensorHandle>(mean);
    layer->m_Variance = std::make_unique<ScopedCpuTensorHandle>(variance);
    layer->m_Beta = std::make_unique<ScopedCpuTensorHandle>(beta);
    layer->m_Gamma = std::make_unique<ScopedCpuTensorHandle>(gamma);

    return layer;
}

IConnectableLayer* Network::AddResizeBilinearLayer(const ResizeBilinearDescriptor&
resizeDescriptor, const char* name)
{
    return m_Graph->AddLayer<ResizeBilinearLayer>(resizeDescriptor,name);
}

IConnectableLayer* Network::AddL2NormalizationLayer(const L2NormalizationDescriptor& desc,
                                                    const char* name)
{
    return m_Graph->AddLayer<L2NormalizationLayer>(desc, name);
}

IConnectableLayer* Network::AddConstantLayer(const ConstTensor& input, const char* name)
{
    auto layer = m_Graph->AddLayer<ConstantLayer>(name);

    layer->m_LayerOutput = std::make_unique<ScopedCpuTensorHandle>(input);

    return layer;
}

IConnectableLayer* Network::AddReshapeLayer(const ReshapeDescriptor& reshapeDescriptor,
                                            const char* name)
{
    return m_Graph->AddLayer<ReshapeLayer>(reshapeDescriptor, name);
}

IConnectableLayer* Network::AddSpaceToBatchNdLayer(const SpaceToBatchNdDescriptor& spaceToBatchNdDescriptor,
                                                   const char* name)
{
    return m_Graph->AddLayer<SpaceToBatchNdLayer>(spaceToBatchNdDescriptor, name);
}

IConnectableLayer* Network::AddFloorLayer(const char* name)
{
    return m_Graph->AddLayer<FloorLayer>(name);
}

IConnectableLayer* Network::AddLstmLayer(const LstmDescriptor&  descriptor,
                                         const LstmInputParams& params,
                                         const char* name)
{
    const auto layer = m_Graph->AddLayer<LstmLayer>(descriptor, name);

    //Lstm Basic Parameters
    layer->m_BasicParameters.m_InputToForgetWeights =
        std::make_unique<ScopedCpuTensorHandle>(*(params.m_InputToForgetWeights));
    layer->m_BasicParameters.m_InputToCellWeights =
        std::make_unique<ScopedCpuTensorHandle>(*(params.m_InputToCellWeights));
    layer->m_BasicParameters.m_InputToOutputWeights =
        std::make_unique<ScopedCpuTensorHandle>(*(params.m_InputToOutputWeights));
    layer->m_BasicParameters.m_RecurrentToForgetWeights =
        std::make_unique<ScopedCpuTensorHandle>(*(params.m_RecurrentToForgetWeights));
    layer->m_BasicParameters.m_RecurrentToCellWeights =
        std::make_unique<ScopedCpuTensorHandle>(*(params.m_RecurrentToCellWeights));
    layer->m_BasicParameters.m_RecurrentToOutputWeights =
        std::make_unique<ScopedCpuTensorHandle>(*(params.m_RecurrentToOutputWeights));
    layer->m_BasicParameters.m_ForgetGateBias =
            std::make_unique<ScopedCpuTensorHandle>(*(params.m_ForgetGateBias));
    layer->m_BasicParameters.m_CellBias =
            std::make_unique<ScopedCpuTensorHandle>(*(params.m_CellBias));
    layer->m_BasicParameters.m_OutputGateBias =
            std::make_unique<ScopedCpuTensorHandle>(*(params.m_OutputGateBias));

    //Lstm Cifg parameters
    if(!descriptor.m_CifgEnabled)
    {
        if(params.m_InputToInputWeights == nullptr)
        {
            throw InvalidArgumentException("AddLstmLayer: Input To Input Weights cannot be NULL");
        }
        if(params.m_RecurrentToInputWeights == nullptr)
        {
            throw InvalidArgumentException(
                    "AddLstmLayer: Recurrent To Input Weights cannot be NULL");
        }
        if(params.m_InputGateBias == nullptr)
        {
            throw InvalidArgumentException("AddLstmLayer: Input Gate Bias cannot be NULL");
        }
        layer->m_CifgParameters.m_InputToInputWeights =
            std::make_unique<ScopedCpuTensorHandle>(*(params.m_InputToInputWeights));
        layer->m_CifgParameters.m_RecurrentToInputWeights =
            std::make_unique<ScopedCpuTensorHandle>(*(params.m_RecurrentToInputWeights));
        // In the VTS tests, cell-to-input weights may be null, even if the other CIFG params are not.
        if(params.m_CellToInputWeights != nullptr)
        {
            layer->m_CifgParameters.m_CellToInputWeights =
                    std::make_unique<ScopedCpuTensorHandle>(*(params.m_CellToInputWeights));
        }
        layer->m_CifgParameters.m_InputGateBias =
            std::make_unique<ScopedCpuTensorHandle>(*(params.m_InputGateBias));
    }

    //Lstm projection parameters
    if(descriptor.m_ProjectionEnabled)
    {
        if(params.m_ProjectionWeights == nullptr)
        {
            throw InvalidArgumentException("AddLstmLayer: Projection Weights cannot be NULL");
        }
        layer->m_ProjectionParameters.m_ProjectionWeights =
            std::make_unique<ScopedCpuTensorHandle>(*(params.m_ProjectionWeights));
        if(params.m_ProjectionBias != nullptr)
        {
            layer->m_ProjectionParameters.m_ProjectionBias =
                std::make_unique<ScopedCpuTensorHandle>(*(params.m_ProjectionBias));
        }
    }

    //Lstm Peephole params
    if(descriptor.m_PeepholeEnabled)
    {
        if(params.m_CellToForgetWeights == nullptr)
        {
            throw InvalidArgumentException("AddLstmLayer: Cell To Forget Weights cannot be NULL");
        }
        if(params.m_CellToOutputWeights == nullptr)
        {
            throw InvalidArgumentException("AddLstmLayer: Cell To Output Weights cannot be NULL");
        }
        layer->m_PeepholeParameters.m_CellToForgetWeights =
            std::make_unique<ScopedCpuTensorHandle>(*(params.m_CellToForgetWeights));
        layer->m_PeepholeParameters.m_CellToOutputWeights =
            std::make_unique<ScopedCpuTensorHandle>(*(params.m_CellToOutputWeights));
    }
    return layer;
}

IConnectableLayer* Network::AddDivisionLayer(const char* name)
{
    return m_Graph->AddLayer<DivisionLayer>(name);
}

IConnectableLayer* Network::AddSubtractionLayer(const char* name)
{
    return m_Graph->AddLayer<SubtractionLayer>(name);
}

IConnectableLayer* Network::AddMeanLayer(const MeanDescriptor& meanDescriptor, const char* name)
{
    return m_Graph->AddLayer<MeanLayer>(meanDescriptor,name);
}

IConnectableLayer* Network::AddPadLayer(const PadDescriptor& padDescriptor, const char* name)
{
    return m_Graph->AddLayer<PadLayer>(padDescriptor,name);
}

IConnectableLayer *Network::AddQuantizeLayer(const char *name)
{
    return m_Graph->AddLayer<QuantizeLayer>(name);
}

IConnectableLayer* Network::AddDequantizeLayer(const char* name)
{
    return m_Graph->AddLayer<DequantizeLayer>(name);
}

IConnectableLayer* Network::AddStridedSliceLayer(const StridedSliceDescriptor& stridedSliceDescriptor,
                                                 const char* name)
{
    return m_Graph->AddLayer<StridedSliceLayer>(stridedSliceDescriptor, name);
}

IConnectableLayer* Network::AddGreaterLayer(const char* name)
{
    return m_Graph->AddLayer<GreaterLayer>(name);
}

IConnectableLayer* Network::AddEqualLayer(const char* name)
{
    return m_Graph->AddLayer<EqualLayer>(name);
}

IConnectableLayer* Network::AddRsqrtLayer(const char * name)
{
    return m_Graph->AddLayer<RsqrtLayer>(name);
}

IConnectableLayer* Network::AddGatherLayer(const char* name)
{
    return m_Graph->AddLayer<GatherLayer>(name);
}

IConnectableLayer* Network::AddMergeLayer(const char* name)
{
    return m_Graph->AddLayer<MergeLayer>(name);
}

IConnectableLayer* Network::AddSwitchLayer(const char* name)
{
    return m_Graph->AddLayer<SwitchLayer>(name);
}

void Network::Accept(ILayerVisitor& visitor) const
{
    for (auto layer : GetGraph())
    {
        layer->Accept(visitor);
    };
}

OptimizedNetwork::OptimizedNetwork(std::unique_ptr<Graph> graph)
    : m_Graph(std::move(graph))
{
}

OptimizedNetwork::~OptimizedNetwork()
{
}

} // namespace armnn