aboutsummaryrefslogtreecommitdiff
path: root/samples/SpeechRecognition/src/Wav2LetterPreprocessor.cpp
blob: 9329d5e4d5fff2cf91053d3ca956e9ad5938a814 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
//
// Copyright © 2021 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "MathUtils.hpp"
#include <cstring>
#include <cmath>
#include <numeric>
#include <algorithm>
#include <memory>
#include "Wav2LetterPreprocessor.hpp"
#include "Wav2LetterMFCC.hpp"

float Wav2LetterPreprocessor::GetMean(Array2d<float>& vec)
{
    return MathUtils::MeanF32(vec.begin(), vec.totalSize());
}

float Wav2LetterPreprocessor::GetStdDev(Array2d<float>& vec, const float mean)
{
    return MathUtils::StdDevF32(vec.begin(), vec.totalSize(), mean);
}

void Wav2LetterPreprocessor::NormaliseVec(Array2d<float>& vec)
{
    auto mean = Wav2LetterPreprocessor::GetMean(vec);
    auto stddev = Wav2LetterPreprocessor::GetStdDev(vec, mean);

    if (stddev == 0)
    {
        std::fill(vec.begin(), vec.end(), 0);
    }
    else
    {
        const float stddevInv = 1.f/stddev;
        const float normalisedMean = mean/stddev;

        auto NormalisingFunction = [=](float &value) {
            value = value * stddevInv - normalisedMean;
        };
        std::for_each(vec.begin(), vec.end(), NormalisingFunction);
    }
}

void Wav2LetterPreprocessor::Normalise()
{
    Wav2LetterPreprocessor::NormaliseVec(this->m_mfccBuf);
    Wav2LetterPreprocessor::NormaliseVec(this->m_delta1Buf);
    Wav2LetterPreprocessor::NormaliseVec(this->m_delta2Buf);
}

float Wav2LetterPreprocessor::GetQuantElem(
        const float     elem,
        const float     quantScale,
        const int       quantOffset,
        const float     minVal,
        const float     maxVal)
{
    float val = std::round((elem/quantScale) + quantOffset);
    float returnVal = std::min<float>(std::max<float>(val, minVal), maxVal);
    return returnVal;
}

bool Wav2LetterPreprocessor::Invoke(const float*  audioData, const uint32_t  audioDataLen, std::vector<int8_t>& output,
                                     int quantOffset, float quantScale)
{
    this->m_window = SlidingWindow<const float>(
            audioData, audioDataLen,
            this->m_windowLen, this->m_windowStride);

    uint32_t mfccBufIdx = 0;

    // Init buffers with 0
    std::fill(m_mfccBuf.begin(), m_mfccBuf.end(), 0.f);
    std::fill(m_delta1Buf.begin(), m_delta1Buf.end(), 0.f);
    std::fill(m_delta2Buf.begin(), m_delta2Buf.end(), 0.f);

    // While we can slide over the window 
    while (this->m_window.HasNext())
    {
        const float* mfccWindow = this->m_window.Next();
        auto mfccAudioData = std::vector<float>(
                mfccWindow,
                mfccWindow + this->m_windowLen);

        auto mfcc = this->m_mfcc->MfccCompute(mfccAudioData);
        for (size_t i = 0; i < this->m_mfccBuf.size(0); ++i)
        {
            this->m_mfccBuf(i, mfccBufIdx) = mfcc[i];
        }
        ++mfccBufIdx;
    }

    // Pad MFCC if needed by repeating last feature vector 
    while (mfccBufIdx != this->m_mfcc->m_params.m_numMfccVectors)
    {
        memcpy(&this->m_mfccBuf(0, mfccBufIdx),
               &this->m_mfccBuf(0, mfccBufIdx - 1), sizeof(float) * this->m_mfcc->m_params.m_numMfccFeatures);
        ++mfccBufIdx;
    }

    // Compute first and second order deltas from MFCCs 
    Wav2LetterPreprocessor::ComputeDeltas(this->m_mfccBuf,
                        this->m_delta1Buf,
                        this->m_delta2Buf);

    // Normalise 
    this->Normalise();

    return this->Quantise<int8_t>(output.data(), quantOffset, quantScale);
}

bool Wav2LetterPreprocessor::ComputeDeltas(Array2d<float>& mfcc,
                                           Array2d<float>& delta1,
                                           Array2d<float>& delta2)
{
    const std::vector <float> delta1Coeffs =
            {6.66666667e-02,  5.00000000e-02,  3.33333333e-02,
             1.66666667e-02, -3.46944695e-18, -1.66666667e-02,
             -3.33333333e-02, -5.00000000e-02, -6.66666667e-02};

    const std::vector <float> delta2Coeffs =
            {0.06060606,      0.01515152,     -0.01731602,
             -0.03679654,     -0.04329004,     -0.03679654,
             -0.01731602,      0.01515152,      0.06060606};

    if (delta1.size(0) == 0 || delta2.size(0) != delta1.size(0) ||
        mfcc.size(0) == 0 || mfcc.size(1) == 0)
    {
        return false;
    }

    // Get the middle index; coeff vec len should always be odd 
    const size_t coeffLen = delta1Coeffs.size();
    const size_t fMidIdx = (coeffLen - 1)/2;
    const size_t numFeatures = mfcc.size(0);
    const size_t numFeatVectors = mfcc.size(1);

    // iterate through features in MFCC vector
    for (size_t i = 0; i < numFeatures; ++i)
    {
        /* for each feature, iterate through time (t) samples representing feature evolution and
        * calculate d/dt and d^2/dt^2, using 1d convolution with differential kernels.
        * Convolution padding = valid, result size is `time length - kernel length + 1`.
        * The result is padded with 0 from both sides to match the size of initial time samples data.
        *
        * For the small filter, conv1d implementation as a simple loop is efficient enough.
        * Filters of a greater size would need CMSIS-DSP functions to be used, like arm_fir_f32.
        */

        for (size_t j = fMidIdx; j < numFeatVectors - fMidIdx; ++j)
        {
            float d1 = 0;
            float d2 = 0;
            const size_t mfccStIdx = j - fMidIdx;

            for (size_t k = 0, m = coeffLen - 1; k < coeffLen; ++k, --m)
            {

                d1 +=  mfcc(i,mfccStIdx + k) * delta1Coeffs[m];
                d2 +=  mfcc(i,mfccStIdx + k) * delta2Coeffs[m];
            }

            delta1(i,j) = d1;
            delta2(i,j) = d2;
        }
    }

    return true;
}

Wav2LetterPreprocessor::Wav2LetterPreprocessor(const uint32_t  windowLen,
                                               const uint32_t  windowStride,
                                               std::unique_ptr<Wav2LetterMFCC> mfccInst):
    m_mfcc(std::move(mfccInst)),
    m_mfccBuf(m_mfcc->m_params.m_numMfccFeatures, m_mfcc->m_params.m_numMfccVectors),
    m_delta1Buf(m_mfcc->m_params.m_numMfccFeatures, m_mfcc->m_params.m_numMfccVectors),
    m_delta2Buf(m_mfcc->m_params.m_numMfccFeatures, m_mfcc->m_params.m_numMfccVectors),
    m_windowLen(windowLen),
    m_windowStride(windowStride) 
{
    if (m_mfcc->m_params.m_numMfccFeatures > 0 && windowLen > 0) 
    {
        this->m_mfcc->Init();
    }
    std::fill(m_mfccBuf.begin(), m_mfccBuf.end(), 0.f);
}