aboutsummaryrefslogtreecommitdiff
path: root/python/pyarmnn/examples/speech_recognition/preprocess.py
blob: 553ddba5deb7b7d8e3b48e79bccd85c31cdfbeb0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# Copyright © 2020 Arm Ltd and Contributors. All rights reserved.
# SPDX-License-Identifier: MIT

"""Class used to extract the Mel-frequency cepstral coefficients from a given audio frame."""

import numpy as np


class MFCCParams:
    def __init__(self, sampling_freq, num_fbank_bins,
                 mel_lo_freq, mel_hi_freq, num_mfcc_feats, frame_len, use_htk_method, n_FFT):
        self.sampling_freq = sampling_freq
        self.num_fbank_bins = num_fbank_bins
        self.mel_lo_freq = mel_lo_freq
        self.mel_hi_freq = mel_hi_freq
        self.num_mfcc_feats = num_mfcc_feats
        self.frame_len = frame_len
        self.use_htk_method = use_htk_method
        self.n_FFT = n_FFT


class MFCC:

    def __init__(self, mfcc_params):
        self.mfcc_params = mfcc_params
        self.FREQ_STEP = 200.0 / 3
        self.MIN_LOG_HZ = 1000.0
        self.MIN_LOG_MEL = self.MIN_LOG_HZ / self.FREQ_STEP
        self.LOG_STEP = 1.8562979903656 / 27.0
        self.__frame_len_padded = int(2 ** (np.ceil((np.log(self.mfcc_params.frame_len) / np.log(2.0)))))
        self.__filter_bank_initialised = False
        self.__frame = np.zeros(self.__frame_len_padded)
        self.__buffer = np.zeros(self.__frame_len_padded)
        self.__filter_bank_filter_first = np.zeros(self.mfcc_params.num_fbank_bins)
        self.__filter_bank_filter_last = np.zeros(self.mfcc_params.num_fbank_bins)
        self.__mel_energies = np.zeros(self.mfcc_params.num_fbank_bins)
        self.__dct_matrix = self.create_dct_matrix(self.mfcc_params.num_fbank_bins, self.mfcc_params.num_mfcc_feats)
        self.__mel_filter_bank = self.create_mel_filter_bank()
        self.__np_mel_bank = np.zeros([self.mfcc_params.num_fbank_bins, int(self.mfcc_params.n_FFT / 2) + 1])

        for i in range(self.mfcc_params.num_fbank_bins):
            k = 0
            for j in range(int(self.__filter_bank_filter_first[i]), int(self.__filter_bank_filter_last[i]) + 1):
                self.__np_mel_bank[i, j] = self.__mel_filter_bank[i][k]
                k += 1

    def mel_scale(self, freq, use_htk_method):
        """
        Gets the mel scale for a particular sample frequency.

        Args:
            freq: The sampling frequency.
            use_htk_method: Boolean to set whether to use HTK method or not.

        Returns:
            the mel scale
        """
        if use_htk_method:
            return 1127.0 * np.log(1.0 + freq / 700.0)
        else:
            mel = freq / self.FREQ_STEP

        if freq >= self.MIN_LOG_HZ:
            mel = self.MIN_LOG_MEL + np.log(freq / self.MIN_LOG_HZ) / self.LOG_STEP
        return mel

    def inv_mel_scale(self, mel_freq, use_htk_method):
        """
        Gets the sample frequency for a particular mel.

        Args:
            mel_freq: The mel frequency.
            use_htk_method: Boolean to set whether to use HTK method or not.

        Returns:
            the sample frequency
        """
        if use_htk_method:
            return 700.0 * (np.exp(mel_freq / 1127.0) - 1.0)
        else:
            freq = self.FREQ_STEP * mel_freq

            if mel_freq >= self.MIN_LOG_MEL:
                freq = self.MIN_LOG_HZ * np.exp(self.LOG_STEP * (mel_freq - self.MIN_LOG_MEL))
            return freq

    def mfcc_compute(self, audio_data):
        """
        Extracts the MFCC for a single frame.

        Args:
            audio_data: The audio data to process.

        Returns:
            the MFCC features
        """
        if len(audio_data) != self.mfcc_params.frame_len:
            raise ValueError(
                f"audio_data buffer size {len(audio_data)} does not match the frame length {self.mfcc_params.frame_len}")

        audio_data = np.array(audio_data)
        spec = np.abs(np.fft.rfft(np.hanning(self.mfcc_params.n_FFT + 1)[0:self.mfcc_params.n_FFT] * audio_data,
                                  self.mfcc_params.n_FFT)) ** 2
        mel_energy = np.dot(self.__np_mel_bank.astype(np.float32),
                            np.transpose(spec).astype(np.float32))

        mel_energy += 1e-10
        log_mel_energy = 10.0 * np.log10(mel_energy)
        top_db = 80.0

        log_mel_energy = np.maximum(log_mel_energy, log_mel_energy.max() - top_db)

        mfcc_feats = np.dot(self.__dct_matrix, log_mel_energy)

        return mfcc_feats

    def create_dct_matrix(self, num_fbank_bins, num_mfcc_feats):
        """
        Creates the Discrete Cosine Transform matrix to be used in the compute function.

        Args:
            num_fbank_bins: The number of filter bank bins
            num_mfcc_feats: the number of MFCC features

        Returns:
            the DCT matrix
        """
        dct_m = np.zeros(num_fbank_bins * num_mfcc_feats)
        for k in range(num_mfcc_feats):
            for n in range(num_fbank_bins):
                if k == 0:
                    dct_m[(k * num_fbank_bins) + n] = 2 * np.sqrt(1 / (4 * num_fbank_bins)) * np.cos(
                        (np.pi / num_fbank_bins) * (n + 0.5) * k)
                else:
                    dct_m[(k * num_fbank_bins) + n] = 2 * np.sqrt(1 / (2 * num_fbank_bins)) * np.cos(
                        (np.pi / num_fbank_bins) * (n + 0.5) * k)

        dct_m = np.reshape(dct_m, [self.mfcc_params.num_mfcc_feats, self.mfcc_params.num_fbank_bins])
        return dct_m

    def create_mel_filter_bank(self):
        """
        Creates the Mel filter bank.

        Returns:
            the mel filter bank
        """
        num_fft_bins = int(self.__frame_len_padded / 2)
        fft_bin_width = self.mfcc_params.sampling_freq / self.__frame_len_padded

        mel_low_freq = self.mel_scale(self.mfcc_params.mel_lo_freq, False)
        mel_high_freq = self.mel_scale(self.mfcc_params.mel_hi_freq, False)
        mel_freq_delta = (mel_high_freq - mel_low_freq) / (self.mfcc_params.num_fbank_bins + 1)

        this_bin = np.zeros(num_fft_bins)
        mel_fbank = [0] * self.mfcc_params.num_fbank_bins

        for bin_num in range(self.mfcc_params.num_fbank_bins):
            left_mel = mel_low_freq + bin_num * mel_freq_delta
            center_mel = mel_low_freq + (bin_num + 1) * mel_freq_delta
            right_mel = mel_low_freq + (bin_num + 2) * mel_freq_delta
            first_index = last_index = -1

            for i in range(num_fft_bins):
                freq = (fft_bin_width * i)
                mel = self.mel_scale(freq, False)
                this_bin[i] = 0.0

                if (mel > left_mel) and (mel < right_mel):
                    if mel <= center_mel:
                        weight = (mel - left_mel) / (center_mel - left_mel)
                    else:
                        weight = (right_mel - mel) / (right_mel - center_mel)

                    enorm = 2.0 / (self.inv_mel_scale(right_mel, False) - self.inv_mel_scale(left_mel, False))
                    weight *= enorm
                    this_bin[i] = weight

                    if first_index == -1:
                        first_index = i
                    last_index = i

            self.__filter_bank_filter_first[bin_num] = first_index
            self.__filter_bank_filter_last[bin_num] = last_index
            mel_fbank[bin_num] = np.zeros(last_index - first_index + 1)
            j = 0

            for i in range(first_index, last_index + 1):
                mel_fbank[bin_num][j] = this_bin[i]
                j += 1

        return mel_fbank


class Preprocessor:

    def __init__(self, mfcc, model_input_size, stride):
        self.model_input_size = model_input_size
        self.stride = stride

        # Savitzky - Golay differential filters
        self.__savgol_order1_coeffs = np.array([6.66666667e-02, 5.00000000e-02, 3.33333333e-02,
                                                1.66666667e-02, -3.46944695e-18, -1.66666667e-02,
                                                -3.33333333e-02, -5.00000000e-02, -6.66666667e-02])

        self.savgol_order2_coeffs = np.array([0.06060606, 0.01515152, -0.01731602,
                                              -0.03679654, -0.04329004, -0.03679654,
                                              -0.01731602, 0.01515152, 0.06060606])

        self.__mfcc_calc = mfcc

    def __normalize(self, values):
        """
        Normalize values to mean 0 and std 1
        """
        ret_val = (values - np.mean(values)) / np.std(values)
        return ret_val

    def __get_features(self, features, mfcc_instance, audio_data):
        idx = 0
        while len(features) < self.model_input_size * mfcc_instance.mfcc_params.num_mfcc_feats:
            features.extend(mfcc_instance.mfcc_compute(audio_data[idx:idx + int(mfcc_instance.mfcc_params.frame_len)]))
            idx += self.stride

    def extract_features(self, audio_data):
        """
        Extracts the MFCC features, and calculates each features first and second order derivative.
        The matrix returned should be sized appropriately for input to the model, based
        on the model info specified in the MFCC instance.

        Args:
            mfcc_instance: The instance of MFCC used for this calculation
            audio_data: the audio data to be used for this calculation
        Returns:
            the derived MFCC feature vector, sized appropriately for inference
        """

        num_samples_per_inference = ((self.model_input_size - 1)
                                     * self.stride) + self.__mfcc_calc.mfcc_params.frame_len
        if len(audio_data) < num_samples_per_inference:
            raise ValueError("audio_data size for feature extraction is smaller than "
                             "the expected number of samples needed for inference")

        features = []
        self.__get_features(features, self.__mfcc_calc, np.asarray(audio_data))
        features = np.reshape(np.array(features), (self.model_input_size, self.__mfcc_calc.mfcc_params.num_mfcc_feats))

        mfcc_delta_np = np.zeros_like(features)
        mfcc_delta2_np = np.zeros_like(features)

        for i in range(features.shape[1]):
            idelta = np.convolve(features[:, i], self.__savgol_order1_coeffs, 'same')
            mfcc_delta_np[:, i] = (idelta)
            ideltadelta = np.convolve(features[:, i], self.savgol_order2_coeffs, 'same')
            mfcc_delta2_np[:, i] = (ideltadelta)

        features = np.concatenate((self.__normalize(features), self.__normalize(mfcc_delta_np),
                                   self.__normalize(mfcc_delta2_np)), axis=1)

        return np.float32(features)