aboutsummaryrefslogtreecommitdiff
path: root/delegate/src/Split.hpp
blob: ad55e53ef27447132fbd0ff1a30df468093f4962 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
//
// Copyright © 2020 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//

#pragma once

#include "DelegateUtils.hpp"

#include <algorithm>
#include <iterator>
#include <vector>

namespace armnnDelegate
{

constexpr unsigned int MaxNumOfTensorDimensions = 5U;

TfLiteStatus VisitSplitOperator(DelegateData& delegateData,
                                TfLiteContext* tfLiteContext,
                                TfLiteNode* tfLiteNode,
                                int nodeIndex,
                                int32_t tfLiteSplitOperatorCode)
{
    TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 2, nodeIndex));

    auto* splitParameters = reinterpret_cast<TfLiteSplitParams*>(tfLiteNode->builtin_data);
    const unsigned int numSplits =  NonNegative(splitParameters->num_splits, nodeIndex);

    TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, numSplits, nodeIndex));

    const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
    const TfLiteTensor& tfLiteAxisTensor = tfLiteTensors[tfLiteNode->inputs->data[0]];
    if (!IsValid(tfLiteContext, tfLiteAxisTensor, tfLiteSplitOperatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    const TfLiteTensor& tfLiteInputTensor = tfLiteTensors[tfLiteNode->inputs->data[1]];
    if (!IsValid(tfLiteContext, tfLiteInputTensor, tfLiteSplitOperatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor);

    ARMNN_ASSERT(GetTensorInfoForTfLiteTensor(tfLiteAxisTensor).GetNumElements() == 1);
    auto* axisTensorDataPtr = tflite::GetTensorData<int32_t>(&tfLiteAxisTensor);
    std::vector<int32_t> axisTensorData(axisTensorDataPtr, axisTensorDataPtr + 1);
    int32_t axis = axisTensorData[0];

    auto inputDimensions = static_cast<int32_t>(inputTensorInfo.GetNumDimensions());
    if (((axis < -inputDimensions) && (axis < 0)) || ((axis >= inputDimensions) && (axis > 0)))
    {
        // Square bracket denotes inclusive n while parenthesis denotes exclusive n
        // E.g. Rank 4 tensor can have axis in range [-4, 3)
        // -1 == 3, -2 == 2, -3 == 1, -4 == 0
        TF_LITE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnDelegate: Operation has invalid axis: #%d. Axis must be in range [-n, n) in node #%d:",
                axis, nodeIndex);
    }
    const unsigned int splitDim = ComputeWrappedIndex(axis, inputTensorInfo.GetNumDimensions());

    std::vector<armnn::TensorInfo> outputs;
    for (unsigned int i = 0; i < numSplits; ++i)
    {
        const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[i]];
        if (!IsValid(tfLiteContext, tfLiteOutputTensor, tfLiteSplitOperatorCode, nodeIndex))
        {
            return kTfLiteError;
        }
        outputs.push_back(GetTensorInfoForTfLiteTensor(tfLiteOutputTensor));
    }
    const std::vector<std::reference_wrapper<armnn::TensorInfo>> outputTensorInfos(outputs.begin(), outputs.end());

    auto inputDimSize = inputTensorInfo.GetNumDimensions();
    if (inputDimSize > MaxNumOfTensorDimensions)
    {
        TF_LITE_MAYBE_KERNEL_LOG(
            tfLiteContext,
            "TfLiteArmnnDelegate: The number of dimensions: #%d for input tensors of the split op cannot be greater "
            "than #%d in node #%d: ", inputDimSize, MaxNumOfTensorDimensions, nodeIndex);
        return kTfLiteError;
    }

    std::vector<unsigned int> splitterDimSizes(inputDimSize);

    // Add current input shape to splitterDimSizes
    for (unsigned int i = 0; i < inputDimSize; ++i)
    {
        splitterDimSizes[i] = inputTensorInfo.GetShape()[i];
    }

    if (splitterDimSizes[splitDim] % numSplits != 0)
    {
        TF_LITE_MAYBE_KERNEL_LOG(
            tfLiteContext,
            "TfLiteArmnnDelegate: Number of splits #%d must evenly divide the dimension #%d in node #%d: ",
            numSplits, splitterDimSizes[splitDim], nodeIndex);
        return kTfLiteError;
    }
    splitterDimSizes[splitDim] /= numSplits;

    armnn::SplitterDescriptor splitDescriptor(numSplits, inputDimSize);
    for (unsigned int j = 0; j < numSplits; ++j)
    {
        // Set the size of the views.
        for (unsigned int dimIdx = 0; dimIdx < splitterDimSizes.size(); ++dimIdx)
        {
            splitDescriptor.SetViewSize(j, dimIdx, splitterDimSizes[dimIdx]);
        }
        splitDescriptor.SetViewOriginCoord(j, splitDim, splitterDimSizes[splitDim] * j);
    }

    if (!delegateData.m_Network)
    {
        // Check if supported
        bool isSupported = false;
        FORWARD_LAYER_SUPPORT_FUNC(__func__,
                                   tfLiteContext,
                                   IsSplitterSupported,
                                   delegateData.m_Backends,
                                   isSupported,
                                   inputTensorInfo,
                                   outputTensorInfos,
                                   splitDescriptor);
        return isSupported ? kTfLiteOk : kTfLiteError;
    }

    armnn::IConnectableLayer* layer = delegateData.m_Network->AddSplitterLayer(splitDescriptor);
    ARMNN_ASSERT(layer != nullptr);

    for (unsigned int k = 0; k < layer->GetNumOutputSlots(); ++k)
    {
        layer->GetOutputSlot(k).SetTensorInfo(outputs[k]);
    }

    // Connect the input slots
    delegateData.m_OutputSlotForNode[tfLiteNode->inputs->data[1]]->Connect(layer->GetInputSlot(0));

    // Prepare output slots
    for (unsigned int outputIndex = 0; outputIndex < layer->GetNumOutputSlots(); ++outputIndex)
    {
        armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(outputIndex);
        delegateData.m_OutputSlotForNode[
            static_cast<unsigned long>(tfLiteNode->outputs->data[outputIndex])] = &outputSlot;
    }

    return kTfLiteOk;
}

TfLiteStatus VisitSplitVOperator(DelegateData& delegateData,
                                 TfLiteContext* tfLiteContext,
                                 TfLiteNode* tfLiteNode,
                                 int nodeIndex,
                                 int32_t tfLiteSplitVOperatorCode)
{
    TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 3, nodeIndex));

    const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
    const TfLiteTensor& tfLiteInputTensor = tfLiteTensors[tfLiteNode->inputs->data[0]];
    if (!IsValid(tfLiteContext, tfLiteInputTensor, tfLiteSplitVOperatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    const TfLiteTensor& tfLiteSplitsTensor = tfLiteTensors[tfLiteNode->inputs->data[1]];
    if (!IsValid(tfLiteContext, tfLiteSplitsTensor, tfLiteSplitVOperatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    const TfLiteTensor& tfLiteAxisTensor = tfLiteTensors[tfLiteNode->inputs->data[2]];
    if (!IsValid(tfLiteContext, tfLiteAxisTensor, tfLiteSplitVOperatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor);
    const armnn::TensorInfo& splitsTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteSplitsTensor);
    ARMNN_ASSERT(splitsTensorInfo.GetNumDimensions() == 1);
    ARMNN_ASSERT(GetTensorInfoForTfLiteTensor(tfLiteAxisTensor).GetNumElements() == 1);

    auto* axisTensorDataPtr = tflite::GetTensorData<int32_t>(&tfLiteAxisTensor);
    std::vector<int32_t> axisTensorData(axisTensorDataPtr, axisTensorDataPtr + 1);
    int32_t axis = axisTensorData[0];

    auto inputDimensions = static_cast<int32_t>(inputTensorInfo.GetNumDimensions());
    if (((axis < -inputDimensions) && (axis < 0)) || ((axis >= inputDimensions) && (axis > 0)))
    {
        TF_LITE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnDelegate: Operation has invalid axis: #%d. Axis must be in range [-n, n) in node #%d:",
                axis, nodeIndex);
    }
    const unsigned int splitDim = ComputeWrappedIndex(axisTensorData[0], inputTensorInfo.GetNumDimensions());

    auto* splitVParameters = reinterpret_cast<TfLiteSplitVParams*>(tfLiteNode->builtin_data);
    unsigned int numSplits = 0;
    if (splitVParameters)
    {
        numSplits = NonNegative(splitVParameters->num_splits, nodeIndex);
    }
    else
    {
        numSplits = splitsTensorInfo.GetNumElements();
    }

    if (numSplits <= 0)
    {
        TF_LITE_MAYBE_KERNEL_LOG(
            tfLiteContext, "TfLiteArmnnDelegate: Invalid number of splits %d  in node #%d",
            numSplits, nodeIndex);
        return kTfLiteError;
    }

    TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, numSplits, nodeIndex));
    std::vector<armnn::TensorInfo> outputs;
    for (unsigned int i = 0; i < numSplits; ++i)
    {
        const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[i]];
        if (!IsValid(tfLiteContext, tfLiteOutputTensor, tfLiteSplitVOperatorCode, nodeIndex))
        {
            return kTfLiteError;
        }
        outputs.push_back(GetTensorInfoForTfLiteTensor(tfLiteOutputTensor));
    }
    const std::vector<std::reference_wrapper<armnn::TensorInfo>> outputTensorInfos(outputs.begin(), outputs.end());

    auto inputDimSize = inputTensorInfo.GetNumDimensions();
    if (inputDimSize > MaxNumOfTensorDimensions)
    {
        TF_LITE_MAYBE_KERNEL_LOG(
            tfLiteContext,
            "TfLiteArmnnDelegate: The number of dimensions: #%d for input tensors of the split op cannot be greater "
            "than #%d in node #%d: ", inputDimSize, MaxNumOfTensorDimensions, nodeIndex);
        return kTfLiteError;
    }

    std::vector<int32_t> splitsTensorData(numSplits);
    std::memcpy(splitsTensorData.data(), tfLiteSplitsTensor.data.data, splitsTensorInfo.GetNumBytes());


    unsigned int index         = 0;
    unsigned int inferredIndex = 0;
    int numberOfInferred       = 0;
    int splitSum = 0;

    for (auto splitData : splitsTensorData)
    {
        if (splitData < 0)
        {
            ++numberOfInferred;
            inferredIndex = index;
        }
        else
        {
            splitSum += splitData;
        }
        ++index;
    }

    // Check for inferred axis
    if (numberOfInferred == 0)
    {
        if (splitSum != armnn::numeric_cast<int>(inputTensorInfo.GetShape()[splitDim]))
        {
            TF_LITE_MAYBE_KERNEL_LOG(
                tfLiteContext, "TfLiteArmnnDelegate: SplitV split_sizes does not sum to the dimension of value along"
                               " split_dim in node #%d", nodeIndex);
            return kTfLiteError;
        }
    }
    else if (numberOfInferred == 1)
    {
        splitsTensorData[inferredIndex] = armnn::numeric_cast<int>(inputTensorInfo.GetShape()[splitDim]) - splitSum;
    }
    else
    {
        TF_LITE_MAYBE_KERNEL_LOG(
            tfLiteContext, "TfLiteArmnnDelegate: SplitV cannot infer split size for more than one split in node #%d",
            nodeIndex);
        return kTfLiteError;
    }

    armnn::SplitterDescriptor splitDescriptor(numSplits, inputDimSize);
    unsigned int accumSplit = 0;
    for (unsigned int j = 0; j < numSplits; ++j)
    {
        unsigned int splitSize = armnn::numeric_cast<unsigned int>(splitsTensorData[j]);

        // Set the size of the views.
        for (unsigned int dimIdx = 0; dimIdx < inputTensorInfo.GetNumDimensions(); ++dimIdx)
        {
            unsigned int dimSize = inputTensorInfo.GetShape()[dimIdx];
            if (dimIdx == splitDim)
            {
                dimSize = splitSize;
            }
            splitDescriptor.SetViewSize(j, dimIdx, dimSize);
        }

        splitDescriptor.SetViewOriginCoord(j, splitDim, accumSplit);
        accumSplit += splitSize;
    }

    if (!delegateData.m_Network)
    {
        // Check if supported
        bool isSupported = false;
        FORWARD_LAYER_SUPPORT_FUNC(__func__,
                                   tfLiteContext,
                                   IsSplitterSupported,
                                   delegateData.m_Backends,
                                   isSupported,
                                   inputTensorInfo,
                                   outputTensorInfos,
                                   splitDescriptor);
        return isSupported ? kTfLiteOk : kTfLiteError;
    }

    armnn::IConnectableLayer* layer = delegateData.m_Network->AddSplitterLayer(splitDescriptor);
    ARMNN_ASSERT(layer != nullptr);

    for (unsigned int k = 0; k < layer->GetNumOutputSlots(); ++k)
    {
        layer->GetOutputSlot(k).SetTensorInfo(outputs[k]);
    }

    // Connect
    return Connect(layer, tfLiteNode, delegateData);
}

} // namespace armnnDelegate