aboutsummaryrefslogtreecommitdiff
path: root/delegate/src/Redefine.hpp
blob: 3df26cacc319643c1feafb4686f8c0a9b57c8cf3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
//
// Copyright © 2020 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//

#pragma once

#include <armnn/utility/IgnoreUnused.hpp>

#include "DelegateUtils.hpp"

#include <tensorflow/lite/builtin_ops.h>
#include <tensorflow/lite/c/builtin_op_data.h>
#include <tensorflow/lite/c/common.h>
#include <tensorflow/lite/minimal_logging.h>
#include <numeric>

namespace armnnDelegate
{

TfLiteStatus CreateOutputTensorShape(const armnn::TensorInfo& inputTensorInfo,
                                     const std::vector<int32_t>& targetShape,
                                     armnn::ReshapeDescriptor& reshapeDesc)
{
    std::vector<unsigned int> outputDims(targetShape.begin(), targetShape.end());
    const auto stretchDim = std::find(targetShape.begin(), targetShape.end(), -1);

    if (stretchDim != targetShape.end())
    {
        if (std::find(std::next(stretchDim), targetShape.end(), -1) != targetShape.end())
        {
            // Return kTfLiteError and log the error after returning
            return kTfLiteError;
        }

        auto targetNumElements =
            armnn::numeric_cast<unsigned int>(
                std::accumulate(targetShape.begin(), targetShape.end(), -1, std::multiplies<int32_t>()));

        auto stretchIndex = static_cast<size_t>(std::distance(targetShape.begin(), stretchDim));
        outputDims[stretchIndex] = inputTensorInfo.GetNumElements() / targetNumElements;
    }

    armnn::TensorShape outputShape = armnn::TensorShape(static_cast<unsigned int>(outputDims.size()),
                                                        outputDims.data());
    reshapeDesc.m_TargetShape = outputShape;
    return kTfLiteOk;
}

TfLiteStatus VisitReshapeOperator(DelegateData& delegateData,
                                  TfLiteContext* tfLiteContext,
                                  TfLiteNode* tfLiteNode,
                                  int nodeIndex,
                                  int32_t operatorCode)
{
    auto numInputs = tfLiteNode->inputs->size;

    if (numInputs == 2)
    {
        TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 2, nodeIndex));
    }
    else
    {
        TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
    }
    TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));

    const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
    const TfLiteTensor& tfLiteInputTensor0 = tfLiteTensors[tfLiteNode->inputs->data[0]];
    if (!IsValid(tfLiteContext, tfLiteInputTensor0, operatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]];
    if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex))
    {
        return kTfLiteError;
    }

    const armnn::TensorInfo& inputTensorInfo0 = GetTensorInfoForTfLiteTensor(tfLiteInputTensor0);
    const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor);

    armnn::ReshapeDescriptor reshapeDesc;
    std::vector<int32_t> targetShape;

    TfLiteReshapeParams* reshapeOptions = reinterpret_cast<TfLiteReshapeParams*>(tfLiteNode->builtin_data);

    // The new shape can be defined by either a second input tensor or by a builtin option, we need to check for both.
    // Options might be set without valid data. we need to check the dimensions are in a valid range.
    if (reshapeOptions && reshapeOptions->num_dimensions > 0 && reshapeOptions->num_dimensions <= 8)
    {
        for (int i=0; i < reshapeOptions->num_dimensions; ++i)
        {
            targetShape.push_back(reshapeOptions->shape[i]);
        }
    }
    else if (numInputs == 2)
    {
        // Get shape from the second input tensor
        const TfLiteTensor& tfLiteShapeInputTensor = tfLiteTensors[tfLiteNode->inputs->data[1]];
        if (!IsValid(tfLiteContext, tfLiteShapeInputTensor, operatorCode, nodeIndex))
        {
            return kTfLiteError;
        }

        if (tfLiteShapeInputTensor.dims->size != 1)
        {
            TF_LITE_MAYBE_KERNEL_LOG(tfLiteContext,
                                     "TfLiteArmnnDelegate: Target 'shape' input is not a 1D tensor in "
                                     "operator #%d node #%d: Falling back to TfLiteOptions.",
                                     operatorCode, nodeIndex);
        }
        else
        {
            // Get the shape data out of the input tensor
            auto* shapeTensorDataPtr = tflite::GetTensorData<int32_t>(&tfLiteShapeInputTensor);
            auto shapeTensorNumValues = tfLiteShapeInputTensor.dims->data[0];
            for (auto i=0; i < shapeTensorNumValues; ++i)
            {
                targetShape.push_back(*(shapeTensorDataPtr+i));
            }
        }
    }
    else
    {
        TF_LITE_MAYBE_KERNEL_LOG(tfLiteContext,
                                 "Target shape not defined in reshape parameters or input tensor. "
                                 "At least one method required in operator #%d node #%d: ",
                                 operatorCode, nodeIndex);
        return kTfLiteError;
    }

    // Use the data to create the required tensor shape.
    if (CreateOutputTensorShape(inputTensorInfo0, targetShape, reshapeDesc) != kTfLiteOk)
    {
        TF_LITE_MAYBE_KERNEL_LOG(tfLiteContext,
                                 "TfLiteArmnnDelegate: At most one component of shape can be -1 in: "
                                 "operator #%d node #%d: ",
                                 operatorCode, nodeIndex);
        return kTfLiteError;
    }

    if (reshapeDesc.m_TargetShape.GetNumElements() != inputTensorInfo0.GetNumElements())
    {
        TF_LITE_MAYBE_KERNEL_LOG(
            tfLiteContext,
            "TfLiteArmnnDelegate: Reshape, number of elements in output shape does not match input "
            "operator #%d node #%d: ",
            operatorCode, nodeIndex);
        return kTfLiteError;
    }

    bool isSupported = false;
    auto validateFunc = [&](const armnn::TensorInfo& outInfo, bool& isSupported)
    {
        FORWARD_LAYER_SUPPORT_FUNC(__func__,
                                   tfLiteContext,
                                   IsReshapeSupported,
                                   delegateData.m_Backends,
                                   isSupported,
                                   inputTensorInfo0,
                                   outInfo,
                                   reshapeDesc);
    };

    if (!delegateData.m_Network)
    {
        validateFunc(outputTensorInfo, isSupported);
        return isSupported ? kTfLiteOk : kTfLiteError;
    }

    armnn::IConnectableLayer* layer = delegateData.m_Network->AddReshapeLayer(reshapeDesc);
    ARMNN_ASSERT(layer != nullptr);

    armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0);
    outputSlot.SetTensorInfo(outputTensorInfo);

    // Connect
    return Connect(layer, tfLiteNode, delegateData);
}

TfLiteStatus VisitSqueezeOperator(DelegateData& delegateData,
                                  TfLiteContext* tfLiteContext,
                                  TfLiteNode* tfLiteNode,
                                  int nodeIndex,
                                  int32_t operatorCode)
{
    armnn::IgnoreUnused(delegateData,
                        tfLiteContext,
                        tfLiteNode,
                        nodeIndex,
                        operatorCode);

    return kTfLiteError;
}

TfLiteStatus VisitExpandDimsOperator(DelegateData& delegateData,
                                     TfLiteContext* tfLiteContext,
                                     TfLiteNode* tfLiteNode,
                                     int nodeIndex,
                                     int32_t operatorCode)
{
    armnn::IgnoreUnused(delegateData,
                        tfLiteContext,
                        tfLiteNode,
                        nodeIndex,
                        operatorCode);

    return kTfLiteError;
}

} // namespace armnnDelegate