aboutsummaryrefslogtreecommitdiff
path: root/delegate/src/FullyConnected.hpp
blob: 53251f7c5598192807b8da5713a87e8ff924e62d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
//
// Copyright © 2020 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//

#pragma once

#include "DelegateUtils.hpp"
#include <armnn/utility/IgnoreUnused.hpp>

#include <tensorflow/lite/builtin_ops.h>
#include <tensorflow/lite/c/builtin_op_data.h>
#include <tensorflow/lite/c/common.h>
#include <tensorflow/lite/minimal_logging.h>

namespace armnnDelegate
{

TfLiteStatus VisitFullyConnectedOperator(DelegateData& delegateData,
                                         TfLiteContext* tfLiteContext,
                                         TfLiteNode* tfLiteNode,
                                         int nodeIndex,
                                         int32_t operatorCode)
{
    auto numInputs = tfLiteNode->inputs->size;
    if (numInputs < 2)
    {
        TF_LITE_MAYBE_KERNEL_LOG(
            tfLiteContext, "TfLiteArmnnDelegate: Minimum number of inputs (%d != %d) in node #%d",
            2, numInputs, nodeIndex);
        return kTfLiteError;
    }
    TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
    bool biasEnabled = (numInputs == 3);

    const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
    const TfLiteTensor& tfLiteInputTensor = tfLiteTensors[tfLiteNode->inputs->data[0]];
    if(!IsValid(&tfLiteTensors[tfLiteNode->inputs->data[0]]))
    {
        TF_LITE_MAYBE_KERNEL_LOG(
            tfLiteContext,
            "TfLiteArmnnDelegate: Invalid input tensor in operator #%d node #%d: ",
            operatorCode, nodeIndex);
        return kTfLiteError;
    }
    if (IsDynamicTensor(tfLiteInputTensor))
    {
        TF_LITE_MAYBE_KERNEL_LOG(
            tfLiteContext,
            "TfLiteArmnnDelegate: Dynamic input tensors are not supported in node #%d: ",
            nodeIndex);
        return kTfLiteError;
    }
    const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]];
    if(!IsValid(&tfLiteOutputTensor))
    {
        TF_LITE_MAYBE_KERNEL_LOG(
            tfLiteContext,
            "TfLiteArmnnDelegate: Invalid output tensor in operator #%d node #%d: ",
            operatorCode, nodeIndex);
        return kTfLiteError;
    }
    if (IsDynamicTensor(tfLiteOutputTensor))
    {
        TF_LITE_MAYBE_KERNEL_LOG(
            tfLiteContext,
            "TfLiteArmnnDelegate: Dynamic output tensors are not supported in node #%d: ",
            nodeIndex);
        return kTfLiteError;
    }

    const TfLiteTensor& tfLiteWeightsTensor = tfLiteTensors[tfLiteNode->inputs->data[1]];
    if(!IsValid(&tfLiteWeightsTensor))
    {
        TF_LITE_MAYBE_KERNEL_LOG(
            tfLiteContext,
            "TfLiteArmnnDelegate: Invalid weights tensor in operator #%d node #%d: ",
            operatorCode, nodeIndex);
        return kTfLiteError;
    }
    if (IsDynamicTensor(tfLiteWeightsTensor))
    {
        TF_LITE_MAYBE_KERNEL_LOG(
            tfLiteContext,
            "TfLiteArmnnDelegate: Dynamic weight tensors are not supported in node #%d: ",
            nodeIndex);
        return kTfLiteError;
    }

    const armnn::TensorInfo& inputTensorInfo   = GetTensorInfoForTfLiteTensor(tfLiteInputTensor);
    const armnn::TensorInfo& outputTensorInfo  = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor);

    armnn::TensorInfo weightsTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteWeightsTensor);
    // Fully Connected Layer accepts two dimensional weights input
    int32_t weightsDimension = static_cast<int32_t>(weightsTensorInfo.GetNumDimensions());
    if (weightsDimension != 2)
    {
        TF_LITE_MAYBE_KERNEL_LOG(
            tfLiteContext,
            "TfLiteArmnnDelegate: Dimension #$d for Fully Connected weights is not supported by Armnn"
            " in operator #%d node #%d: ", weightsDimension, operatorCode, nodeIndex);
        return kTfLiteError;
    }

    armnn::TensorInfo biasTensorInfo;
    if (biasEnabled)
    {
        const TfLiteTensor& tfLiteBiasTensor = tfLiteTensors[tfLiteNode->inputs->data[2]];
        if(!IsValid(&tfLiteBiasTensor))
        {
            TF_LITE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnDelegate: Invalid bias tensor in operator #%d node #%d: ",
                operatorCode, nodeIndex);
            return kTfLiteError;
        }
        if (IsDynamicTensor(tfLiteBiasTensor))
        {
            TF_LITE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnDelegate: Dynamic bias tensors are not supported in node #%d: ",
                nodeIndex);
            return kTfLiteError;
        }
        biasTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteBiasTensor);
    }
    else
    {
        biasTensorInfo = armnn::TensorInfo(armnn::TensorShape({1}), GetDataType(tfLiteInputTensor));
    }

    armnn::TensorInfo reshapedTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor);

    if (inputTensorInfo.GetNumDimensions() > 2)
    {
        // Calculate reshape to flatten to 2D [batch_size, input_size]
        std::vector<unsigned int> reshapedDimensions(2);
        reshapedDimensions[1] = weightsTensorInfo.GetShape()[1];
        reshapedDimensions[0] = inputTensorInfo.GetNumElements() / reshapedDimensions[1];

        if (inputTensorInfo.GetNumElements() % reshapedDimensions[1] != 0)
        {
            TF_LITE_MAYBE_KERNEL_LOG(
                tfLiteContext,
                "TfLiteArmnnDelegate: Failed to deduce input tensor shape from filter size #%d #%d node #%d: ",
                reshapedDimensions[1], operatorCode, nodeIndex);
            return kTfLiteError;
        }

        reshapedTensorInfo.SetShape(armnn::TensorShape{ 2, reshapedDimensions.data() });
    }

    armnn::FullyConnectedDescriptor descriptor;
    descriptor.m_TransposeWeightMatrix = true;
    descriptor.m_BiasEnabled           = biasEnabled;

    bool isSupported = false;
    auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported)
    {
        FORWARD_LAYER_SUPPORT_FUNC(__func__,
                                   tfLiteContext,
                                   IsFullyConnectedSupported,
                                   delegateData.m_Backends,
                                   isSupported,
                                   reshapedTensorInfo,
                                   outputTensorInfo,
                                   weightsTensorInfo,
                                   biasTensorInfo,
                                   descriptor);
    };

    if (!delegateData.m_Network)
    {
        validateFunc(outputTensorInfo, isSupported);
        return isSupported ? kTfLiteOk : kTfLiteError;
    }

    auto weightsTensor = CreateConstTensor(&tfLiteWeightsTensor,
                                           weightsTensorInfo,
                                           armnn::Optional<armnn::PermutationVector&>());

    armnn::IConnectableLayer* layer = nullptr;
    if (biasEnabled)
    {
        const TfLiteTensor& tfLiteBiasTensor = tfLiteTensors[tfLiteNode->inputs->data[2]];
        auto biasTensor = CreateConstTensor(&tfLiteBiasTensor,
                                            biasTensorInfo,
                                            armnn::Optional<armnn::PermutationVector&>());
        layer = delegateData.m_Network->AddFullyConnectedLayer(descriptor,
                                                               weightsTensor,
                                                               armnn::Optional<armnn::ConstTensor>(biasTensor));
    }
    else
    {
        layer = delegateData.m_Network->AddFullyConnectedLayer(descriptor,
                                                               weightsTensor,
                                                               armnn::EmptyOptional());
    }
    ARMNN_ASSERT(layer != nullptr);

    armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0);
    outputSlot.SetTensorInfo(outputTensorInfo);

    armnn::IConnectableLayer* reshapeLayer = nullptr;
    if (inputTensorInfo.GetNumDimensions() > 2)
    {
        // Add reshape to flatten to 2D [batch_size, input_size]
        armnn::ReshapeDescriptor reshapeDescriptor;
        reshapeDescriptor.m_TargetShape = reshapedTensorInfo.GetShape();
        reshapeLayer = delegateData.m_Network->AddReshapeLayer(reshapeDescriptor);
        ARMNN_ASSERT(reshapeLayer != nullptr);

        reshapeLayer->GetOutputSlot(0).SetTensorInfo(reshapedTensorInfo);

        // Connect
        delegateData.m_OutputSlotForNode[tfLiteNode->inputs->data[0]]->Connect(reshapeLayer->GetInputSlot(0));
        reshapeLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(0));
        delegateData.m_OutputSlotForNode[tfLiteNode->outputs->data[0]] = &outputSlot;
    }

    if (reshapeLayer == nullptr)
    {
        Connect(layer, tfLiteNode, delegateData);
    }

    auto* tfLiteNodeParameters = reinterpret_cast<TfLiteAddParams*>(tfLiteNode->builtin_data);
    if (!tfLiteNodeParameters)
    {
        // No Activation
        return kTfLiteOk;
    }

    // Check Activation
    TfLiteFusedActivation activationType = tfLiteNodeParameters->activation;
    return FusedActivation(tfLiteContext, tfLiteNode, activationType, layer, 0, delegateData);
}

} // namespace armnnDelegate