aboutsummaryrefslogtreecommitdiff
path: root/delegate/src/DelegateUtils.hpp
blob: e0ba1cf4e704ab04b7a42c73a6dd88876d62f75f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
//
// Copyright © 2020 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//

#pragma once

#include <armnn_delegate.hpp>

#include <armnn/ArmNN.hpp>
#include <armnn/BackendHelper.hpp>
#include <armnn/utility/Assert.hpp>
#include <armnn/utility/NumericCast.hpp>

#include <armnnUtils/Permute.hpp>

#include <tensorflow/lite/builtin_ops.h>
#include <tensorflow/lite/c/builtin_op_data.h>
#include <tensorflow/lite/c/common.h>
#include <tensorflow/lite/minimal_logging.h>

#include "tensorflow/lite/kernels/kernel_util.h"

namespace
{

// Macro to call an Is<layer_name>Supported function and log caller name together with reason for lack of support
#define FORWARD_LAYER_SUPPORT_FUNC(opName, tfLiteContext, func, backends, supported, ...) \
try \
{ \
    for (auto&& backendId : backends) \
    { \
        auto layerSupportObject = armnn::GetILayerSupportByBackendId(backendId); \
        if (layerSupportObject.IsBackendRegistered()) \
        { \
            std::string reasonIfUnsupported; \
            supported = \
                layerSupportObject.func(__VA_ARGS__, armnn::Optional<std::string&>(reasonIfUnsupported)); \
            if (supported) \
            { \
                break; \
            } \
            else \
            { \
                if (reasonIfUnsupported.size() > 0) \
                { \
                    TFLITE_LOG_PROD(tflite::TFLITE_LOG_WARNING, \
                                    "%s: not supported by armnn: %s", opName, reasonIfUnsupported.c_str()); \
                } \
                else \
                { \
                    TFLITE_LOG_PROD(tflite::TFLITE_LOG_WARNING, \
                                    "%s: not supported by armnn", opName); \
                } \
            } \
        } \
        else \
        { \
            TF_LITE_KERNEL_LOG(tfLiteContext, "%s: backend not registered: %s", opName, backendId.Get().c_str()); \
        } \
    } \
    if (!supported) \
    { \
        TF_LITE_KERNEL_LOG(tfLiteContext, "%s: not supported by any specified backend", opName); \
    } \
} \
catch (const armnn::InvalidArgumentException &e) \
{ \
    throw armnn::InvalidArgumentException(e, "Failed to check layer support", CHECK_LOCATION()); \
}

TfLiteStatus ValidateNumInputs(TfLiteContext* tfLiteContext,
                               TfLiteNode* tfLiteNode,
                               const unsigned int expectedSize,
                               int nodeIndex)
{
    auto numInputs = tfLiteNode->inputs->size;
    if (static_cast<unsigned int >(numInputs) != expectedSize)
    {
        TF_LITE_MAYBE_KERNEL_LOG(
            tfLiteContext, "TfLiteArmnnDelegate: Unexpected number of inputs (%d != %d) in node #%d",
            numInputs, expectedSize, nodeIndex);
        return kTfLiteError;
    }
    return kTfLiteOk;
}

TfLiteStatus ValidateNumOutputs(TfLiteContext* tfLiteContext,
                                TfLiteNode* tfLiteNode,
                                const unsigned int expectedSize,
                                int nodeIndex)
{
    auto numOutputs = tfLiteNode->outputs->size;
    if (static_cast<unsigned int >(numOutputs) != expectedSize)
    {
        TF_LITE_MAYBE_KERNEL_LOG(
            tfLiteContext, "TfLiteArmnnDelegate: Unexpected number of outputs (%d != %d) in node #%d",
            numOutputs, expectedSize, nodeIndex);
        return kTfLiteError;
    }
    return kTfLiteOk;
}

bool IsDynamicTensor(const TfLiteTensor& tfLiteTensor)
{
    auto tensorAllocationType = tfLiteTensor.allocation_type;
    if (tensorAllocationType == kTfLiteDynamic)
    {
        return true;
    }
    return false;
}

bool IsValid(const TfLiteTensor* tfLiteTensor)
{
    return tfLiteTensor == nullptr ? false : true;
}

bool IsValid(TfLiteContext* tfLiteContext, const TfLiteTensor& tfLiteTensor, int32_t operatorCode, int32_t nodeIndex)
{
    if(!IsValid(&tfLiteTensor))
    {
        std::cout << "..Is Not Valid" << std::endl;
        TF_LITE_MAYBE_KERNEL_LOG(
            tfLiteContext,
            "TfLiteArmnnDelegate: Invalid TfLite tensor in operator #%d node #%d: ",
            operatorCode, nodeIndex);
        return false;
    }
    if (IsDynamicTensor(tfLiteTensor))
    {
        std::cout << "..IsDynamicTensor" << std::endl;
        TF_LITE_MAYBE_KERNEL_LOG(
            tfLiteContext,
            "TfLiteArmnnDelegate: Dynamic tensors are not supported in operator #%d node #%d: ",
            operatorCode, nodeIndex);
        return false;
    }
    return true;
}

uint32_t NonNegative(int32_t value, int nodeIndex)
{
    if (value < 0)
    {
        throw armnn::Exception(
            "TfLiteArmnnDelegate: Non-negative value in node " + std::to_string(static_cast<int>(nodeIndex)));
    }
    else
    {
        return static_cast<uint32_t>(value);
    }
}

bool IsAffineQuantization(const TfLiteTensor& tfLiteTensor)
{
    auto quantizationInfo = tfLiteTensor.quantization;
    if (quantizationInfo.type == kTfLiteAffineQuantization)
    {
        return true;
    }
    return false;
}

TfLiteStatus Connect(armnn::IConnectableLayer* layer,
                     TfLiteNode* tfLiteNode,
                     armnnDelegate::DelegateData& data)
{
    ARMNN_ASSERT(static_cast<unsigned int>(tfLiteNode->outputs->size) == layer->GetNumOutputSlots());

    // Connect the input slots
    for (unsigned int inputIndex = 0; inputIndex < layer->GetNumInputSlots(); ++inputIndex)
    {
        if (data.m_OutputSlotForNode[tfLiteNode->inputs->data[inputIndex]] != nullptr)
        {
            data.m_OutputSlotForNode[tfLiteNode->inputs->data[inputIndex]]->Connect(layer->GetInputSlot(inputIndex));
        }
    }

    // Prepare output slots
    for (unsigned int outputIndex = 0; outputIndex < layer->GetNumOutputSlots(); ++outputIndex)
    {
        armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(outputIndex);
        data.m_OutputSlotForNode[static_cast<unsigned long>(tfLiteNode->outputs->data[outputIndex])] = &outputSlot;
    }

    return kTfLiteOk;
}

armnn::IConnectableLayer* BroadcastTensor(const armnn::TensorInfo& inputInfo0,
                                          const armnn::TensorInfo& inputInfo1,
                                          armnn::IConnectableLayer* startLayer,
                                          TfLiteContext* tfLiteContext,
                                          TfLiteNode* tfLiteNode,
                                          armnnDelegate::DelegateData& delegateData)
{
    unsigned int inputDimensions0 = inputInfo0.GetNumDimensions();
    unsigned int inputDimensions1 = inputInfo1.GetNumDimensions();

    if (inputDimensions0 == inputDimensions1)
    {
        auto status = Connect(startLayer, tfLiteNode, delegateData);
        return status == kTfLiteOk ? startLayer : nullptr;
    }

    unsigned int biggerInputDimensions = std::max(inputDimensions0, inputDimensions1);
    unsigned int dimDifference = static_cast<unsigned int>(std::abs(armnn::numeric_cast<int>(inputDimensions0) -
                                                                    armnn::numeric_cast<int>(inputDimensions1)));

    bool input0IsSmaller = inputDimensions0 < inputDimensions1;
    const armnn::TensorInfo& smallInfo = input0IsSmaller ? inputInfo0 : inputInfo1;
    const armnn::TensorShape& smallShape = smallInfo.GetShape();

    std::vector<unsigned int> reshapedDimensions(biggerInputDimensions, 1);
    for (unsigned int i = dimDifference; i < biggerInputDimensions; ++i)
    {
        reshapedDimensions[i] = smallShape[i - dimDifference];
    }

    armnn::TensorInfo reshapedInfo = smallInfo;
    reshapedInfo.SetShape(armnn::TensorShape{ armnn::numeric_cast<unsigned int>(reshapedDimensions.size()),
                                              reshapedDimensions.data() });

    armnn::ReshapeDescriptor reshapeDescriptor;
    reshapeDescriptor.m_TargetShape = reshapedInfo.GetShape();
    bool isSupported = false;
    FORWARD_LAYER_SUPPORT_FUNC("RESHAPE",
                               tfLiteContext,
                               IsReshapeSupported,
                               delegateData.m_Backends,
                               isSupported,
                               smallInfo,
                               reshapedInfo,
                               reshapeDescriptor);
    if (!isSupported)
    {
        return nullptr;
    }

    ARMNN_ASSERT(delegateData.m_Network != nullptr);
    // Add Reshape layer
    armnn::IConnectableLayer* reshapeLayer = delegateData.m_Network->AddReshapeLayer(reshapeDescriptor);
    ARMNN_ASSERT(reshapeLayer != nullptr);
    reshapeLayer->GetOutputSlot(0).SetTensorInfo(reshapedInfo);

    if (input0IsSmaller)
    {
        delegateData.m_OutputSlotForNode[static_cast<unsigned long>(tfLiteNode->inputs->data[0])]
            ->Connect(reshapeLayer->GetInputSlot(0));
        reshapeLayer->GetOutputSlot(0).Connect(startLayer->GetInputSlot(0));
        delegateData.m_OutputSlotForNode[static_cast<unsigned long>(tfLiteNode->inputs->data[1])]
            ->Connect(startLayer->GetInputSlot(1));
    }
    else
    {
        delegateData.m_OutputSlotForNode[static_cast<unsigned long>(tfLiteNode->inputs->data[1])]
            ->Connect(reshapeLayer->GetInputSlot(0));
        reshapeLayer->GetOutputSlot(0).Connect(startLayer->GetInputSlot(1));
        delegateData.m_OutputSlotForNode[static_cast<unsigned long>(tfLiteNode->inputs->data[0])]
            ->Connect(startLayer->GetInputSlot(0));
    }

    // Prepare output slots
    for (unsigned int outputIndex = 0; outputIndex < startLayer->GetNumOutputSlots(); ++outputIndex)
    {
        armnn::IOutputSlot& outputSlot = startLayer->GetOutputSlot(outputIndex);
        delegateData.m_OutputSlotForNode
            [static_cast<unsigned long>(tfLiteNode->outputs->data[outputIndex])] = &outputSlot;
    }

    return reshapeLayer;
}

TfLiteStatus FusedActivation(TfLiteContext* tfLiteContext,
                             TfLiteNode* tfLiteNode,
                             TfLiteFusedActivation activationType,
                             armnn::IConnectableLayer* prevLayer,
                             unsigned int outputSlotIndex,
                             armnnDelegate::DelegateData& data)
{

    const armnn::TensorInfo& activationOutputInfo = prevLayer->GetOutputSlot(outputSlotIndex).GetTensorInfo();

    armnn::ActivationDescriptor activationDesc;

    switch (activationType)
    {
        case kTfLiteActNone:
        {
            // No Activation
            return kTfLiteOk;
        }
        case kTfLiteActRelu:
        {
            activationDesc.m_Function = armnn::ActivationFunction::ReLu;
            break;
        }
// The name of kTfLiteActRelu1 changed after TF Lite v2.3
#if defined(ARMNN_POST_TFLITE_2_3)
        case kTfLiteActReluN1To1:
#else
        case kTfLiteActRelu1:
#endif
        {
            activationDesc.m_Function = armnn::ActivationFunction::BoundedReLu;
            activationDesc.m_A = 1.0f;
            activationDesc.m_B = -1.0f;
            break;
        }
        case kTfLiteActRelu6:
        {
            activationDesc.m_Function = armnn::ActivationFunction::BoundedReLu;
            activationDesc.m_A = 6.0f;
            activationDesc.m_B = 0.0f;
            break;
        }
        case kTfLiteActSigmoid:
        {
            activationDesc.m_Function = armnn::ActivationFunction::Sigmoid;
            break;
        }
        case kTfLiteActTanh:
        {
            activationDesc.m_Function = armnn::ActivationFunction::TanH;
            activationDesc.m_A = 1.0f;
            activationDesc.m_B = 1.0f;
            break;
        }
        default:
            return kTfLiteError;
    }

    bool isSupported = false;
    FORWARD_LAYER_SUPPORT_FUNC("ACTIVATION",
                               tfLiteContext,
                               IsActivationSupported,
                               data.m_Backends,
                               isSupported,
                               prevLayer->GetOutputSlot(0).GetTensorInfo(),
                               activationOutputInfo,
                               activationDesc);
    if (!isSupported)
    {
        return kTfLiteError;
    }
    armnn::IConnectableLayer* activationLayer = data.m_Network->AddActivationLayer(activationDesc);

    ARMNN_ASSERT(activationLayer != nullptr);
    activationLayer->GetOutputSlot(0).SetTensorInfo(activationOutputInfo);

    // Connect and prepare output slots
    for (unsigned int outputIndex = 0; outputIndex < activationLayer->GetNumOutputSlots(); ++outputIndex)
    {
        data.m_OutputSlotForNode[static_cast<unsigned long>(
                tfLiteNode->outputs->data[outputIndex])]->Connect(activationLayer->GetInputSlot(0));
        armnn::IOutputSlot& outputSlot = activationLayer->GetOutputSlot(outputIndex);
        data.m_OutputSlotForNode[static_cast<unsigned long>(
                tfLiteNode->outputs->data[outputIndex])] = &outputSlot;
    }
    return kTfLiteOk;
}

armnn::DataType GetDataType(const TfLiteTensor& tfLiteTensor)
{
    switch (tfLiteTensor.type)
    {
        case kTfLiteBool:
            return armnn::DataType::Boolean;
        case kTfLiteFloat32:
            return armnn::DataType::Float32;
        case kTfLiteFloat16:
            return armnn::DataType::Float16;
        case kTfLiteUInt8:
            return armnn::DataType::QAsymmU8;
        case kTfLiteInt8:
        {
            auto quantizationInfo = tfLiteTensor.quantization;
            if (quantizationInfo.type == kTfLiteAffineQuantization)
            {
                auto* quantization =
                    reinterpret_cast<TfLiteAffineQuantization*>(tfLiteTensor.quantization.params);
                if (quantization->zero_point != nullptr && quantization->zero_point->size == 1)
                {
                    return armnn::DataType::QAsymmS8;
                }
                else
                {
                    return armnn::DataType::QSymmS8;
                }
            }
            else
            {
                return armnn::DataType::QAsymmS8;
            }
        }
        case kTfLiteInt16:
            return armnn::DataType::QSymmS16;
        case kTfLiteInt32:
            return armnn::DataType::Signed32;
        case kTfLiteInt64:
            return armnn::DataType::Signed64;
        default:
            throw armnn::Exception(&"TfLiteArmnnDelegate: Unsupported data type: " [ tfLiteTensor.type]);
    }
}

armnn::TensorInfo GetTensorInfoForTfLiteTensor(const TfLiteTensor& tfLiteTensor)
{
    armnn::DataType type = GetDataType(tfLiteTensor);
    armnn::TensorInfo ret;
    auto tensorDimensionSize = tfLiteTensor.dims->size;
    if (tensorDimensionSize == 0)
    {
        if(tflite::IsConstantTensor(&tfLiteTensor))
        {
            std::vector<unsigned int> safeShape = { 1 };
            bool dimensionsSpecificity[1] = { true };
            armnn::TensorShape tensorShape(armnn::numeric_cast<unsigned int>(safeShape.size()),
                                           safeShape.data(),
                                           dimensionsSpecificity);
            ret = armnn::TensorInfo(tensorShape, type);
            ret.SetConstant(true);
        }
        else
        {
            armnn::TensorShape tensorShape(armnn::Dimensionality::NotSpecified);
            ret = armnn::TensorInfo(tensorShape, type);
        }
    }
    else
    {
        std::vector<unsigned int> tensorDims(static_cast<unsigned int>(tensorDimensionSize));
        bool dimensionsSpecificity[5] = { true, true, true, true, true };
        for (unsigned int i = 0; i < static_cast<unsigned int>(tensorDimensionSize); ++i) {
            auto dim = tfLiteTensor.dims->data[i];
            if (dim == 0)
            {
                dimensionsSpecificity[i] = false;
            }
            tensorDims[i] = static_cast<unsigned int>(dim);
        }
        armnn::TensorShape tensorShape(static_cast<unsigned int>(tensorDimensionSize),
                                       tensorDims.data(),
                                       dimensionsSpecificity);

        if(tflite::IsConstantTensor(&tfLiteTensor))
        {
            ret = armnn::TensorInfo(tensorShape, type);
            ret.SetConstant(true);
        }
        else
        {
            ret = armnn::TensorInfo(tensorShape, type);
        }
    }

    auto quantizationInfo = tfLiteTensor.quantization;
    if (quantizationInfo.type == kTfLiteAffineQuantization)
    {
        // get per-channel quantization parameters
        const auto* affineQuantization =
            reinterpret_cast<TfLiteAffineQuantization*>(tfLiteTensor.quantization.params);
        if (affineQuantization->scale->size > 1)
        {
            std::vector<float> quantizationScales;
            for (unsigned int i = 0; i < static_cast<unsigned int>(affineQuantization->scale->size); ++i)
            {
                quantizationScales.push_back(affineQuantization->scale->data[i]);
            }
            ret.SetQuantizationScales(quantizationScales);
            ret.SetQuantizationDim(armnn::numeric_cast<unsigned int>(affineQuantization->quantized_dimension));
        }
        else
        {
            ret.SetQuantizationScale(affineQuantization->scale->data[0]);
            ret.SetQuantizationOffset(affineQuantization->zero_point->data[0]);
        }
    }
    else
    {
        auto quantizationParameters = tfLiteTensor.params;
        ret.SetQuantizationScale(quantizationParameters.scale);
        ret.SetQuantizationOffset(quantizationParameters.zero_point);
    }

    return ret;
}

armnn::ConstTensor CreateConstTensor(const TfLiteTensor* tfLiteTensor,
                                     armnn::TensorInfo& tensorInfo,
                                     armnn::Optional<armnn::PermutationVector&>
                                             permutationVector = armnn::EmptyOptional(),
                                     void* permutationData = nullptr)
{
    if (tfLiteTensor->allocation_type != kTfLiteMmapRo)
    {
        throw armnn::Exception(
            "TfLiteArmnnDelegate:  Not constant allocation type: " + std::to_string(tfLiteTensor->allocation_type));
    }

    if(tflite::IsConstantTensor(tfLiteTensor))
    {
        tensorInfo.SetConstant();
    }

    if (permutationVector.has_value() && permutationVector.value().GetSize() > 0 && permutationData != nullptr)
    {
        // Permute tensor info
        tensorInfo = armnnUtils::Permuted(tensorInfo, permutationVector.value());
        // then permute data using the shape from permuted tensor info
        armnnUtils::Permute(tensorInfo.GetShape(),
                            permutationVector.value(),
                            tfLiteTensor->data.data,
                            permutationData,
                            armnn::GetDataTypeSize(tensorInfo.GetDataType()));

        return armnn::ConstTensor(tensorInfo, permutationData);
    }
    else
    {
        return armnn::ConstTensor(tensorInfo, tfLiteTensor->data.data);
    }
}

armnn::ConstTensor* GetConstTensorForTfLiteTensor(const TfLiteTensor* tfLiteTensors, TfLiteNode* tfLiteNode, int index)
{
    const TfLiteTensor &tfLiteTensor = tfLiteTensors[tfLiteNode->inputs->data[index]];
    armnn::TensorInfo tensorInfo = GetTensorInfoForTfLiteTensor(tfLiteTensor);
    return new armnn::ConstTensor(tensorInfo, tfLiteTensor.data.data);
}

void CalcPadding(uint32_t inputSize,
                 uint32_t filterSize,
                 uint32_t stride,
                 uint32_t dilation,
                 uint32_t& paddingFront,
                 uint32_t& paddingBack,
                 TfLitePadding padding)
{
    paddingFront = 0;
    paddingBack = 0;
    if (padding == kTfLitePaddingSame)
    {
        uint32_t outputSize = (inputSize + stride - 1) / stride;
        uint32_t dilatedSize = filterSize + (dilation - 1) * (filterSize - 1);
        uint32_t temp = (outputSize - 1) * stride + dilatedSize;
        if (temp > inputSize)
        {
            paddingFront = (temp - inputSize) / 2;
            paddingBack = (temp - inputSize) - paddingFront;
        }
    }
}

TfLiteStatus ConnectConstant(armnn::IConnectableLayer* layer,
                             armnn::TensorInfo& constTensorInfo,
                             TfLiteContext* tfLiteContext,
                             const TfLiteTensor& tfLiteTensor,
                             armnnDelegate::DelegateData& data,
                             unsigned int slotIndex)
{
    IgnoreUnused(layer);
    bool isSupported = false;
    FORWARD_LAYER_SUPPORT_FUNC("CONSTANT",
                               tfLiteContext,
                               IsConstantSupported,
                               data.m_Backends,
                               isSupported,
                               constTensorInfo);
    if (!isSupported)
    {
        return kTfLiteError;
    }

    auto constantInput = CreateConstTensor(&tfLiteTensor,
                                           constTensorInfo,
                                           armnn::Optional<armnn::PermutationVector&>());
    armnn::IConnectableLayer* constantLayer = data.m_Network->AddConstantLayer(constantInput);
    armnn::IOutputSlot& outputSlot = constantLayer->GetOutputSlot(0);
    outputSlot.SetTensorInfo(constTensorInfo);

    data.m_OutputSlotForNode[static_cast<unsigned long>(slotIndex)] = &outputSlot;

    return kTfLiteOk;
}

bool IsOptionalOperandPresent(TfLiteNode* tfLiteNode, const int operandIndex)
{
    if (tfLiteNode->inputs->data[operandIndex] < 0) {
        return true;
    }
    return false;

}

TfLiteStatus ProcessInputs(armnn::IConnectableLayer* layer,
                           armnnDelegate::DelegateData& delegateData,
                           TfLiteContext* tfLiteContext,
                           TfLiteNode* tfLiteNode)
{
    const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
    // Process input tensors
    // If input tensor is a Constant tensor create a constant layer and connect it to the network
    for (unsigned int inputIndex = 0; inputIndex < layer->GetNumInputSlots(); ++inputIndex)
    {
        const TfLiteTensor& tfLiteInputTensor = tfLiteTensors[tfLiteNode->inputs->data[inputIndex]];
        if (tflite::IsConstantTensor(&tfLiteInputTensor))
        {
            armnn::TensorInfo inputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor);
            bool isSupported = false;
            FORWARD_LAYER_SUPPORT_FUNC("CONSTANT",
                                       tfLiteContext,
                                       IsConstantSupported,
                                       delegateData.m_Backends,
                                       isSupported,
                                       inputTensorInfo);
            if (!isSupported)
            {
                return kTfLiteError;
            }
            auto constantInput = CreateConstTensor(&tfLiteInputTensor,
                                                   inputTensorInfo,
                                                   armnn::Optional<armnn::PermutationVector&>());
            armnn::IConnectableLayer* constantLayer = delegateData.m_Network->AddConstantLayer(constantInput);
            armnn::IOutputSlot& outputSlot = constantLayer->GetOutputSlot(0);
            outputSlot.SetTensorInfo(inputTensorInfo);

            delegateData.m_OutputSlotForNode[tfLiteNode->inputs->data[inputIndex]] = &outputSlot;
        }
    }
    return kTfLiteOk;
}

unsigned int ComputeWrappedIndex(int index, unsigned int numDimensions)
{
    int numDims = armnn::numeric_cast<int>(numDimensions);
    int wrappedIndex = index < 0 ? numDims + index : index;
    ARMNN_ASSERT(wrappedIndex >= 0);
    ARMNN_ASSERT(wrappedIndex < numDims);

    return static_cast<unsigned int>(wrappedIndex);
};

bool AreAllSigned32(const armnn::TensorInfo& inputInfo1,
                    const armnn::TensorInfo& inputInfo2,
                    const armnn::TensorInfo& outputInfo)
{
    return (armnn::DataType::Signed32 == inputInfo1.GetDataType()) &&
           (armnn::DataType::Signed32 == inputInfo2.GetDataType()) &&
           (armnn::DataType::Signed32 == outputInfo.GetDataType());
}

} // namespace anonymous