aboutsummaryrefslogtreecommitdiff
path: root/src/backends/neon/workloads/NeonUnidirectionalSequenceLstmFloatWorkload.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/backends/neon/workloads/NeonUnidirectionalSequenceLstmFloatWorkload.cpp')
-rw-r--r--src/backends/neon/workloads/NeonUnidirectionalSequenceLstmFloatWorkload.cpp911
1 files changed, 0 insertions, 911 deletions
diff --git a/src/backends/neon/workloads/NeonUnidirectionalSequenceLstmFloatWorkload.cpp b/src/backends/neon/workloads/NeonUnidirectionalSequenceLstmFloatWorkload.cpp
deleted file mode 100644
index c911afb237..0000000000
--- a/src/backends/neon/workloads/NeonUnidirectionalSequenceLstmFloatWorkload.cpp
+++ /dev/null
@@ -1,911 +0,0 @@
-//
-// Copyright © 2022 Arm Ltd and Contributors. All rights reserved.
-// SPDX-License-Identifier: MIT
-//
-
-#include "NeonUnidirectionalSequenceLstmFloatWorkload.hpp"
-#include "NeonWorkloadUtils.hpp"
-
-#include <aclCommon/ArmComputeUtils.hpp>
-#include <aclCommon/ArmComputeTensorUtils.hpp>
-
-#include <armnn/utility/NumericCast.hpp>
-#include <armnnUtils/Permute.hpp>
-#include <neon/test/NeonWorkloadFactoryHelper.hpp>
-#include <backendsCommon/WorkloadUtils.hpp>
-
-#include "neon/NeonTensorHandle.hpp"
-
-namespace
-{
-unsigned int CalcAclAxis(unsigned int numDimensions, unsigned int axis)
-{
- return (numDimensions - axis) - 1;
-}
-} //namespace
-
-namespace armnn
-{
-using namespace armcomputetensorutils;
-
-NeonUnidirectionalSequenceLstmFloatWorkload::NeonUnidirectionalSequenceLstmFloatWorkload
- (const UnidirectionalSequenceLstmQueueDescriptor& descriptor, const WorkloadInfo& info)
- : FloatWorkload<UnidirectionalSequenceLstmQueueDescriptor>(descriptor, info)
-{
- // Report Profiling Details
- ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonUnidirectionalSequenceLstmFloatWorkload_Construct",
- descriptor.m_Parameters,
- info,
- GetGuid());
-
- const arm_compute::ITensor& input = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
- arm_compute::ITensor& output = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
-
- TensorInfo inputInfo = info.m_InputTensorInfos[0];
- TensorInfo outputInfo = info.m_OutputTensorInfos[0];
-
- arm_compute::DataType armComputeDataType = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetDataType();
- armnn::DataType armnnDataType = GetArmNNDataType(armComputeDataType);
-
- TensorShape inputLayerShape = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetShape();
- TensorShape cellStateLayerShape = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[2])->GetShape();
- TensorShape outputLayerShape = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[0])->GetShape();
-
- unsigned int maxTime = m_Data.m_Parameters.m_TimeMajor ? inputLayerShape[0] : inputLayerShape[1];
- unsigned int batchSize = m_Data.m_Parameters.m_TimeMajor ? inputLayerShape[1] : inputLayerShape[0];
- unsigned int inputSize = inputLayerShape[2];
- unsigned int outputSize = outputLayerShape[2];
- unsigned int numUnits = cellStateLayerShape[1];
-
- const TensorShape timeMajorShapeInput({maxTime, batchSize, inputSize});
- const TensorShape timeMajorShapeOutput({maxTime, batchSize, outputSize});
-
- //
- // Permute: performed if Unidirectional Sequence Layer inputs/outputs are in batch major format.
- //
- if (!m_Data.m_Parameters.m_TimeMajor)
- {
- std::unique_ptr<arm_compute::NEPermute> layer(new arm_compute::NEPermute());
-
- TensorInfo permuteOutInfo = inputInfo;
- permuteOutInfo.SetShape(timeMajorShapeInput);
- BuildArmComputeTensor(m_PermuteFirstOut, permuteOutInfo);
- armcomputetensorutils::InitialiseArmComputeTensorEmpty(m_PermuteFirstOut);
-
- // Permute to time major format.
- layer->configure(&input, &m_PermuteFirstOut, arm_compute::PermutationVector(0U,2U,1U));
- m_Permute1.reset(layer.release());
- }
-
- //
- // Split and Concat Tensors
- //
- for (unsigned int i = 0; i < maxTime; ++i)
- {
- arm_compute::Tensor splitter_out;
- arm_compute::Tensor concat_in;
-
- auto splitterTensorInfo = inputInfo;
- auto concatTensorInfo = outputInfo;
- splitterTensorInfo.SetShape({batchSize, inputSize});
- concatTensorInfo.SetShape({batchSize, outputSize});
- BuildArmComputeTensor(splitter_out, splitterTensorInfo);
- BuildArmComputeTensor(concat_in, concatTensorInfo);
-
- armcomputetensorutils::InitialiseArmComputeTensorEmpty(splitter_out);
- armcomputetensorutils::InitialiseArmComputeTensorEmpty(concat_in);
-
- // append to std::vector<arm_compute::Tensor>
- m_SplitterOutputsTensors.push_back(std::move(splitter_out));
- m_ConcatInputsTensors.push_back(std::move(concat_in));
- }
-
- for (unsigned int i = 0; i < maxTime; ++i)
- {
- // append to std::vector<arm_compute::ITensor*>
- m_SplitterOutputs.push_back(&m_SplitterOutputsTensors[i]);
- m_ConcatInputs.push_back(&m_ConcatInputsTensors[i]);
- }
-
- //
- // Split
- //
- unsigned int numberDimensions = 3;
- unsigned int dimension = 0; // splitting on 0-dimension (i.e. maxTime dimension)
-
- if (maxTime != 1) // ACL split does not work with only one element to split.
- {
- ViewsDescriptor splitterDesc(maxTime, numberDimensions);
- unsigned int splitterDimSizes[3] = {1, batchSize, inputSize};
- for (unsigned int outputIdx = 0u; outputIdx < maxTime; ++outputIdx)
- {
- splitterDesc.SetViewOriginCoord(outputIdx, dimension, splitterDimSizes[dimension] * outputIdx);
- for (unsigned int dimIdx = 0u; dimIdx < numberDimensions; ++dimIdx)
- {
- splitterDesc.SetViewSize(outputIdx, dimIdx, splitterDimSizes[dimIdx]);
- }
- }
-
- std::set<unsigned int> splitAxis = ComputeSplitAxis(splitterDesc, timeMajorShapeInput);
-
- std::unique_ptr<arm_compute::NESplit> split_layer(new arm_compute::NESplit());
- unsigned int aclAxisSplit = CalcAclAxis(splitterDesc.GetNumDimensions(),
- *splitAxis.begin());
- if (!m_Data.m_Parameters.m_TimeMajor)
- {
- split_layer->configure(&m_PermuteFirstOut, m_SplitterOutputs, aclAxisSplit);
- } else
- {
- split_layer->configure(&input, m_SplitterOutputs, aclAxisSplit);
- }
-
- split_layer->prepare();
- m_Splitter.reset(split_layer.release());
- }
-
- //
- // Lstm
- //
- arm_compute::LSTMParams<arm_compute::ITensor> lstm_param;
-
- m_InputToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
- BuildArmComputeTensor(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights->GetTensorInfo());
-
- m_InputToCellWeightsTensor = std::make_unique<arm_compute::Tensor>();
- BuildArmComputeTensor(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights->GetTensorInfo());
-
- m_InputToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
- BuildArmComputeTensor(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights->GetTensorInfo());
-
- m_RecurrentToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
- BuildArmComputeTensor(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights->GetTensorInfo());
-
- m_RecurrentToCellWeightsTensor = std::make_unique<arm_compute::Tensor>();
- BuildArmComputeTensor(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights->GetTensorInfo());
-
- m_RecurrentToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
- BuildArmComputeTensor(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights->GetTensorInfo());
-
- m_ForgetGateBiasTensor = std::make_unique<arm_compute::Tensor>();
- BuildArmComputeTensor(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias->GetTensorInfo());
-
- m_CellBiasTensor = std::make_unique<arm_compute::Tensor>();
- BuildArmComputeTensor(*m_CellBiasTensor, m_Data.m_CellBias->GetTensorInfo());
-
- m_OutputGateBiasTensor = std::make_unique<arm_compute::Tensor>();
- BuildArmComputeTensor(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias->GetTensorInfo());
-
- // for future reference: check the AndroidNN API for the logic here
- if (!m_Data.m_Parameters.m_CifgEnabled)
- {
- m_InputToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
- BuildArmComputeTensor(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights->GetTensorInfo());
-
- m_RecurrentToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
- BuildArmComputeTensor(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights->GetTensorInfo());
-
- m_CellToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
- if (m_Data.m_CellToInputWeights != nullptr)
- {
- BuildArmComputeTensor(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights->GetTensorInfo());
- }
-
- m_InputGateBiasTensor = std::make_unique<arm_compute::Tensor>();
- BuildArmComputeTensor(*m_InputGateBiasTensor, m_Data.m_InputGateBias->GetTensorInfo());
-
- lstm_param.set_cifg_params(m_InputToInputWeightsTensor.get(),
- m_RecurrentToInputWeightsTensor.get(),
- m_Data.m_CellToInputWeights ? m_CellToInputWeightsTensor.get() : nullptr,
- m_InputGateBiasTensor.get());
- }
-
- if (m_Data.m_Parameters.m_ProjectionEnabled)
- {
- m_ProjectionWeightsTensor = std::make_unique<arm_compute::Tensor>();
- BuildArmComputeTensor(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights->GetTensorInfo());
-
- m_ProjectionBiasTensor = std::make_unique<arm_compute::Tensor>();
- if (m_Data.m_ProjectionBias != nullptr)
- {
- BuildArmComputeTensor(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias->GetTensorInfo());
- }
-
- lstm_param.set_projection_params(m_ProjectionWeightsTensor.get(),
- m_Data.m_ProjectionBias ? m_ProjectionBiasTensor.get() : nullptr);
- }
-
- if (m_Data.m_Parameters.m_PeepholeEnabled)
- {
- m_CellToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
- BuildArmComputeTensor(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights->GetTensorInfo());
-
- m_CellToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
- BuildArmComputeTensor(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights->GetTensorInfo());
-
- lstm_param.set_peephole_params(m_CellToForgetWeightsTensor.get(), m_CellToOutputWeightsTensor.get());
- }
-
- if (m_Data.m_Parameters.m_LayerNormEnabled)
- {
- m_InputLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
- if (!m_Data.m_Parameters.m_CifgEnabled)
- {
- BuildArmComputeTensor(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights->GetTensorInfo());
- }
-
- m_ForgetLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
- BuildArmComputeTensor(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights->GetTensorInfo());
-
- m_CellLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
- BuildArmComputeTensor(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights->GetTensorInfo());
-
- m_OutputLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
- BuildArmComputeTensor(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights->GetTensorInfo());
-
- auto inputNormWeightTensor = m_Data.m_Parameters.m_CifgEnabled ? nullptr : m_InputLayerNormWeightsTensor.get();
- lstm_param.set_layer_normalization_params(inputNormWeightTensor,
- m_ForgetLayerNormWeightsTensor.get(),
- m_CellLayerNormWeightsTensor.get(),
- m_OutputLayerNormWeightsTensor.get());
- }
-
- arm_compute::ITensor& output_state_in = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
- arm_compute::ITensor& cell_state_in = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
-
- arm_compute::ITensor& output_state_out = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
- arm_compute::ITensor& cell_state_out = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
-
- m_ScratchBuffer = std::make_unique<arm_compute::Tensor>();
- if (m_Data.m_Parameters.m_CifgEnabled)
- {
- // scratch_buffer [num_units * 3, batch_size] with CIFG
- BuildArmComputeTensor(*m_ScratchBuffer, TensorInfo({batchSize, numUnits * 3}, armnnDataType));
- }
- else
- {
- // scratch_buffer [num_units * 4, batch_size] without CIFG
- BuildArmComputeTensor(*m_ScratchBuffer, TensorInfo({batchSize, numUnits * 4}, armnnDataType));
- }
-
- // Need to be set at negative threshold to be compatible for ACL
- float cell_threshold = m_Data.m_Parameters.m_ClippingThresCell;
- float projection_threshold = m_Data.m_Parameters.m_ClippingThresProj;
-
- // For preparing the object for the class ActivationLayerInfo, consider 5 situations
- arm_compute::ActivationLayerInfo activationLayerInfo =
- ConvertLstmActivationFuncToAclLayerInfo(m_Data.m_Parameters.m_ActivationFunc);
-
- for (unsigned int i = 0; i != maxTime; ++i)
- {
- // Set LSTM input and output ITensors depending on:
- // input format (timeMajor) & number of LSTM batches (maxTime).
- arm_compute::ITensor* outputLSTM;
- arm_compute::ITensor* inputLSTM;
-
- // If there is only one LSTM time major batch, we will not concat OR permute.
- // Set input of LSTM to be first input ITensor.
- // Set output of LSTM to be final output ITensor.
- // LSTM input/output cannot be > 2 dimensions so need to resize its TensorInfo.
- if (maxTime == 1 && m_Data.m_Parameters.m_TimeMajor)
- {
- TensorShape inputShape = GetTensorShape((&input)->info()->tensor_shape(), 1U);
- TensorShape outputShape = GetTensorShape((&output)->info()->tensor_shape(), 1U);
-
- TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
- TensorShape outputShapeShrink({outputShape[1], outputShape[2]});
-
- auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
- auto acl_output_shape_shrink = BuildArmComputeTensorShape(outputShapeShrink);
-
- (&input)->info()->set_tensor_shape(acl_input_shape_shrink);
- inputLSTM = const_cast<arm_compute::ITensor*>(&input);
-
- (&output)->info()->set_tensor_shape(acl_output_shape_shrink);
- outputLSTM = &output;
- }
- // If there is only one LSTM batch major batch, we will not concat, only permute.
- // Set input of LSTM to be output of initial permute.
- // Set output of LSTM to be first element of m_ConcatInputs & use that value later in permute.
- // LSTM output cannot be > 2 dimensions so need to resize its TensorInfo.
- else if (maxTime == 1 && !m_Data.m_Parameters.m_TimeMajor)
- {
- TensorShape inputShape = GetTensorShape(m_PermuteFirstOut.info()->tensor_shape(), 1U);
- TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
- auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
- m_PermuteFirstOut.info()->set_tensor_shape(acl_input_shape_shrink);
- inputLSTM = &m_PermuteFirstOut;
-
- outputLSTM = const_cast<arm_compute::ITensor*>(m_ConcatInputs[i]);
- }
- // Batch major AND/OR 2+ LSTM batches so will use concat AND/OR permute later on.
- else
- {
- inputLSTM = m_SplitterOutputs[i];
- outputLSTM = const_cast<arm_compute::ITensor*>(m_ConcatInputs[i]);
- }
-
- std::unique_ptr<arm_compute::NELSTMLayer> lstm_layer(new arm_compute::NELSTMLayer());
- lstm_layer->configure(inputLSTM,
- m_InputToForgetWeightsTensor.get(),
- m_InputToCellWeightsTensor.get(),
- m_InputToOutputWeightsTensor.get(),
- m_RecurrentToForgetWeightsTensor.get(),
- m_RecurrentToCellWeightsTensor.get(),
- m_RecurrentToOutputWeightsTensor.get(),
- m_ForgetGateBiasTensor.get(),
- m_CellBiasTensor.get(),
- m_OutputGateBiasTensor.get(),
- &output_state_in,
- &cell_state_in,
- m_ScratchBuffer.get(),
- &output_state_out,
- &cell_state_out,
- outputLSTM,
- lstm_param,
- activationLayerInfo,
- cell_threshold,
- projection_threshold);
-
- m_Layers.emplace_back(std::move(lstm_layer));
- }
-
- armcomputetensorutils::InitialiseArmComputeTensorEmpty(*m_ScratchBuffer);
-
- InitializeArmComputeTensorData(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights);
- InitializeArmComputeTensorData(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights);
- InitializeArmComputeTensorData(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights);
- InitializeArmComputeTensorData(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights);
- InitializeArmComputeTensorData(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights);
- InitializeArmComputeTensorData(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights);
- InitializeArmComputeTensorData(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias);
- InitializeArmComputeTensorData(*m_CellBiasTensor, m_Data.m_CellBias);
- InitializeArmComputeTensorData(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias);
-
- if (!m_Data.m_Parameters.m_CifgEnabled)
- {
- InitializeArmComputeTensorData(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights);
- InitializeArmComputeTensorData(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights);
- if (m_Data.m_CellToInputWeights != nullptr)
- {
- InitializeArmComputeTensorData(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights);
- }
- InitializeArmComputeTensorData(*m_InputGateBiasTensor, m_Data.m_InputGateBias);
- }
-
- if (m_Data.m_Parameters.m_ProjectionEnabled)
- {
- InitializeArmComputeTensorData(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights);
- if (m_Data.m_ProjectionBias != nullptr)
- {
- InitializeArmComputeTensorData(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias);
- }
- }
-
- if (m_Data.m_Parameters.m_PeepholeEnabled)
- {
- InitializeArmComputeTensorData(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights);
- InitializeArmComputeTensorData(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights);
- }
-
- if (m_Data.m_Parameters.m_LayerNormEnabled)
- {
- if (!m_Data.m_Parameters.m_CifgEnabled)
- {
- InitializeArmComputeTensorData(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights);
- }
- InitializeArmComputeTensorData(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights);
- InitializeArmComputeTensorData(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights);
- InitializeArmComputeTensorData(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights);
- }
-
- // Force Compute Library to perform the necessary copying and reshaping.
- // After which delete all the input tensors that will no longer be needed.
- for (uint32_t i = 0; i < m_Layers.size(); ++i)
- {
- m_Layers[i]->prepare();
- }
-
- //
- // Concat
- //
-
- // Expand dimensions of LSTM outputs adding one empty dimension to fit concatenate inputs.
- TensorShape shape = GetTensorShape(m_ConcatInputs[0]->info()->tensor_shape(), 1U);
- TensorShape shapeExpandTimeMajor({1, shape[0], shape[1]});
- TensorShape shapeExpandBatchMajor({shape[0], 1, shape[1]});
-
- if (maxTime != 1) // ACL concat does not work with only one element to concatenate.
- {
- for (unsigned int i = 0; i < maxTime; ++i)
- {
- m_ConcatInputs[i]->info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandTimeMajor));
- }
-
- ConcatDescriptor concatDescriptor(maxTime, numberDimensions); // maxTime = num inputs (aka. number of views).
- for (unsigned int inputIdx = 0u; inputIdx < maxTime; ++inputIdx)
- {
- concatDescriptor.SetViewOriginCoord(inputIdx, dimension, inputIdx);
- concatDescriptor.SetConcatAxis(dimension);
- }
-
- m_Concat.reset(new arm_compute::NEConcatenateLayer());
- unsigned int aclAxisConcat = CalcAclAxis(concatDescriptor.GetNumDimensions(), concatDescriptor.GetConcatAxis());
- if (!m_Data.m_Parameters.m_TimeMajor)
- {
- TensorInfo concatOuputTensorInfo = outputInfo;
- concatOuputTensorInfo.SetShape(timeMajorShapeOutput);
- BuildArmComputeTensor(concat_out, concatOuputTensorInfo);
- armcomputetensorutils::InitialiseArmComputeTensorEmpty(concat_out);
-
- m_Concat->configure(m_ConcatInputs, &concat_out, aclAxisConcat);
- }
- else
- {
- m_Concat->configure(m_ConcatInputs, &output, aclAxisConcat);
- }
-
- m_Concat->prepare();
- }
- // If only one LSTM batch, we do not concat and/or permute.
- // Must ensure final output info is expanded to correct batch major dimensions.
- else
- {
- if (!m_Data.m_Parameters.m_TimeMajor)
- {
- (&output)->info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandBatchMajor));
- }
- else
- {
- (&output)->info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandTimeMajor));
- }
- }
-
- //
- // Permute: only done if input/output are in batch major format.
- //
- if (!m_Data.m_Parameters.m_TimeMajor)
- {
- // Output now time major. Permute output back to batch major.
- std::unique_ptr<arm_compute::NEPermute> layer(new arm_compute::NEPermute());
- if (maxTime != 1)
- {
- layer->configure(&concat_out, &output, arm_compute::PermutationVector(0U, 2U, 1U));
- }
- else
- {
- layer->configure(m_ConcatInputs[0], &output, arm_compute::PermutationVector(0U, 2U, 1U));
- }
- m_Permute2.reset(layer.release());
- }
-
- FreeUnusedTensors();
-}
-
-void NeonUnidirectionalSequenceLstmFloatWorkload::Execute() const
-{
- ARMNN_SCOPED_PROFILING_EVENT_NEON_GUID("NeonUnidirectionalSequenceLstmFloatWorkload_Execute", GetGuid());
- if (m_Permute1)
- {
- m_Permute1->run();
- }
- if (m_Splitter)
- {
- m_Splitter->run();
- }
- for (uint32_t i = 0; i < m_Layers.size(); ++i)
- {
- m_Layers[i]->run();
- }
- if (m_Concat)
- {
- m_Concat->run();
- }
- if (m_Permute2)
- {
- m_Permute2->run();
- }
-}
-
-arm_compute::Status
-NeonUnidirectionalSequenceLstmFloatWorkloadValidate(const TensorInfo& input,
- const TensorInfo& outputStateIn,
- const TensorInfo& cellStateIn,
- const TensorInfo& output,
- const Optional<TensorInfo>& hiddenStateOutput,
- const Optional<TensorInfo>& cellStateOutput,
- const UnidirectionalSequenceLstmDescriptor& descriptor,
- const LstmInputParamsInfo& paramsInfo)
-{
- IgnoreUnused(hiddenStateOutput, cellStateOutput);
-
- TensorShape inputLayerShape = input.GetShape();
- TensorShape outputLayerShape = outputStateIn.GetShape();
-
- unsigned int maxTime = descriptor.m_TimeMajor ? inputLayerShape[0] : inputLayerShape[1];
- unsigned int batchSize = descriptor.m_TimeMajor ? inputLayerShape[1] : inputLayerShape[0];
- unsigned int inputSize = inputLayerShape[2];
- unsigned int outputSize = outputLayerShape[2];
-
- const TensorShape timeMajorShapeInput({maxTime, batchSize, inputSize});
- const TensorShape timeMajorShapeOutput({maxTime, batchSize, outputSize});
-
- arm_compute::Status statusPermute1 = arm_compute::Status(arm_compute::ErrorCode::OK,
- "Permute1 status");
- arm_compute::Status statusSplit = arm_compute::Status(arm_compute::ErrorCode::OK,
- "Split status");
- arm_compute::Status statusLSTM = arm_compute::Status(arm_compute::ErrorCode::OK,
- "LSTM status");
- arm_compute::Status statusConcat = arm_compute::Status(arm_compute::ErrorCode::OK,
- "Concat status");
- arm_compute::Status statusPermute2 = arm_compute::Status(arm_compute::ErrorCode::OK,
- "Permute2 status");
-
- const arm_compute::TensorInfo aclInputInfo = armcomputetensorutils::BuildArmComputeTensorInfo(input);
- const arm_compute::TensorInfo aclOutputInfo = armcomputetensorutils::BuildArmComputeTensorInfo(output);
-
- //
- // Permute validate
- //
- TensorInfo permuteOutInfo = TensorInfo(input);
- arm_compute::TensorInfo aclPermuteOutInfo = armcomputetensorutils::BuildArmComputeTensorInfo(permuteOutInfo);
- if (!descriptor.m_TimeMajor)
- {
- statusPermute1 = arm_compute::NEPermute::validate(&aclInputInfo,
- &aclPermuteOutInfo,
- arm_compute::PermutationVector(0U, 2U, 1U));
- }
-
- //
- // Split and Concat Tensors validate
- //
- std::vector<arm_compute::TensorInfo> splitterOutputsTensorInfos;
- std::vector<arm_compute::TensorInfo> concatInputsTensorInfos;
- std::vector<arm_compute::ITensorInfo*> splitterOutputsTensorInfosPtr;
- std::vector<const arm_compute::ITensorInfo*> concatInputsTensorInfosPtr;
- splitterOutputsTensorInfos.reserve(maxTime);
- concatInputsTensorInfos.reserve(maxTime);
- for (unsigned int i = 0; i < maxTime; ++i)
- {
- arm_compute::TensorInfo splitter_out;
- arm_compute::TensorInfo concat_in;
-
- auto splitterTensorInfo = TensorInfo(input);
- auto concatTensorInfo = TensorInfo(output);
- splitterTensorInfo.SetShape({batchSize, inputSize});
- concatTensorInfo.SetShape({batchSize, outputSize});
-
- arm_compute::TensorInfo aclSplitterTensorInfo
- = armcomputetensorutils::BuildArmComputeTensorInfo(splitterTensorInfo);
- arm_compute::TensorInfo aclConcatTensorInfo
- = armcomputetensorutils::BuildArmComputeTensorInfo(concatTensorInfo);
-
- splitterOutputsTensorInfos.emplace_back(aclSplitterTensorInfo);
- concatInputsTensorInfos.emplace_back(aclConcatTensorInfo);
- splitterOutputsTensorInfosPtr.emplace_back(&splitterOutputsTensorInfos[i]);
- concatInputsTensorInfosPtr.emplace_back(&concatInputsTensorInfos[i]);
- }
-
- //
- // Split validate
- //
- unsigned int numberDimensions = 3;
- unsigned int dimension = 0; // splitting on 0-dimension (i.e. maxTime dimension)
- unsigned int aclAxisSplit = CalcAclAxis(numberDimensions, dimension);
-
- if (maxTime != 1) // ACL split does not work with only one element to split.
- {
- if (!descriptor.m_TimeMajor)
- {
- statusSplit = arm_compute::NESplit::validate(&aclPermuteOutInfo,
- splitterOutputsTensorInfosPtr,
- aclAxisSplit);
- } else
- {
- statusSplit = arm_compute::NESplit::validate(&aclInputInfo, splitterOutputsTensorInfosPtr, aclAxisSplit);
- }
- }
-
- //
- // LSTM validate
- //
-
- arm_compute::LSTMParams<arm_compute::ITensorInfo> lstm_params_info;
-
- const TensorInfo& scratchBuffer = TensorInfo(cellStateIn.GetShape(), input.GetDataType());
- const TensorInfo& outputStateOut = TensorInfo(outputStateIn.GetShape(), input.GetDataType());
- const TensorInfo& cellStateOut = TensorInfo(cellStateIn.GetShape(), input.GetDataType());
-
- // The inputs and outputs
- const arm_compute::TensorInfo aclOutputStateInInfo = BuildArmComputeTensorInfo(outputStateIn);
- const arm_compute::TensorInfo aclCellStateInInfo = BuildArmComputeTensorInfo(cellStateIn);
- const arm_compute::TensorInfo aclScratchBufferInfo = BuildArmComputeTensorInfo(scratchBuffer);
- const arm_compute::TensorInfo aclOutputStateOutInfo = BuildArmComputeTensorInfo(outputStateOut);
- const arm_compute::TensorInfo aclCellStateOutInfo = BuildArmComputeTensorInfo(cellStateOut);
-
- // Basic parameters
- const arm_compute::TensorInfo aclInputToForgetWeightsInfo
- = BuildArmComputeTensorInfo(paramsInfo.GetInputToForgetWeights());
- const arm_compute::TensorInfo aclInputToCellWeightsInfo
- = BuildArmComputeTensorInfo(paramsInfo.GetInputToCellWeights());
- const arm_compute::TensorInfo aclInputToOutputWeightsInfo
- = BuildArmComputeTensorInfo(paramsInfo.GetInputToOutputWeights());
- const arm_compute::TensorInfo aclRecurrentToForgetWeightsInfo
- = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToForgetWeights());
- const arm_compute::TensorInfo aclRecurrentToCellWeightsInfo
- = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToCellWeights());
- const arm_compute::TensorInfo aclRecurrentToOutputWeightsInfo
- = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToOutputWeights());
- const arm_compute::TensorInfo aclForgetGateBiasInfo
- = BuildArmComputeTensorInfo(paramsInfo.GetForgetGateBias());
- const arm_compute::TensorInfo aclCellBiasInfo
- = BuildArmComputeTensorInfo(paramsInfo.GetCellBias());
- const arm_compute::TensorInfo aclOutputGateBiasInfo
- = BuildArmComputeTensorInfo(paramsInfo.GetOutputGateBias());
-
- arm_compute::TensorInfo aclInputToInputWeightsInfo;
- arm_compute::TensorInfo aclRecurrentToInputWeightsInfo;
- arm_compute::TensorInfo aclCellToInputWeightsInfo;
- arm_compute::TensorInfo aclInputGateBiasInfo;
- arm_compute::TensorInfo aclProjectionWeightsInfo;
- arm_compute::TensorInfo aclProjectionBiasInfo;
- arm_compute::TensorInfo aclCellToForgetWeightsInfo;
- arm_compute::TensorInfo aclCellToOutputWeightsInfo;
-
- arm_compute::TensorInfo aclInputLayerNormWeightsInfo;
- arm_compute::TensorInfo aclForgetLayerNormWeightsInfo;
- arm_compute::TensorInfo aclCellLayerNormWeightsInfo;
- arm_compute::TensorInfo aclOutputLayerNormWeightsInfo;
-
-
- if (!descriptor.m_CifgEnabled)
- {
- if (descriptor.m_PeepholeEnabled)
- {
- aclCellToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToInputWeights());
- }
- aclInputToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputToInputWeights());
- aclRecurrentToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToInputWeights());
- aclInputGateBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputGateBias());
-
- lstm_params_info.set_cifg_params(&aclInputToInputWeightsInfo,
- &aclRecurrentToInputWeightsInfo,
- descriptor.m_PeepholeEnabled ? &aclCellToInputWeightsInfo : nullptr,
- &aclInputGateBiasInfo);
- }
-
- if (descriptor.m_ProjectionEnabled)
- {
- if (paramsInfo.m_ProjectionBias != nullptr)
- {
- aclProjectionBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionBias());
- }
- aclProjectionWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionWeights());
-
- lstm_params_info.set_projection_params(&aclProjectionWeightsInfo,
- paramsInfo.m_ProjectionBias ? &aclProjectionBiasInfo : nullptr);
- }
-
- if (descriptor.m_PeepholeEnabled)
- {
- aclCellToForgetWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToForgetWeights());
- aclCellToOutputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToOutputWeights());
-
- lstm_params_info.set_peephole_params(&aclCellToForgetWeightsInfo, &aclCellToOutputWeightsInfo);
- }
-
- if (descriptor.m_LayerNormEnabled)
- {
- if (!descriptor.m_CifgEnabled)
- {
- aclInputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputLayerNormWeights());
- }
- aclForgetLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetForgetLayerNormWeights());
- aclCellLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellLayerNormWeights());
- aclOutputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetOutputLayerNormWeights());
-
- lstm_params_info.set_layer_normalization_params(descriptor.m_CifgEnabled ? nullptr :
- &aclInputLayerNormWeightsInfo,
- &aclForgetLayerNormWeightsInfo,
- &aclCellLayerNormWeightsInfo,
- &aclOutputLayerNormWeightsInfo);
- }
-
- // Need to be set at negative threshold to be compatible for ACL
- float cell_threshold = descriptor.m_ClippingThresCell;
- float projection_threshold = descriptor.m_ClippingThresProj;
-
- arm_compute::ActivationLayerInfo activationLayerInfo =
- ConvertLstmActivationFuncToAclLayerInfo(descriptor.m_ActivationFunc);
-
- for (unsigned int i = 0; i != maxTime; ++i)
- {
-
- // Set LSTM input and output ITensors depending on:
- // input format (timeMajor) & number of LSTM batches (maxTime).
- arm_compute::ITensorInfo* outputLSTM;
- arm_compute::ITensorInfo* inputLSTM;
-
- // If there is only one LSTM time major batch, we will not concat OR permute.
- // Set input of LSTM to be first input ITensor.
- // Set output of LSTM to be final output ITensor.
- // LSTM input/output cannot be > 2 dimensions so need to resize its TensorInfo.
- if (maxTime == 1 && !descriptor.m_TimeMajor)
- {
- TensorShape inputShape = GetTensorShape(aclInputInfo.tensor_shape(), 1U);
- TensorShape outputShape = GetTensorShape(aclOutputInfo.tensor_shape(), 1U);
-
- TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
- TensorShape outputShapeShrink({outputShape[1], outputShape[2]});
-
- auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
- auto acl_output_shape_shrink = BuildArmComputeTensorShape(outputShapeShrink);
-
- const_cast<arm_compute::TensorInfo*>(&aclInputInfo)->set_tensor_shape(acl_input_shape_shrink);
- inputLSTM = const_cast<arm_compute::TensorInfo*>(&aclInputInfo);
-
- const_cast<arm_compute::TensorInfo*>(&aclOutputInfo)->set_tensor_shape(acl_output_shape_shrink);
- outputLSTM = const_cast<arm_compute::TensorInfo*>(&aclOutputInfo);
- }
- // If there is only one LSTM batch major batch, we will not concat, only permute.
- // Set input of LSTM to be output of initial permute.
- // Set output of LSTM to be first element of m_ConcatInputs & use that value later in permute.
- // LSTM output cannot be > 2 dimensions so need to resize its TensorInfo.
- else if (maxTime == 1 && !descriptor.m_TimeMajor)
- {
- TensorShape inputShape = GetTensorShape(aclPermuteOutInfo.tensor_shape(), 1U);
- TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
- auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
- aclPermuteOutInfo.set_tensor_shape(acl_input_shape_shrink);
- inputLSTM = &aclPermuteOutInfo;
-
- outputLSTM = const_cast<arm_compute::ITensorInfo*>(concatInputsTensorInfosPtr[i]);
- }
- // Batch major AND/OR 2+ LSTM batches so will use concat AND/OR permute later on.
- else
- {
- inputLSTM = splitterOutputsTensorInfosPtr[i];
- outputLSTM = const_cast<arm_compute::ITensorInfo*>(concatInputsTensorInfosPtr[i]);
- }
-
- statusLSTM = arm_compute::NELSTMLayer::validate(inputLSTM,
- &aclInputToForgetWeightsInfo,
- &aclInputToCellWeightsInfo,
- &aclInputToOutputWeightsInfo,
- &aclRecurrentToForgetWeightsInfo,
- &aclRecurrentToCellWeightsInfo,
- &aclRecurrentToOutputWeightsInfo,
- &aclForgetGateBiasInfo,
- &aclCellBiasInfo,
- &aclOutputGateBiasInfo,
- &aclOutputStateInInfo,
- &aclCellStateInInfo,
- &aclScratchBufferInfo,
- &aclOutputStateOutInfo,
- &aclCellStateOutInfo,
- outputLSTM,
- lstm_params_info,
- activationLayerInfo,
- cell_threshold,
- projection_threshold);
-
- if (statusLSTM.error_code() != arm_compute::ErrorCode::OK)
- {
- break;
- }
- }
-
- //
- // Concat validate
- //
-
- // Expand dimensions of LSTM outputs adding one empty dimension to fit concatenate inputs.
- TensorShape shape = GetTensorShape(concatInputsTensorInfosPtr[0]->tensor_shape(), 1U);
- TensorShape shapeExpandTimeMajor({1, shape[0], shape[1]});
- TensorShape shapeExpandBatchMajor({shape[0], 1, shape[1]});
-
- TensorInfo concatOuputTensorInfo = TensorInfo(output);
- concatOuputTensorInfo.SetShape(timeMajorShapeOutput);
- arm_compute::TensorInfo aclConcatOuputTensorInfo= BuildArmComputeTensorInfo(concatOuputTensorInfo);
-
- if (maxTime != 1) // ACL concat does not work with only one element to concatenate.
- {
- for (unsigned int i = 0; i < maxTime; ++i)
- {
- auto acl_shape_expand = BuildArmComputeTensorShape(shapeExpandTimeMajor);
- concatInputsTensorInfos[i].set_tensor_shape(acl_shape_expand);
- }
-
- unsigned int aclAxisConcat = CalcAclAxis(numberDimensions, dimension);
- if (!descriptor.m_TimeMajor)
- {
- statusConcat = arm_compute::NEConcatenateLayer::validate(concatInputsTensorInfosPtr,
- &aclConcatOuputTensorInfo,
- aclAxisConcat);
- }
- else
- {
- statusConcat = arm_compute::NEConcatenateLayer::validate(concatInputsTensorInfosPtr,
- &aclOutputInfo,
- aclAxisConcat);
- }
- }
- // If only one LSTM batch, we do not concat and/or permute.
- // Must ensure final output info is expanded to correct batch major dimensions.
- else
- {
- if (!descriptor.m_TimeMajor)
- {
- const_cast<arm_compute::TensorInfo*>(&aclInputInfo)->set_tensor_shape(
- BuildArmComputeTensorShape(shapeExpandBatchMajor));
- }
- else
- {
- const_cast<arm_compute::TensorInfo*>(&aclInputInfo)->set_tensor_shape(
- BuildArmComputeTensorShape(shapeExpandTimeMajor));
- }
- }
-
- //
- // Permute validate
- //
- if (!descriptor.m_TimeMajor)
- {
- // Output now time major. Permute output back to batch major.
- if (maxTime != 1)
- {
- statusPermute2 = arm_compute::NEPermute::validate(&aclConcatOuputTensorInfo,
- &aclOutputInfo,
- arm_compute::PermutationVector(0U, 2U, 1U));
- }
- else
- {
- statusPermute2 = arm_compute::NEPermute::validate(concatInputsTensorInfosPtr[0],
- &aclOutputInfo,
- arm_compute::PermutationVector(0U, 2U, 1U));
- }
- }
-
- auto okCode = arm_compute::ErrorCode::OK;
- if (statusPermute1.error_code() == okCode &&
- statusSplit.error_code() == okCode &&
- statusLSTM .error_code() == okCode &&
- statusConcat.error_code() == okCode &&
- statusPermute2.error_code() == okCode)
- {
- return arm_compute::Status(arm_compute::ErrorCode::OK,
- "All Unidirectional Sequence LSTM layer validate status OK.");
- }
- else
- {
- return arm_compute::Status(arm_compute::ErrorCode::RUNTIME_ERROR,
- "Unidirectional Sequence LSTM layer validate status failed.");
- }
-}
-
-void NeonUnidirectionalSequenceLstmFloatWorkload::FreeUnusedTensors()
-{
- FreeTensorIfUnused(m_InputToInputWeightsTensor);
- FreeTensorIfUnused(m_InputToForgetWeightsTensor);
- FreeTensorIfUnused(m_InputToCellWeightsTensor);
- FreeTensorIfUnused(m_InputToOutputWeightsTensor);
- FreeTensorIfUnused(m_RecurrentToInputWeightsTensor);
- FreeTensorIfUnused(m_RecurrentToForgetWeightsTensor);
- FreeTensorIfUnused(m_RecurrentToCellWeightsTensor);
- FreeTensorIfUnused(m_RecurrentToOutputWeightsTensor);
- FreeTensorIfUnused(m_CellToInputWeightsTensor);
- FreeTensorIfUnused(m_CellToForgetWeightsTensor);
- FreeTensorIfUnused(m_CellToOutputWeightsTensor);
- FreeTensorIfUnused(m_InputGateBiasTensor);
- FreeTensorIfUnused(m_ForgetGateBiasTensor);
- FreeTensorIfUnused(m_CellBiasTensor);
- FreeTensorIfUnused(m_OutputGateBiasTensor);
- FreeTensorIfUnused(m_ProjectionWeightsTensor);
- FreeTensorIfUnused(m_ProjectionBiasTensor);
- FreeTensorIfUnused(m_InputLayerNormWeightsTensor);
- FreeTensorIfUnused(m_ForgetLayerNormWeightsTensor);
- FreeTensorIfUnused(m_CellLayerNormWeightsTensor);
- FreeTensorIfUnused(m_OutputLayerNormWeightsTensor);
- FreeTensorIfUnused(m_ScratchBuffer);
-}
-
-} //namespace armnn