aboutsummaryrefslogtreecommitdiff
path: root/src/backends/backendsCommon
diff options
context:
space:
mode:
Diffstat (limited to 'src/backends/backendsCommon')
-rw-r--r--src/backends/backendsCommon/BackendContextRegistry.cpp17
-rw-r--r--src/backends/backendsCommon/BackendContextRegistry.hpp28
-rw-r--r--src/backends/backendsCommon/BackendRegistry.cpp17
-rw-r--r--src/backends/backendsCommon/BackendRegistry.hpp27
-rw-r--r--src/backends/backendsCommon/CMakeLists.txt46
-rw-r--r--src/backends/backendsCommon/CpuTensorHandle.cpp114
-rw-r--r--src/backends/backendsCommon/CpuTensorHandle.hpp172
-rw-r--r--src/backends/backendsCommon/CpuTensorHandleFwd.hpp16
-rw-r--r--src/backends/backendsCommon/IBackendContext.hpp27
-rw-r--r--src/backends/backendsCommon/IBackendInternal.hpp30
-rw-r--r--src/backends/backendsCommon/ILayerSupport.cpp282
-rw-r--r--src/backends/backendsCommon/ITensorHandle.hpp73
-rw-r--r--src/backends/backendsCommon/LayerSupportRegistry.cpp17
-rw-r--r--src/backends/backendsCommon/LayerSupportRegistry.hpp25
-rw-r--r--src/backends/backendsCommon/MakeWorkloadHelper.hpp82
-rw-r--r--src/backends/backendsCommon/MemCopyWorkload.cpp65
-rw-r--r--src/backends/backendsCommon/MemCopyWorkload.hpp27
-rw-r--r--src/backends/backendsCommon/OutputHandler.cpp40
-rw-r--r--src/backends/backendsCommon/OutputHandler.hpp68
-rw-r--r--src/backends/backendsCommon/RegistryCommon.hpp134
-rw-r--r--src/backends/backendsCommon/StringMapping.cpp17
-rw-r--r--src/backends/backendsCommon/StringMapping.hpp49
-rw-r--r--src/backends/backendsCommon/Workload.hpp149
-rw-r--r--src/backends/backendsCommon/WorkloadData.cpp915
-rw-r--r--src/backends/backendsCommon/WorkloadData.hpp338
-rw-r--r--src/backends/backendsCommon/WorkloadDataCollector.hpp36
-rw-r--r--src/backends/backendsCommon/WorkloadDataFwd.hpp27
-rw-r--r--src/backends/backendsCommon/WorkloadFactory.cpp612
-rw-r--r--src/backends/backendsCommon/WorkloadFactory.hpp149
-rw-r--r--src/backends/backendsCommon/WorkloadInfo.hpp18
-rw-r--r--src/backends/backendsCommon/WorkloadUtils.hpp140
-rw-r--r--src/backends/backendsCommon/common.cmake8
-rw-r--r--src/backends/backendsCommon/common.mk30
-rw-r--r--src/backends/backendsCommon/test/ActivationFixture.hpp61
-rw-r--r--src/backends/backendsCommon/test/ActivationTestImpl.hpp560
-rw-r--r--src/backends/backendsCommon/test/BackendIdTests.cpp28
-rw-r--r--src/backends/backendsCommon/test/BackendRegistryTests.cpp103
-rw-r--r--src/backends/backendsCommon/test/BatchNormTestImpl.hpp186
-rw-r--r--src/backends/backendsCommon/test/CMakeLists.txt41
-rwxr-xr-xsrc/backends/backendsCommon/test/Conv2dTestImpl.hpp1240
-rw-r--r--src/backends/backendsCommon/test/ConvertFp16ToFp32TestImpl.hpp54
-rw-r--r--src/backends/backendsCommon/test/ConvertFp32ToFp16TestImpl.hpp55
-rw-r--r--src/backends/backendsCommon/test/EndToEndTestImpl.hpp102
-rw-r--r--src/backends/backendsCommon/test/FullyConnectedTestImpl.hpp287
-rw-r--r--src/backends/backendsCommon/test/IsLayerSupportedTestImpl.hpp565
-rw-r--r--src/backends/backendsCommon/test/JsonPrinterTestImpl.hpp355
-rw-r--r--src/backends/backendsCommon/test/LayerReleaseConstantDataTest.cpp213
-rwxr-xr-xsrc/backends/backendsCommon/test/LayerTests.cpp6125
-rw-r--r--src/backends/backendsCommon/test/LayerTests.hpp416
-rw-r--r--src/backends/backendsCommon/test/LstmTestImpl.hpp1150
-rw-r--r--src/backends/backendsCommon/test/NormTestImpl.hpp343
-rw-r--r--src/backends/backendsCommon/test/OptimizedNetworkTests.cpp330
-rw-r--r--src/backends/backendsCommon/test/PermuteTestImpl.hpp225
-rw-r--r--src/backends/backendsCommon/test/Pooling2dTestImpl.hpp1240
-rw-r--r--src/backends/backendsCommon/test/QuantizeHelper.hpp91
-rw-r--r--src/backends/backendsCommon/test/ReshapeTestImpl.hpp177
-rw-r--r--src/backends/backendsCommon/test/RuntimeTestImpl.hpp43
-rw-r--r--src/backends/backendsCommon/test/SoftmaxTestImpl.hpp153
-rw-r--r--src/backends/backendsCommon/test/SplitterTestImpl.hpp304
-rw-r--r--src/backends/backendsCommon/test/TensorCopyUtils.cpp161
-rw-r--r--src/backends/backendsCommon/test/TensorCopyUtils.hpp15
-rw-r--r--src/backends/backendsCommon/test/WorkloadDataValidation.cpp474
-rw-r--r--src/backends/backendsCommon/test/WorkloadTestUtils.hpp56
63 files changed, 18948 insertions, 0 deletions
diff --git a/src/backends/backendsCommon/BackendContextRegistry.cpp b/src/backends/backendsCommon/BackendContextRegistry.cpp
new file mode 100644
index 0000000000..0168a127af
--- /dev/null
+++ b/src/backends/backendsCommon/BackendContextRegistry.cpp
@@ -0,0 +1,17 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include "BackendContextRegistry.hpp"
+
+namespace armnn
+{
+
+BackendContextRegistry& BackendContextRegistryInstance()
+{
+ static BackendContextRegistry instance;
+ return instance;
+}
+
+} // namespace armnn
diff --git a/src/backends/backendsCommon/BackendContextRegistry.hpp b/src/backends/backendsCommon/BackendContextRegistry.hpp
new file mode 100644
index 0000000000..23830a0105
--- /dev/null
+++ b/src/backends/backendsCommon/BackendContextRegistry.hpp
@@ -0,0 +1,28 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "IBackendContext.hpp"
+#include "RegistryCommon.hpp"
+
+#include <armnn/IRuntime.hpp>
+#include <armnn/Types.hpp>
+
+namespace armnn
+{
+
+using BackendContextRegistry = RegistryCommon<IBackendContext,
+ IBackendContextUniquePtr,
+ IRuntime::CreationOptions>;
+
+BackendContextRegistry& BackendContextRegistryInstance();
+
+template <>
+struct RegisteredTypeName<IBackendContext>
+{
+ static const char * Name() { return "IBackendContext"; }
+};
+
+} // namespace armnn
diff --git a/src/backends/backendsCommon/BackendRegistry.cpp b/src/backends/backendsCommon/BackendRegistry.cpp
new file mode 100644
index 0000000000..e9361210f2
--- /dev/null
+++ b/src/backends/backendsCommon/BackendRegistry.cpp
@@ -0,0 +1,17 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include "BackendRegistry.hpp"
+
+namespace armnn
+{
+
+BackendRegistry& BackendRegistryInstance()
+{
+ static BackendRegistry instance;
+ return instance;
+}
+
+} // namespace armnn
diff --git a/src/backends/backendsCommon/BackendRegistry.hpp b/src/backends/backendsCommon/BackendRegistry.hpp
new file mode 100644
index 0000000000..ba2d26aaea
--- /dev/null
+++ b/src/backends/backendsCommon/BackendRegistry.hpp
@@ -0,0 +1,27 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "IBackendInternal.hpp"
+#include "RegistryCommon.hpp"
+
+#include <armnn/Types.hpp>
+
+namespace armnn
+{
+
+using BackendRegistry = RegistryCommon<IBackendInternal,
+ IBackendInternalUniquePtr,
+ EmptyInitializer>;
+
+BackendRegistry& BackendRegistryInstance();
+
+template <>
+struct RegisteredTypeName<IBackend>
+{
+ static const char * Name() { return "IBackend"; }
+};
+
+} // namespace armnn
diff --git a/src/backends/backendsCommon/CMakeLists.txt b/src/backends/backendsCommon/CMakeLists.txt
new file mode 100644
index 0000000000..cb89aebc4e
--- /dev/null
+++ b/src/backends/backendsCommon/CMakeLists.txt
@@ -0,0 +1,46 @@
+#
+# Copyright © 2017 Arm Ltd. All rights reserved.
+# SPDX-License-Identifier: MIT
+#
+
+list(APPEND armnnBackendsCommon_sources
+ BackendContextRegistry.cpp
+ BackendContextRegistry.hpp
+ BackendRegistry.cpp
+ BackendRegistry.hpp
+ CpuTensorHandle.cpp
+ CpuTensorHandleFwd.hpp
+ CpuTensorHandle.hpp
+ IBackendContext.hpp
+ IBackendInternal.hpp
+ ILayerSupport.cpp
+ ITensorHandle.hpp
+ LayerSupportRegistry.cpp
+ LayerSupportRegistry.hpp
+ MakeWorkloadHelper.hpp
+ MemCopyWorkload.cpp
+ MemCopyWorkload.hpp
+ OutputHandler.cpp
+ OutputHandler.hpp
+ RegistryCommon.hpp
+ StringMapping.cpp
+ StringMapping.hpp
+ WorkloadDataCollector.hpp
+ WorkloadData.cpp
+ WorkloadDataFwd.hpp
+ WorkloadData.hpp
+ WorkloadFactory.cpp
+ WorkloadFactory.hpp
+ Workload.hpp
+ WorkloadInfo.hpp
+ WorkloadUtils.hpp
+)
+
+if(BUILD_UNIT_TESTS)
+ add_subdirectory(test)
+endif()
+
+add_library(armnnBackendsCommon OBJECT ${armnnBackendsCommon_sources})
+target_include_directories(armnnBackendsCommon PRIVATE ${PROJECT_SOURCE_DIR}/src/armnn)
+target_include_directories(armnnBackendsCommon PRIVATE ${PROJECT_SOURCE_DIR}/src/armnnUtils)
+target_include_directories(armnnBackendsCommon PRIVATE ${PROJECT_SOURCE_DIR}/src/backends)
diff --git a/src/backends/backendsCommon/CpuTensorHandle.cpp b/src/backends/backendsCommon/CpuTensorHandle.cpp
new file mode 100644
index 0000000000..46a7cb8251
--- /dev/null
+++ b/src/backends/backendsCommon/CpuTensorHandle.cpp
@@ -0,0 +1,114 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#include <armnn/Exceptions.hpp>
+
+#include <backendsCommon/CpuTensorHandle.hpp>
+
+#include <cstring>
+
+namespace armnn
+{
+
+ConstCpuTensorHandle::ConstCpuTensorHandle(const TensorInfo& tensorInfo)
+: m_TensorInfo(tensorInfo)
+, m_Memory(nullptr)
+{
+}
+
+template <>
+const void* ConstCpuTensorHandle::GetConstTensor() const
+{
+ return m_Memory;
+}
+
+CpuTensorHandle::CpuTensorHandle(const TensorInfo& tensorInfo)
+: ConstCpuTensorHandle(tensorInfo)
+, m_MutableMemory(nullptr)
+{
+}
+
+template <>
+void* CpuTensorHandle::GetTensor() const
+{
+ return m_MutableMemory;
+}
+
+ScopedCpuTensorHandle::ScopedCpuTensorHandle(const TensorInfo& tensorInfo)
+: CpuTensorHandle(tensorInfo)
+{
+}
+
+ScopedCpuTensorHandle::ScopedCpuTensorHandle(const ConstTensor& tensor)
+: ScopedCpuTensorHandle(tensor.GetInfo())
+{
+ CopyFrom(tensor.GetMemoryArea(), tensor.GetNumBytes());
+}
+
+ScopedCpuTensorHandle::ScopedCpuTensorHandle(const ConstCpuTensorHandle& tensorHandle)
+: ScopedCpuTensorHandle(tensorHandle.GetTensorInfo())
+{
+ CopyFrom(tensorHandle.GetConstTensor<void>(), tensorHandle.GetTensorInfo().GetNumBytes());
+}
+
+ScopedCpuTensorHandle::ScopedCpuTensorHandle(const ScopedCpuTensorHandle& other)
+: CpuTensorHandle(other.GetTensorInfo())
+{
+ CopyFrom(other);
+}
+
+ScopedCpuTensorHandle& ScopedCpuTensorHandle::operator=(const ScopedCpuTensorHandle& other)
+{
+ ::operator delete(GetTensor<void>());
+ SetMemory(nullptr);
+ CopyFrom(other);
+ return *this;
+}
+
+ScopedCpuTensorHandle::~ScopedCpuTensorHandle()
+{
+ ::operator delete(GetTensor<void>());
+}
+
+void ScopedCpuTensorHandle::Allocate()
+{
+ if (GetTensor<void>() == nullptr)
+ {
+ SetMemory(::operator new(GetTensorInfo().GetNumBytes()));
+ }
+ else
+ {
+ throw InvalidArgumentException("CpuTensorHandle::Allocate Trying to allocate a CpuTensorHandle"
+ "that already has allocated memory.");
+ }
+}
+
+void ScopedCpuTensorHandle::CopyFrom(const ScopedCpuTensorHandle& other)
+{
+ CopyFrom(other.GetTensor<void>(), other.GetTensorInfo().GetNumBytes());
+}
+
+void ScopedCpuTensorHandle::CopyFrom(const void* srcMemory, unsigned int numBytes)
+{
+ BOOST_ASSERT(GetTensor<void>() == nullptr);
+ BOOST_ASSERT(GetTensorInfo().GetNumBytes() == numBytes);
+
+ if (srcMemory)
+ {
+ Allocate();
+ memcpy(GetTensor<void>(), srcMemory, numBytes);
+ }
+}
+
+void PassthroughCpuTensorHandle::Allocate()
+{
+ throw InvalidArgumentException("PassthroughCpuTensorHandle::Allocate() should never be called");
+}
+
+void ConstPassthroughCpuTensorHandle::Allocate()
+{
+ throw InvalidArgumentException("ConstPassthroughCpuTensorHandle::Allocate() should never be called");
+}
+
+} // namespace armnn
diff --git a/src/backends/backendsCommon/CpuTensorHandle.hpp b/src/backends/backendsCommon/CpuTensorHandle.hpp
new file mode 100644
index 0000000000..4138812822
--- /dev/null
+++ b/src/backends/backendsCommon/CpuTensorHandle.hpp
@@ -0,0 +1,172 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "CpuTensorHandleFwd.hpp"
+
+#include <armnn/TypesUtils.hpp>
+
+#include <backendsCommon/OutputHandler.hpp>
+
+#include <algorithm>
+
+namespace armnn
+{
+
+// Abstract tensor handles wrapping a CPU-readable region of memory, interpreting it as tensor data.
+class ConstCpuTensorHandle : public ITensorHandle
+{
+public:
+ template <typename T>
+ const T* GetConstTensor() const
+ {
+ BOOST_ASSERT(GetTensorInfo().GetDataType() == GetDataType<T>());
+ return reinterpret_cast<const T*>(m_Memory);
+ }
+
+ const TensorInfo& GetTensorInfo() const
+ {
+ return m_TensorInfo;
+ }
+
+ virtual ITensorHandle::Type GetType() const override
+ {
+ return ITensorHandle::Cpu;
+ }
+
+ virtual void Manage() override {}
+
+ virtual ITensorHandle* GetParent() const override { return nullptr; }
+
+ virtual const void* Map(bool /* blocking = true */) const override { return m_Memory; }
+ virtual void Unmap() const override {}
+
+ TensorShape GetStrides() const override
+ {
+ TensorShape shape(m_TensorInfo.GetShape());
+ auto size = GetDataTypeSize(m_TensorInfo.GetDataType());
+ auto runningSize = size;
+ std::vector<unsigned int> strides(shape.GetNumDimensions());
+ auto lastIdx = shape.GetNumDimensions()-1;
+ for (unsigned int i=0; i < lastIdx ; i++)
+ {
+ strides[lastIdx-i] = runningSize;
+ runningSize *= shape[lastIdx-i];
+ }
+ strides[0] = runningSize;
+ return TensorShape(shape.GetNumDimensions(), strides.data());
+ }
+ TensorShape GetShape() const override { return m_TensorInfo.GetShape(); }
+
+protected:
+ ConstCpuTensorHandle(const TensorInfo& tensorInfo);
+
+ void SetConstMemory(const void* mem) { m_Memory = mem; }
+
+private:
+ ConstCpuTensorHandle(const ConstCpuTensorHandle& other) = delete;
+ ConstCpuTensorHandle& operator=(const ConstCpuTensorHandle& other) = delete;
+
+ TensorInfo m_TensorInfo;
+ const void* m_Memory;
+};
+
+// Abstract specialization of ConstCpuTensorHandle that allows write access to the same data.
+class CpuTensorHandle : public ConstCpuTensorHandle
+{
+public:
+ template <typename T>
+ T* GetTensor() const
+ {
+ BOOST_ASSERT(GetTensorInfo().GetDataType() == GetDataType<T>());
+ return reinterpret_cast<T*>(m_MutableMemory);
+ }
+
+protected:
+ CpuTensorHandle(const TensorInfo& tensorInfo);
+
+ void SetMemory(void* mem)
+ {
+ m_MutableMemory = mem;
+ SetConstMemory(m_MutableMemory);
+ }
+
+private:
+
+ CpuTensorHandle(const CpuTensorHandle& other) = delete;
+ CpuTensorHandle& operator=(const CpuTensorHandle& other) = delete;
+ void* m_MutableMemory;
+};
+
+// A CpuTensorHandle that owns the wrapped memory region.
+class ScopedCpuTensorHandle : public CpuTensorHandle
+{
+public:
+ explicit ScopedCpuTensorHandle(const TensorInfo& tensorInfo);
+
+ // Copies contents from Tensor.
+ explicit ScopedCpuTensorHandle(const ConstTensor& tensor);
+
+ // Copies contents from ConstCpuTensorHandle
+ explicit ScopedCpuTensorHandle(const ConstCpuTensorHandle& tensorHandle);
+
+ ScopedCpuTensorHandle(const ScopedCpuTensorHandle& other);
+ ScopedCpuTensorHandle& operator=(const ScopedCpuTensorHandle& other);
+ ~ScopedCpuTensorHandle();
+
+ virtual void Allocate() override;
+
+private:
+ void CopyFrom(const ScopedCpuTensorHandle& other);
+ void CopyFrom(const void* srcMemory, unsigned int numBytes);
+};
+
+// A CpuTensorHandle that wraps an already allocated memory region.
+//
+// Clients must make sure the passed in memory region stays alive for the lifetime of
+// the PassthroughCpuTensorHandle instance.
+//
+// Note there is no polymorphism to/from ConstPassthroughCpuTensorHandle.
+class PassthroughCpuTensorHandle : public CpuTensorHandle
+{
+public:
+ PassthroughCpuTensorHandle(const TensorInfo& tensorInfo, void* mem)
+ : CpuTensorHandle(tensorInfo)
+ {
+ SetMemory(mem);
+ }
+
+ virtual void Allocate() override;
+};
+
+// A ConstCpuTensorHandle that wraps an already allocated memory region.
+//
+// This allows users to pass in const memory to a network.
+// Clients must make sure the passed in memory region stays alive for the lifetime of
+// the PassthroughCpuTensorHandle instance.
+//
+// Note there is no polymorphism to/from PassthroughCpuTensorHandle.
+class ConstPassthroughCpuTensorHandle : public ConstCpuTensorHandle
+{
+public:
+ ConstPassthroughCpuTensorHandle(const TensorInfo& tensorInfo, const void* mem)
+ : ConstCpuTensorHandle(tensorInfo)
+ {
+ SetConstMemory(mem);
+ }
+
+ virtual void Allocate() override;
+};
+
+
+// Template specializations.
+
+template <>
+const void* ConstCpuTensorHandle::GetConstTensor() const;
+
+template <>
+void* CpuTensorHandle::GetTensor() const;
+
+} // namespace armnn
diff --git a/src/backends/backendsCommon/CpuTensorHandleFwd.hpp b/src/backends/backendsCommon/CpuTensorHandleFwd.hpp
new file mode 100644
index 0000000000..d439d0bbe6
--- /dev/null
+++ b/src/backends/backendsCommon/CpuTensorHandleFwd.hpp
@@ -0,0 +1,16 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+namespace armnn
+{
+
+class ConstCpuTensorHandle;
+class CpuTensorHandle;
+class ScopedCpuTensorHandle;
+class PassthroughCpuTensorHandle;
+class ConstPassthroughCpuTensorHandle;
+
+} // namespace armnn
diff --git a/src/backends/backendsCommon/IBackendContext.hpp b/src/backends/backendsCommon/IBackendContext.hpp
new file mode 100644
index 0000000000..d073d12868
--- /dev/null
+++ b/src/backends/backendsCommon/IBackendContext.hpp
@@ -0,0 +1,27 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/IRuntime.hpp>
+#include <memory>
+
+namespace armnn
+{
+
+class IBackendContext
+{
+public:
+ virtual ~IBackendContext() {}
+
+protected:
+ IBackendContext(const IRuntime::CreationOptions& options) {}
+
+private:
+ IBackendContext() = delete;
+};
+
+using IBackendContextUniquePtr = std::unique_ptr<IBackendContext>;
+
+} // namespace armnn
diff --git a/src/backends/backendsCommon/IBackendInternal.hpp b/src/backends/backendsCommon/IBackendInternal.hpp
new file mode 100644
index 0000000000..a24b60064a
--- /dev/null
+++ b/src/backends/backendsCommon/IBackendInternal.hpp
@@ -0,0 +1,30 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/IBackend.hpp>
+#include <memory>
+
+namespace armnn
+{
+class IWorkloadFactory;
+
+class IBackendInternal : public IBackend
+{
+protected:
+ IBackendInternal() = default;
+
+public:
+ // Allow backends created by the factory function
+ // to be destroyed through IBackendInternal.
+ ~IBackendInternal() override = default;
+
+ using IWorkloadFactoryPtr = std::unique_ptr<IWorkloadFactory>;
+ virtual IWorkloadFactoryPtr CreateWorkloadFactory() const = 0;
+};
+
+using IBackendInternalUniquePtr = std::unique_ptr<IBackendInternal>;
+
+} // namespace armnn
diff --git a/src/backends/backendsCommon/ILayerSupport.cpp b/src/backends/backendsCommon/ILayerSupport.cpp
new file mode 100644
index 0000000000..ebfff5d429
--- /dev/null
+++ b/src/backends/backendsCommon/ILayerSupport.cpp
@@ -0,0 +1,282 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include <armnn/ILayerSupport.hpp>
+#include <armnn/Exceptions.hpp>
+
+namespace armnn
+{
+
+namespace
+{
+
+bool DefaultLayerSupport(const char* func,
+ const char* file,
+ unsigned int line,
+ Optional<std::string&> reasonIfUnsupported)
+{
+ // NOTE: We only need to return the reason if the optional parameter is not empty
+ if (reasonIfUnsupported)
+ {
+ std::stringstream message;
+ message << func << "is not implemented [" << file << ":" << line << "]";
+
+ reasonIfUnsupported.value() = message.str();
+ }
+
+ return false;
+}
+
+} // anonymous namespace
+
+bool ILayerSupport::IsActivationSupported(const TensorInfo& input,
+ const TensorInfo& output,
+ const ActivationDescriptor& descriptor,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsAdditionSupported(const TensorInfo& input0,
+ const TensorInfo& input1,
+ const TensorInfo& output,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsBatchNormalizationSupported(const TensorInfo& input,
+ const TensorInfo& output,
+ const TensorInfo& mean,
+ const TensorInfo& var,
+ const TensorInfo& beta,
+ const TensorInfo& gamma,
+ const BatchNormalizationDescriptor& descriptor,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsConstantSupported(const TensorInfo& output,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsConvertFp16ToFp32Supported(const TensorInfo& input,
+ const TensorInfo& output,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsConvertFp32ToFp16Supported(const TensorInfo& input,
+ const TensorInfo& output,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsConvolution2dSupported(const TensorInfo& input,
+ const TensorInfo& output,
+ const Convolution2dDescriptor& descriptor,
+ const TensorInfo& weights,
+ const Optional<TensorInfo>& biases,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsDepthwiseConvolutionSupported(const TensorInfo& input,
+ const TensorInfo& output,
+ const DepthwiseConvolution2dDescriptor& descriptor,
+ const TensorInfo& weights,
+ const Optional<TensorInfo>& biases,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsDivisionSupported(const TensorInfo& input0,
+ const TensorInfo& input1,
+ const TensorInfo& output,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsFakeQuantizationSupported(const TensorInfo& input,
+ const FakeQuantizationDescriptor& descriptor,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsFloorSupported(const TensorInfo& input,
+ const TensorInfo& output,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsFullyConnectedSupported(const TensorInfo& input,
+ const TensorInfo& output,
+ const TensorInfo& weights,
+ const TensorInfo& biases,
+ const FullyConnectedDescriptor& descriptor,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsInputSupported(const TensorInfo& input,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsL2NormalizationSupported(const TensorInfo& input,
+ const TensorInfo& output,
+ const L2NormalizationDescriptor& descriptor,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsLstmSupported(const TensorInfo& input,
+ const TensorInfo& outputStateIn,
+ const TensorInfo& cellStateIn,
+ const TensorInfo& scratchBuffer,
+ const TensorInfo& outputStateOut,
+ const TensorInfo& cellStateOut,
+ const TensorInfo& output,
+ const LstmDescriptor& descriptor,
+ const TensorInfo& inputToForgetWeights,
+ const TensorInfo& inputToCellWeights,
+ const TensorInfo& inputToOutputWeights,
+ const TensorInfo& recurrentToForgetWeights,
+ const TensorInfo& recurrentToCellWeights,
+ const TensorInfo& recurrentToOutputWeights,
+ const TensorInfo& forgetGateBias,
+ const TensorInfo& cellBias,
+ const TensorInfo& outputGateBias,
+ const TensorInfo* inputToInputWeights,
+ const TensorInfo* recurrentToInputWeights,
+ const TensorInfo* cellToInputWeights,
+ const TensorInfo* inputGateBias,
+ const TensorInfo* projectionWeights,
+ const TensorInfo* projectionBias,
+ const TensorInfo* cellToForgetWeights,
+ const TensorInfo* cellToOutputWeights,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsMeanSupported(const TensorInfo& input,
+ const TensorInfo& output,
+ const MeanDescriptor& descriptor,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsMergerSupported(const std::vector<const TensorInfo*> inputs,
+ const OriginsDescriptor& descriptor,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsMultiplicationSupported(const TensorInfo& input0,
+ const TensorInfo& input1,
+ const TensorInfo& output,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsNormalizationSupported(const TensorInfo& input,
+ const TensorInfo& output,
+ const NormalizationDescriptor& descriptor,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsOutputSupported(const TensorInfo& output,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsPadSupported(const TensorInfo& input,
+ const TensorInfo& output,
+ const PadDescriptor& descriptor,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsPermuteSupported(const TensorInfo& input,
+ const TensorInfo& output,
+ const PermuteDescriptor& descriptor,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsPooling2dSupported(const TensorInfo& input,
+ const TensorInfo& output,
+ const Pooling2dDescriptor& descriptor,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsReshapeSupported(const TensorInfo& input,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsResizeBilinearSupported(const TensorInfo& input,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsSoftmaxSupported(const TensorInfo& input,
+ const TensorInfo& output,
+ const SoftmaxDescriptor& descriptor,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsSpaceToBatchNdSupported(const TensorInfo& input,
+ const TensorInfo& output,
+ const SpaceToBatchNdDescriptor& descriptor,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsSplitterSupported(const TensorInfo& input,
+ const ViewsDescriptor& descriptor,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+bool ILayerSupport::IsSubtractionSupported(const TensorInfo& input0,
+ const TensorInfo& input1,
+ const TensorInfo& output,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ return DefaultLayerSupport(__func__, __FILE__, __LINE__, reasonIfUnsupported);
+}
+
+} // namespace armnn
diff --git a/src/backends/backendsCommon/ITensorHandle.hpp b/src/backends/backendsCommon/ITensorHandle.hpp
new file mode 100644
index 0000000000..02f4ed6e5a
--- /dev/null
+++ b/src/backends/backendsCommon/ITensorHandle.hpp
@@ -0,0 +1,73 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+namespace armnn
+{
+
+class TensorShape;
+
+class ITensorHandle
+{
+public:
+ enum Type
+ {
+ Cpu,
+ CL,
+ Neon
+ };
+
+ virtual ~ITensorHandle(){}
+
+ /// Indicate to the memory manager that this resource is active.
+ /// This is used to compute overlapping lifetimes of resources.
+ virtual void Manage() = 0;
+
+ /// Indicate to the memory manager that this resource is no longer active.
+ /// This is used to compute overlapping lifetimes of resources.
+ virtual void Allocate() = 0;
+
+ /// Get the type backend associated with the tensor handle.
+ /// \return Type enum
+ virtual ITensorHandle::Type GetType() const = 0;
+
+ /// Get the parent tensor if this is a subtensor.
+ /// \return a pointer to the parent tensor. Otherwise nullptr if not a subtensor.
+ virtual ITensorHandle* GetParent() const = 0;
+
+ /// Map the tensor data for access.
+ /// \param blocking hint to block the calling thread until all other accesses are complete. (backend dependent)
+ /// \return pointer to the first element of the mapped data.
+ virtual const void* Map(bool blocking=true) const = 0;
+
+ /// Unmap the tensor data
+ virtual void Unmap() const = 0;
+
+ /// Map the tensor data for access. Must be paired with call to Unmap().
+ /// \param blocking hint to block the calling thread until all other accesses are complete. (backend dependent)
+ /// \return pointer to the first element of the mapped data.
+ void* Map(bool blocking=true)
+ {
+ return const_cast<void*>(static_cast<const ITensorHandle*>(this)->Map(blocking));
+ }
+
+ /// Unmap the tensor data that was previously mapped with call to Map().
+ void Unmap()
+ {
+ return static_cast<const ITensorHandle*>(this)->Unmap();
+ }
+
+ /// Get the strides for each dimension ordered from largest to smallest where
+ /// the smallest value is the same as the size of a single element in the tensor.
+ /// \return a TensorShape filled with the strides for each dimension
+ virtual TensorShape GetStrides() const = 0;
+
+ /// Get the number of elements for each dimension orderd from slowest iterating dimension
+ /// to fastest iterating dimension.
+ /// \return a TensorShape filled with the number of elements for each dimension.
+ virtual TensorShape GetShape() const = 0;
+};
+
+}
diff --git a/src/backends/backendsCommon/LayerSupportRegistry.cpp b/src/backends/backendsCommon/LayerSupportRegistry.cpp
new file mode 100644
index 0000000000..63b4da7337
--- /dev/null
+++ b/src/backends/backendsCommon/LayerSupportRegistry.cpp
@@ -0,0 +1,17 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include "LayerSupportRegistry.hpp"
+
+namespace armnn
+{
+
+LayerSupportRegistry& LayerSupportRegistryInstance()
+{
+ static LayerSupportRegistry instance;
+ return instance;
+}
+
+} // namespace armnn
diff --git a/src/backends/backendsCommon/LayerSupportRegistry.hpp b/src/backends/backendsCommon/LayerSupportRegistry.hpp
new file mode 100644
index 0000000000..6124685032
--- /dev/null
+++ b/src/backends/backendsCommon/LayerSupportRegistry.hpp
@@ -0,0 +1,25 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "RegistryCommon.hpp"
+#include <armnn/ILayerSupport.hpp>
+#include <armnn/Types.hpp>
+
+namespace armnn
+{
+using LayerSupportRegistry = RegistryCommon<ILayerSupport,
+ ILayerSupportSharedPtr,
+ EmptyInitializer>;
+
+LayerSupportRegistry& LayerSupportRegistryInstance();
+
+template <>
+struct RegisteredTypeName<ILayerSupport>
+{
+ static const char * Name() { return "ILayerSupport"; }
+};
+
+} // namespace armnn
diff --git a/src/backends/backendsCommon/MakeWorkloadHelper.hpp b/src/backends/backendsCommon/MakeWorkloadHelper.hpp
new file mode 100644
index 0000000000..78a9669530
--- /dev/null
+++ b/src/backends/backendsCommon/MakeWorkloadHelper.hpp
@@ -0,0 +1,82 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+namespace armnn
+{
+namespace
+{
+
+// Make a workload of the specified WorkloadType.
+template<typename WorkloadType>
+struct MakeWorkloadForType
+{
+ template<typename QueueDescriptorType, typename... Args>
+ static std::unique_ptr<WorkloadType> Func(const QueueDescriptorType& descriptor,
+ const WorkloadInfo& info,
+ Args&&... args)
+ {
+ return std::make_unique<WorkloadType>(descriptor, info, std::forward<Args>(args)...);
+ }
+};
+
+// Specialization for void workload type used for unsupported workloads.
+template<>
+struct MakeWorkloadForType<NullWorkload>
+{
+ template<typename QueueDescriptorType, typename... Args>
+ static std::unique_ptr<NullWorkload> Func(const QueueDescriptorType& descriptor,
+ const WorkloadInfo& info,
+ Args&&... args)
+ {
+ return nullptr;
+ }
+};
+
+// Makes a workload for one the specified types based on the data type requirements of the tensorinfo.
+// Specify type void as the WorkloadType for unsupported DataType/WorkloadType combos.
+template <typename Float16Workload, typename Float32Workload, typename Uint8Workload, typename QueueDescriptorType,
+ typename... Args>
+std::unique_ptr<IWorkload> MakeWorkloadHelper(const QueueDescriptorType& descriptor,
+ const WorkloadInfo& info,
+ Args&&... args)
+{
+ const DataType dataType = !info.m_InputTensorInfos.empty() ?
+ info.m_InputTensorInfos[0].GetDataType()
+ : info.m_OutputTensorInfos[0].GetDataType();
+
+ BOOST_ASSERT(info.m_InputTensorInfos.empty() || info.m_OutputTensorInfos.empty()
+ || info.m_InputTensorInfos[0].GetDataType() == info.m_OutputTensorInfos[0].GetDataType());
+
+ switch (dataType)
+ {
+ case DataType::Float16:
+ return MakeWorkloadForType<Float16Workload>::Func(descriptor, info, std::forward<Args>(args)...);
+ case DataType::Float32:
+ return MakeWorkloadForType<Float32Workload>::Func(descriptor, info, std::forward<Args>(args)...);
+ case DataType::QuantisedAsymm8:
+ return MakeWorkloadForType<Uint8Workload>::Func(descriptor, info, std::forward<Args>(args)...);
+ default:
+ BOOST_ASSERT_MSG(false, "Unknown DataType.");
+ return nullptr;
+ }
+}
+
+// Makes a workload for one the specified types based on the data type requirements of the tensorinfo.
+// Calling this method is the equivalent of calling the three typed MakeWorkload method with <FloatWorkload,
+// FloatWorkload, Uint8Workload>.
+// Specify type void as the WorkloadType for unsupported DataType/WorkloadType combos.
+template <typename FloatWorkload, typename Uint8Workload, typename QueueDescriptorType, typename... Args>
+std::unique_ptr<IWorkload> MakeWorkloadHelper(const QueueDescriptorType& descriptor,
+ const WorkloadInfo& info,
+ Args&&... args)
+{
+ return MakeWorkloadHelper<FloatWorkload, FloatWorkload, Uint8Workload>(descriptor, info,
+ std::forward<Args>(args)...);
+}
+
+
+} //namespace
+} //namespace armnn
diff --git a/src/backends/backendsCommon/MemCopyWorkload.cpp b/src/backends/backendsCommon/MemCopyWorkload.cpp
new file mode 100644
index 0000000000..0fa04f8f46
--- /dev/null
+++ b/src/backends/backendsCommon/MemCopyWorkload.cpp
@@ -0,0 +1,65 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include "MemCopyWorkload.hpp"
+
+#include "CpuTensorHandle.hpp"
+
+#include <TypeUtils.hpp>
+
+#include <boost/cast.hpp>
+
+#include <cstring>
+
+namespace armnn
+{
+
+namespace
+{
+
+template <typename SrcTensorHandleType, typename DstTensorHandleType>
+void GatherTensorHandlePairs(const MemCopyQueueDescriptor& descriptor,
+ std::vector<std::pair<SrcTensorHandleType*, DstTensorHandleType*>>& tensorHandlePairs)
+{
+ const unsigned int numInputs = static_cast<unsigned int>(descriptor.m_Inputs.size());
+ tensorHandlePairs.reserve(numInputs);
+
+ for (unsigned int i = 0; i < numInputs; ++i)
+ {
+ SrcTensorHandleType* const srcTensorHandle = boost::polymorphic_downcast<SrcTensorHandleType*>(
+ descriptor.m_Inputs[i]);
+ DstTensorHandleType* const dstTensorHandle = boost::polymorphic_downcast<DstTensorHandleType*>(
+ descriptor.m_Outputs[i]);
+
+ tensorHandlePairs.emplace_back(srcTensorHandle, dstTensorHandle);
+ }
+}
+
+} //namespace
+
+
+CopyMemGenericWorkload::CopyMemGenericWorkload(const MemCopyQueueDescriptor& descriptor,
+ const WorkloadInfo& info)
+ : BaseWorkload<MemCopyQueueDescriptor>(descriptor, info)
+{
+ GatherTensorHandlePairs(descriptor, m_TensorHandlePairs);
+}
+
+void CopyMemGenericWorkload::Execute() const
+{
+ ARMNN_SCOPED_PROFILING_EVENT(Compute::Undefined, "CopyMemGeneric_Execute");
+
+ auto copyFunc = [](void* dst, const void* src, size_t size)
+ {
+ memcpy(dst, src, size);
+ };
+
+ for (const auto& pair : m_TensorHandlePairs)
+ {
+ CopyTensorContentsGeneric(pair.first, pair.second, copyFunc);
+ }
+}
+
+} //namespace armnn
diff --git a/src/backends/backendsCommon/MemCopyWorkload.hpp b/src/backends/backendsCommon/MemCopyWorkload.hpp
new file mode 100644
index 0000000000..bcbba168df
--- /dev/null
+++ b/src/backends/backendsCommon/MemCopyWorkload.hpp
@@ -0,0 +1,27 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "CpuTensorHandleFwd.hpp"
+#include "Workload.hpp"
+#include "WorkloadUtils.hpp"
+
+#include <utility>
+
+namespace armnn
+{
+
+class CopyMemGenericWorkload : public BaseWorkload<MemCopyQueueDescriptor>
+{
+public:
+ CopyMemGenericWorkload(const MemCopyQueueDescriptor& descriptor, const WorkloadInfo& info);
+ void Execute() const override;
+
+private:
+ using TensorHandlePair = std::pair<const ITensorHandle*, ITensorHandle*>;
+ std::vector<TensorHandlePair> m_TensorHandlePairs;
+};
+
+} //namespace armnn
diff --git a/src/backends/backendsCommon/OutputHandler.cpp b/src/backends/backendsCommon/OutputHandler.cpp
new file mode 100644
index 0000000000..2df2fb5181
--- /dev/null
+++ b/src/backends/backendsCommon/OutputHandler.cpp
@@ -0,0 +1,40 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include "OutputHandler.hpp"
+
+#include "ITensorHandle.hpp"
+#include "WorkloadDataCollector.hpp"
+
+#include <backendsCommon/WorkloadFactory.hpp>
+
+#include <boost/assert.hpp>
+#include <boost/log/trivial.hpp>
+
+namespace armnn
+{
+
+void OutputHandler::SetTensorInfo(const TensorInfo& tensorInfo)
+{
+ m_TensorInfo = tensorInfo;
+ m_bTensorInfoSet = true;
+}
+
+void OutputHandler::CreateTensorHandles(const IWorkloadFactory& factory)
+{
+ m_TensorHandle = factory.CreateTensorHandle(m_TensorInfo);
+}
+
+void OutputHandler::CreateTensorHandles(const IWorkloadFactory& factory, DataLayout dataLayout)
+{
+ m_TensorHandle = factory.CreateTensorHandle(m_TensorInfo, dataLayout);
+}
+
+void OutputHandler::CollectWorkloadOutputs(WorkloadDataCollector& dataCollector) const
+{
+ dataCollector.Push(m_TensorHandle.get(), m_TensorInfo);
+}
+
+} // namespace armnn
diff --git a/src/backends/backendsCommon/OutputHandler.hpp b/src/backends/backendsCommon/OutputHandler.hpp
new file mode 100644
index 0000000000..240b369fab
--- /dev/null
+++ b/src/backends/backendsCommon/OutputHandler.hpp
@@ -0,0 +1,68 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "ITensorHandle.hpp"
+
+#include <armnn/Descriptors.hpp>
+#include <armnn/INetwork.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/Types.hpp>
+
+#include <backendsCommon/WorkloadDataFwd.hpp>
+
+#include <memory>
+#include <set>
+#include <string>
+#include <vector>
+
+#include <boost/assert.hpp>
+
+namespace armnn
+{
+
+class ITensorHandle;
+class IWorkloadFactory;
+class OutputSlot;
+class WorkloadDataCollector;
+
+class OutputHandler
+{
+public:
+ /// @brief - Sets the TensorInfo used by this output handler.
+ /// @param tensorInfo - TensorInfo for the output.
+ void SetTensorInfo(const TensorInfo& tensorInfo);
+
+ /// @brief - Creates tensor handlers used by the intermediate tensors. Does not allocate memory.
+ /// @param factory - Factory to be used for handler creation.
+ void CreateTensorHandles(const IWorkloadFactory& factory);
+
+ /// @brief - Creates tensor handlers used by the intermediate tensors. Does not allocate memory.
+ /// @param factory - Factory to be used for handler creation.
+ /// @param dataLayout - Data Layout to be used for handler creation.
+ void CreateTensorHandles(const IWorkloadFactory& factory, DataLayout dataLayout);
+
+ /// @brief - Gets the matching TensorInfo for the output.
+ /// @return - References to the output TensorInfo.
+ const TensorInfo& GetTensorInfo() const { return m_TensorInfo; }
+
+ /// @brief - Gets the allocated tensor memory.
+ /// @return - Pointer to the tensor memory.
+ ITensorHandle* GetData() const { return m_TensorHandle.get(); }
+
+ /// Fill the outputs for a given queue descriptor.
+ void CollectWorkloadOutputs(WorkloadDataCollector& dataCollector) const;
+
+ void SetData(std::unique_ptr<ITensorHandle> data) { m_TensorHandle = std::move(data); }
+
+ /// @brief Returns true if SetTensorInfo() has been called at least once on this.
+ bool IsTensorInfoSet() const { return m_bTensorInfoSet; }
+private:
+ std::unique_ptr<ITensorHandle> m_TensorHandle;
+ TensorInfo m_TensorInfo;
+ bool m_bTensorInfoSet = false;
+};
+
+} //namespace armnn
diff --git a/src/backends/backendsCommon/RegistryCommon.hpp b/src/backends/backendsCommon/RegistryCommon.hpp
new file mode 100644
index 0000000000..3dbfad2a66
--- /dev/null
+++ b/src/backends/backendsCommon/RegistryCommon.hpp
@@ -0,0 +1,134 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/BackendId.hpp>
+#include <armnn/Exceptions.hpp>
+
+#include <functional>
+#include <memory>
+#include <sstream>
+#include <string>
+#include <unordered_map>
+
+namespace armnn
+{
+
+template <typename RegisteredType>
+struct RegisteredTypeName
+{
+ static const char * Name() { return "UNKNOWN"; }
+};
+
+template <typename RegisteredType, typename PointerType, typename ParamType>
+class RegistryCommon
+{
+public:
+ using FactoryFunction = std::function<PointerType(const ParamType&)>;
+
+ void Register(const BackendId& id, FactoryFunction factory)
+ {
+ if (m_Factories.count(id) > 0)
+ {
+ throw InvalidArgumentException(
+ std::string(id) + " already registered as " + RegisteredTypeName<RegisteredType>::Name() + " factory",
+ CHECK_LOCATION());
+ }
+
+ m_Factories[id] = factory;
+ }
+
+ FactoryFunction GetFactory(const BackendId& id) const
+ {
+ auto it = m_Factories.find(id);
+ if (it == m_Factories.end())
+ {
+ throw InvalidArgumentException(
+ std::string(id) + " has no " + RegisteredTypeName<RegisteredType>::Name() + " factory registered",
+ CHECK_LOCATION());
+ }
+
+ return it->second;
+ }
+
+ FactoryFunction GetFactory(const BackendId& id,
+ FactoryFunction defaultFactory) const
+ {
+ auto it = m_Factories.find(id);
+ if (it == m_Factories.end())
+ {
+ return defaultFactory;
+ }
+ else
+ {
+ return it->second;
+ }
+ }
+
+ size_t Size() const
+ {
+ return m_Factories.size();
+ }
+
+ BackendIdSet GetBackendIds() const
+ {
+ BackendIdSet result;
+ for (const auto& it : m_Factories)
+ {
+ result.insert(it.first);
+ }
+ return result;
+ }
+
+ std::string GetBackendIdsAsString() const
+ {
+ static const std::string delimitator = ", ";
+
+ std::stringstream output;
+ for (auto& backendId : GetBackendIds())
+ {
+ if (output.tellp() != std::streampos(0))
+ {
+ output << delimitator;
+ }
+ output << backendId;
+ }
+
+ return output.str();
+ }
+
+ RegistryCommon() {}
+ virtual ~RegistryCommon() {}
+
+protected:
+ using FactoryStorage = std::unordered_map<BackendId, FactoryFunction>;
+
+ // For testing only
+ static void Swap(RegistryCommon& instance, FactoryStorage& other)
+ {
+ std::swap(instance.m_Factories, other);
+ }
+
+private:
+ RegistryCommon(const RegistryCommon&) = delete;
+ RegistryCommon& operator=(const RegistryCommon&) = delete;
+
+ FactoryStorage m_Factories;
+};
+
+template <typename RegistryType>
+struct StaticRegistryInitializer
+{
+ using FactoryFunction = typename RegistryType::FactoryFunction;
+
+ StaticRegistryInitializer(RegistryType& instance,
+ const BackendId& id,
+ FactoryFunction factory)
+ {
+ instance.Register(id, factory);
+ }
+};
+
+} // namespace armnn \ No newline at end of file
diff --git a/src/backends/backendsCommon/StringMapping.cpp b/src/backends/backendsCommon/StringMapping.cpp
new file mode 100644
index 0000000000..3ca8843812
--- /dev/null
+++ b/src/backends/backendsCommon/StringMapping.cpp
@@ -0,0 +1,17 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include "StringMapping.hpp"
+
+namespace armnn
+{
+
+const StringMapping& StringMapping::Instance()
+{
+ static StringMapping instance;
+ return instance;
+}
+
+} // armnn
diff --git a/src/backends/backendsCommon/StringMapping.hpp b/src/backends/backendsCommon/StringMapping.hpp
new file mode 100644
index 0000000000..6312e68945
--- /dev/null
+++ b/src/backends/backendsCommon/StringMapping.hpp
@@ -0,0 +1,49 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#pragma once
+
+namespace armnn
+{
+
+///
+/// StringMapping is helper class to be able to use strings as template
+/// parameters, so this allows simplifying code which only differs in
+/// a string, such as a debug string literal.
+///
+struct StringMapping
+{
+public:
+ enum Id {
+ RefAdditionWorkload_Execute,
+ RefSubtractionWorkload_Execute,
+ RefMultiplicationWorkload_Execute,
+ RefDivisionWorkload_Execute,
+ MAX_STRING_ID
+ };
+
+ const char * Get(Id id) const
+ {
+ return m_Strings[id];
+ }
+
+ static const StringMapping& Instance();
+
+private:
+ StringMapping()
+ {
+ m_Strings[RefAdditionWorkload_Execute] = "RefAdditionWorkload_Execute";
+ m_Strings[RefSubtractionWorkload_Execute] = "RefSubtractionWorkload_Execute";
+ m_Strings[RefMultiplicationWorkload_Execute] = "RefMultiplicationWorkload_Execute";
+ m_Strings[RefDivisionWorkload_Execute] = "RefDivisionWorkload_Execute";
+ }
+
+ StringMapping(const StringMapping &) = delete;
+ StringMapping& operator=(const StringMapping &) = delete;
+
+ const char * m_Strings[MAX_STRING_ID];
+};
+
+} //namespace armnn \ No newline at end of file
diff --git a/src/backends/backendsCommon/Workload.hpp b/src/backends/backendsCommon/Workload.hpp
new file mode 100644
index 0000000000..309d53f48e
--- /dev/null
+++ b/src/backends/backendsCommon/Workload.hpp
@@ -0,0 +1,149 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "WorkloadData.hpp"
+#include "WorkloadInfo.hpp"
+
+#include <Profiling.hpp>
+
+#include <algorithm>
+
+namespace armnn
+{
+
+/// Workload interface to enqueue a layer computation.
+class IWorkload
+{
+public:
+ virtual ~IWorkload() {}
+
+ virtual void Execute() const = 0;
+};
+
+// NullWorkload used to denote an unsupported workload when used by the MakeWorkload<> template
+// in the various workload factories.
+// There should never be an instantiation of a NullWorkload.
+class NullWorkload : public IWorkload
+{
+ NullWorkload()=delete;
+};
+
+template <typename QueueDescriptor>
+class BaseWorkload : public IWorkload
+{
+public:
+
+ BaseWorkload(const QueueDescriptor& descriptor, const WorkloadInfo& info)
+ : m_Data(descriptor)
+ {
+ m_Data.Validate(info);
+ }
+
+ const QueueDescriptor& GetData() const { return m_Data; }
+
+protected:
+ const QueueDescriptor m_Data;
+};
+
+// TypedWorkload used
+template <typename QueueDescriptor, armnn::DataType... DataTypes>
+class TypedWorkload : public BaseWorkload<QueueDescriptor>
+{
+public:
+
+ TypedWorkload(const QueueDescriptor& descriptor, const WorkloadInfo& info)
+ : BaseWorkload<QueueDescriptor>(descriptor, info)
+ {
+ std::vector<armnn::DataType> dataTypes = {DataTypes...};
+ armnn::DataType expectedInputType;
+
+ if (!info.m_InputTensorInfos.empty())
+ {
+ expectedInputType = info.m_InputTensorInfos.front().GetDataType();
+
+ if (std::find(dataTypes.begin(), dataTypes.end(), expectedInputType) == dataTypes.end())
+ {
+ BOOST_ASSERT_MSG(false, "Trying to create workload with incorrect type");
+ }
+ BOOST_ASSERT_MSG(std::all_of(std::next(info.m_InputTensorInfos.begin()),
+ info.m_InputTensorInfos.end(),
+ [&](auto it){
+ return it.GetDataType() == expectedInputType;
+ }),
+ "Trying to create workload with incorrect type");
+ }
+ armnn::DataType expectedOutputType;
+
+ if (!info.m_OutputTensorInfos.empty())
+ {
+ expectedOutputType = info.m_OutputTensorInfos.front().GetDataType();
+
+ if (!info.m_InputTensorInfos.empty())
+ {
+ if (expectedOutputType != expectedInputType)
+ {
+ BOOST_ASSERT_MSG(false, "Trying to create workload with incorrect type");
+ }
+ }
+ else if (std::find(dataTypes.begin(), dataTypes.end(), expectedOutputType) == dataTypes.end())
+ {
+ BOOST_ASSERT_MSG(false, "Trying to create workload with incorrect type");
+ }
+ BOOST_ASSERT_MSG(std::all_of(std::next(info.m_OutputTensorInfos.begin()),
+ info.m_OutputTensorInfos.end(),
+ [&](auto it){
+ return it.GetDataType() == expectedOutputType;
+ }),
+ "Trying to create workload with incorrect type");
+ }
+ }
+};
+
+template <typename QueueDescriptor, armnn::DataType InputDataType, armnn::DataType OutputDataType>
+class MultiTypedWorkload : public BaseWorkload<QueueDescriptor>
+{
+public:
+
+ MultiTypedWorkload(const QueueDescriptor& descriptor, const WorkloadInfo& info)
+ : BaseWorkload<QueueDescriptor>(descriptor, info)
+ {
+ BOOST_ASSERT_MSG(std::all_of(info.m_InputTensorInfos.begin(),
+ info.m_InputTensorInfos.end(),
+ [&](auto it){
+ return it.GetDataType() == InputDataType;
+ }),
+ "Trying to create workload with incorrect type");
+ BOOST_ASSERT_MSG(std::all_of(info.m_OutputTensorInfos.begin(),
+ info.m_OutputTensorInfos.end(),
+ [&](auto it){
+ return it.GetDataType() == OutputDataType;
+ }),
+ "Trying to create workload with incorrect type");
+ }
+};
+
+template <typename QueueDescriptor>
+using FloatWorkload = TypedWorkload<QueueDescriptor,
+ armnn::DataType::Float16,
+ armnn::DataType::Float32>;
+
+template <typename QueueDescriptor>
+using Float32Workload = TypedWorkload<QueueDescriptor, armnn::DataType::Float32>;
+
+template <typename QueueDescriptor>
+using Uint8Workload = TypedWorkload<QueueDescriptor, armnn::DataType::QuantisedAsymm8>;
+
+template <typename QueueDescriptor>
+using Float16ToFloat32Workload = MultiTypedWorkload<QueueDescriptor,
+ armnn::DataType::Float16,
+ armnn::DataType::Float32>;
+
+template <typename QueueDescriptor>
+using Float32ToFloat16Workload = MultiTypedWorkload<QueueDescriptor,
+ armnn::DataType::Float32,
+ armnn::DataType::Float16>;
+
+} //namespace armnn
diff --git a/src/backends/backendsCommon/WorkloadData.cpp b/src/backends/backendsCommon/WorkloadData.cpp
new file mode 100644
index 0000000000..62cbd05c13
--- /dev/null
+++ b/src/backends/backendsCommon/WorkloadData.cpp
@@ -0,0 +1,915 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#include "WorkloadData.hpp"
+
+#include "CpuTensorHandle.hpp"
+
+#include <algorithm>
+#include <iomanip>
+#include <string>
+#include <sstream>
+
+#include <boost/format.hpp>
+
+namespace armnn
+{
+
+//---------------------------------------------------------------
+DataType GetBiasDataType(DataType inputDataType)
+{
+ switch (inputDataType)
+ {
+ case DataType::Float16:
+ return DataType::Float16;
+ case DataType::Float32:
+ return DataType::Float32;
+ case DataType::QuantisedAsymm8:
+ return DataType::Signed32;
+ default:
+ BOOST_ASSERT_MSG(false, "Invalid input data type");
+ return DataType::Float32;
+ }
+}
+
+namespace
+{
+
+//---------------------------------------------------------------
+//android ndk does not support std::to_string function.
+template <typename T>
+std::string to_string(T value)
+{
+ std::ostringstream os;
+ os << value;
+ return os.str();
+}
+
+//---------------------------------------------------------------
+void ValidatePointer(const void* ptr, std::string const& descName, std::string const& paramName)
+{
+ if (!ptr)
+ {
+ throw InvalidArgumentException(descName + ": Invalid null pointer. The " +
+ paramName + " parameter must be set.");
+ }
+}
+
+//---------------------------------------------------------------
+void ValidateTensorShapesMatch(const TensorInfo& first,
+ const TensorInfo& second,
+ std::string const& descName,
+ std::string const& firstName,
+ std::string const& secondName)
+{
+ if (first.GetShape() != second.GetShape())
+ {
+ throw InvalidArgumentException(descName + ": "
+ + firstName + " & " + secondName + " must have identical shapes");
+ }
+}
+
+//---------------------------------------------------------------
+void ValidateNoInputs(const WorkloadInfo& workloadInfo, std::string const& descName)
+{
+ if (workloadInfo.m_InputTensorInfos.size() != 0)
+ {
+ throw InvalidArgumentException(descName +
+ ": Requires no inputs. " +
+ to_string(workloadInfo.m_InputTensorInfos.size()) + " has been provided.");
+ }
+}
+
+//---------------------------------------------------------------
+void ValidateSingleInput(const WorkloadInfo& workloadInfo, std::string const& descName)
+{
+ if (workloadInfo.m_InputTensorInfos.size() != 1)
+ {
+ throw InvalidArgumentException(descName +
+ ": Requires exactly one input. " +
+ to_string(workloadInfo.m_InputTensorInfos.size()) + " has been provided." );
+ }
+}
+
+//---------------------------------------------------------------
+void ValidateTwoInputs(const WorkloadInfo& workloadInfo, std::string const& descName)
+{
+ if (workloadInfo.m_InputTensorInfos.size() != 2)
+ {
+ throw InvalidArgumentException(descName +
+ ": Requires exactly two workloadInfo.m_InputTensorInfos. " +
+ to_string(workloadInfo.m_InputTensorInfos.size()) + " have been provided.");
+ }
+}
+
+//---------------------------------------------------------------
+void ValidateSingleOutput(const WorkloadInfo& workloadInfo, std::string const& descName)
+{
+ if (workloadInfo.m_OutputTensorInfos.size() != 1)
+ {
+ throw InvalidArgumentException(descName +
+ ": Requires exactly one output. " +
+ to_string(workloadInfo.m_OutputTensorInfos.size()) + " has been provided.");
+ }
+}
+
+//---------------------------------------------------------------
+void ValidateTensorNumDimensions(const TensorInfo& tensor,
+ std::string const& descName,
+ unsigned int numDimensions,
+ std::string const& tensorName)
+{
+ if (tensor.GetNumDimensions() != numDimensions)
+ {
+ throw InvalidArgumentException(descName + ": Expected " + to_string(numDimensions) + " but got " +
+ to_string(tensor.GetNumDimensions()) + " dimensions for " +
+ tensorName + " tensor.");
+ }
+}
+
+//---------------------------------------------------------------
+void ValidateTensorDataType(const TensorInfo& tensor, DataType dataType,
+ const std::string& descName, std::string const& tensorName)
+{
+ if (tensor.GetDataType() != dataType)
+ {
+ throw InvalidArgumentException(descName + ": Expected data type " + GetDataTypeName(dataType) + " but got " +
+ GetDataTypeName(tensor.GetDataType()) + " for " + tensorName + " tensor.");
+ }
+}
+
+//---------------------------------------------------------------
+void ValidateBiasTensorQuantization(const TensorInfo& biasTensor, const TensorInfo& inputTensorInfo,
+ const TensorInfo& weightsTensorInfo, const std::string& descName)
+{
+ if (biasTensor.GetQuantizationOffset() != 0)
+ {
+ throw InvalidArgumentException(descName + ": Expected zero quantization offset for bias tensor but got " +
+ to_string(biasTensor.GetQuantizationOffset()));
+ }
+ const float expectedScale = inputTensorInfo.GetQuantizationScale() * weightsTensorInfo.GetQuantizationScale();
+ if (std::abs(biasTensor.GetQuantizationScale() - expectedScale) > 0.000000001f)
+ {
+ // Print the float values with extra precision to see very small differences
+ std::stringstream msg;
+ msg << std::setprecision(10) << descName << ": Expected " << expectedScale <<
+ " quantization scale for bias tensor (the product of the input and weight scales), but got " <<
+ biasTensor.GetQuantizationScale();
+ throw InvalidArgumentException(msg.str());
+ }
+}
+
+//---------------------------------------------------------------
+void ValidateTensors(const std::vector<ITensorHandle*>& vec,
+ unsigned int numExpected,
+ const std::string& descName,
+ const std::string& varName)
+{
+ if (vec.empty() && numExpected > 0)
+ {
+ throw InvalidArgumentException(descName + ": Invalid empty " + varName + " array.");
+ }
+
+ for (unsigned int i = 0; i < numExpected; ++i)
+ {
+ if (!vec[i])
+ {
+ throw InvalidArgumentException(descName + ": Invalid NULL for " + varName + to_string(i));
+ }
+ }
+}
+
+//---------------------------------------------------------------
+void ValidateBroadcastTensorShapesMatch(const TensorInfo& first,
+ const TensorInfo& second,
+ const TensorInfo& output,
+ std::string const& descName,
+ std::string const& firstName,
+ std::string const& secondName)
+{
+ // Tensors must have the same number of dimensions in order to be explicit about which dimensions will get
+ // broadcasted.
+ if (first.GetNumDimensions() != second.GetNumDimensions())
+ {
+ throw InvalidArgumentException(descName + ": Tensors "
+ + firstName + " & " + secondName
+ + " must have the same number of dimensions in order to be broadcasted");
+ }
+ uint32_t numDims = first.GetNumDimensions();
+ std::vector<uint32_t> outputDims(numDims, 0u);
+ for (uint32_t i = 0; i < numDims; i++)
+ {
+ const bool dimsNotEqual = first.GetShape()[i] != second.GetShape()[i];
+ const bool dimsNotOne = (first.GetShape()[i] != 1) && (second.GetShape()[i] != 1);
+ if (dimsNotEqual && dimsNotOne)
+ {
+ throw InvalidArgumentException("Broadcasting is not possible for incompatible shapes");
+ }
+ outputDims[i] = std::max(first.GetShape()[i], second.GetShape()[i]);
+ }
+ TensorShape broadcastShape = TensorShape(boost::numeric_cast<unsigned int>(outputDims.size()), outputDims.data());
+ if (broadcastShape != output.GetShape())
+ {
+ throw InvalidArgumentException(descName + ": The tensor shape resulting from adding "
+ + firstName + " & " + secondName
+ + " does not match the output shape");
+ }
+}
+
+//---------------------------------------------------------------
+/// Validates that the output tensor's quantization scale is greater than the product
+/// of the two input tensors' quantization scales. This is a requirement of the implementation of
+/// the quantized multiplication.
+void ValidateTensorQuantizationMultiplier(const TensorInfo& inputTensor1, const TensorInfo& inputTensor2,
+ const TensorInfo& outputTensorInfo, std::string const& descName,
+ const std::string& inputTensor1Name, const std::string& inputTensor2Name, const std::string& outputTensorName)
+{
+ if (outputTensorInfo.GetDataType() == DataType::QuantisedAsymm8)
+ {
+ if (outputTensorInfo.GetQuantizationScale() <=
+ inputTensor1.GetQuantizationScale() * inputTensor2.GetQuantizationScale())
+ {
+ std::stringstream msg;
+ msg << descName << ": Quantization scale of " << outputTensorName << " is not greater than " <<
+ "the product of the " << inputTensor1Name << " and " << inputTensor2Name << " tensors";
+ throw InvalidArgumentException(msg.str());
+ }
+ }
+}
+
+} //namespace
+
+void QueueDescriptor::ValidateInputsOutputs(const std::string& descName,
+ unsigned int numExpectedIn, unsigned int numExpectedOut) const
+{
+ ValidateTensors(m_Inputs, numExpectedIn, descName, "input");
+ ValidateTensors(m_Outputs, numExpectedOut, descName, "output");
+}
+
+//---------------------------------------------------------------
+void MemCopyQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "MemCopyQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "MemCopyQueueDescriptor");
+
+ if (workloadInfo.m_InputTensorInfos.size() != workloadInfo.m_OutputTensorInfos.size())
+ {
+ throw InvalidArgumentException(boost::str(
+ boost::format("Number of input infos (%1%) does not match the number of output infos (%2%)")
+ % workloadInfo.m_InputTensorInfos.size() % workloadInfo.m_OutputTensorInfos.size()));
+ }
+
+ for (std::size_t i = 0; i < workloadInfo.m_InputTensorInfos.size(); ++i)
+ {
+ if (workloadInfo.m_InputTensorInfos[i].GetNumElements() !=
+ workloadInfo.m_OutputTensorInfos[i].GetNumElements())
+ {
+ throw InvalidArgumentException(boost::str(
+ boost::format("Number of elements for tensor input and output %1% does not match")
+ % i ));
+ }
+ }
+
+ if (m_Inputs.size() != m_Outputs.size())
+ {
+ throw InvalidArgumentException(boost::str(
+ boost::format("Number of inputs (%1%) does not match the number of outputs (%2%)")
+ % m_Inputs.size() % m_Outputs.size()));
+ }
+
+ for (unsigned int i = 0; i < m_Inputs.size(); ++i)
+ {
+ if (!m_Inputs[i])
+ {
+ throw InvalidArgumentException(boost::str(boost::format("Invalid null input %1%") % i));
+ }
+
+ if (!m_Outputs[i])
+ {
+ throw InvalidArgumentException(boost::str(boost::format("Invalid null output %1%") % i));
+ }
+ }
+}
+
+//---------------------------------------------------------------
+void ActivationQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "ActivationQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "ActivationQueueDescriptor");
+ ValidateTensorShapesMatch(workloadInfo.m_InputTensorInfos[0],
+ workloadInfo.m_OutputTensorInfos[0],
+ "ActivationQueueDescriptor",
+ "input",
+ "output");
+}
+
+//---------------------------------------------------------------
+void SoftmaxQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "SoftmaxQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "SoftmaxQueueDescriptor");
+ ValidateTensorNumDimensions(workloadInfo.m_InputTensorInfos[0], "SoftmaxQueueDescriptor", 2, "input");
+ ValidateTensorNumDimensions(workloadInfo.m_OutputTensorInfos[0], "SoftmaxQueueDescriptor", 2, "output");
+
+ ValidateTensorShapesMatch(workloadInfo.m_InputTensorInfos[0],
+ workloadInfo.m_OutputTensorInfos[0],
+ "SoftmaxQueueDescriptor",
+ "input",
+ "output");
+}
+
+//---------------------------------------------------------------
+void SplitterQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "SplitterQueueDescriptor");
+
+ if (workloadInfo.m_OutputTensorInfos.size() <= 0)
+ {
+ throw InvalidArgumentException("SplitterQueueDescriptor: At least one output needs to be provided.");
+ }
+
+ if (workloadInfo.m_OutputTensorInfos.size() != m_ViewOrigins.size())
+ {
+ throw InvalidArgumentException(
+ "SplitterQueueDescriptor: Number of split windows "
+ "has to match number of workloadInfo.m_OutputTensorInfos. "
+ "Number of windows: " +
+ to_string(m_ViewOrigins.size()) +
+ ". Number of workloadInfo.m_OutputTensorInfos: " + to_string(workloadInfo.m_OutputTensorInfos.size()));
+ }
+
+ //The dimensionality of all the windows has to match the dimensionality (not shape) of the input.
+ std::size_t inputDims = workloadInfo.m_InputTensorInfos[0].GetNumDimensions();
+ for(unsigned int w = 0; w < m_ViewOrigins.size(); ++w )
+ {
+ //Checks that the dimensionality of input is same as the split windows.
+ ViewOrigin const& e = m_ViewOrigins[w];
+ if (e.m_Origin.size() != inputDims)
+ {
+ throw InvalidArgumentException("SplitterQueueDescriptor: Window origin have to "
+ "have the same dimensionality as the input tensor. "
+ "Window origin (index: " +
+ to_string(w) + ") has " + to_string(e.m_Origin.size()) +
+ " dimensions, the input "
+ "tensor has " +
+ to_string(inputDims) + " dimensions.");
+ }
+ for (unsigned int i = 0; i < e.m_Origin.size(); ++i)
+ {
+ if (e.m_Origin[i] + workloadInfo.m_OutputTensorInfos[w].GetShape()[i] >
+ workloadInfo.m_InputTensorInfos[0].GetShape()[i])
+ {
+ throw InvalidArgumentException("SplitterQueueDescriptor: Window extent coordinates have to "
+ "be smaller or equal than the size of the input in that coord.");
+ }
+ }
+ }
+}
+
+//---------------------------------------------------------------
+void MergerQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleOutput(workloadInfo, "MergerQueueDescriptor");
+
+ if (m_Inputs.size() <= 0)
+ {
+ throw InvalidArgumentException("MergerQueueDescriptor: At least one input needs to be provided.");
+ }
+ if (m_Outputs.size() <= 0)
+ {
+ throw InvalidArgumentException("MergerQueueDescriptor: At least one output needs to be provided.");
+ }
+
+ if (workloadInfo.m_InputTensorInfos.size() <= 0)
+ {
+ throw InvalidArgumentException("MergerQueueDescriptor: At least one TensorInfo input needs to be provided.");
+ }
+ if (workloadInfo.m_OutputTensorInfos.size() <= 0)
+ {
+ throw InvalidArgumentException("MergerQueueDescriptor: At least one TensorInfo output needs to be provided.");
+ }
+
+ if (workloadInfo.m_InputTensorInfos.size() != m_ViewOrigins.size())
+ {
+ throw InvalidArgumentException(
+ "MergerQueueDescriptor: Number of split windows "
+ "has to match number of workloadInfo.m_InputTensorInfos. "
+ "Number of windows: " +
+ to_string(m_ViewOrigins.size()) +
+ ". Number of workloadInfo.m_InputTensorInfos: " + to_string(workloadInfo.m_InputTensorInfos.size()));
+ }
+
+ //The dimensionality of all the windows has to match the dimensionality (not shape) of the output.
+ std::size_t outputDims = workloadInfo.m_OutputTensorInfos[0].GetNumDimensions();
+ for(unsigned int w = 0; w < m_ViewOrigins.size(); ++w )
+ {
+ //Checks that the dimensionality of output is same as the split windows.
+ ViewOrigin const& e = m_ViewOrigins[w];
+ if (e.m_Origin.size() != outputDims)
+ {
+ throw InvalidArgumentException("MergerQueueDescriptor: Window origin have to "
+ "have the same dimensionality as the output tensor. "
+ "Window origin (index: " +
+ to_string(w) + ") has " + to_string(e.m_Origin.size()) +
+ " dimensions, the output "
+ "tensor has " +
+ to_string(outputDims) + " dimensions.");
+ }
+ //Checks that the merge windows are within the output tensor.
+ for (unsigned int i = 0; i < e.m_Origin.size(); ++i)
+ {
+ if (e.m_Origin[i] + workloadInfo.m_InputTensorInfos[w].GetShape()[i]
+ > workloadInfo.m_OutputTensorInfos[0].GetShape()[i])
+ {
+ throw InvalidArgumentException("MergerQueueDescriptor: Window extent coordinates have to "
+ "be smaller or equal than the size of the output in that coord.");
+ }
+ }
+ }
+}
+
+//---------------------------------------------------------------
+void FullyConnectedQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "FullyConnectedQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "FullyConnectedQueueDescriptor");
+ ValidateTensorNumDimensions(workloadInfo.m_OutputTensorInfos[0], "FullyConnectedQueueDescriptor", 2, "output");
+
+ if (!(workloadInfo.m_InputTensorInfos[0].GetNumDimensions() == 2 ||
+ workloadInfo.m_InputTensorInfos[0].GetNumDimensions() == 4))
+ {
+ throw InvalidArgumentException("FullyConnectedQueueDescriptor: Input tensor must have 2 or 4 dimensions.");
+ }
+
+ if (m_Weight == nullptr)
+ {
+ throw InvalidArgumentException("FullyConnectedQueueDescriptor: Weight tensor descriptor is missing.");
+ }
+
+ ValidateTensorNumDimensions(m_Weight->GetTensorInfo(), "FullyConnectedQueueDescriptor", 2, "weight");
+
+ if (m_Parameters.m_BiasEnabled)
+ {
+ if (m_Bias == nullptr)
+ {
+ throw InvalidArgumentException("FullyConnectedQueueDescriptor: Bias is enabled but "
+ "bias value tensor descriptor is missing.");
+ }
+
+ // Validates type and quantization values.
+ ValidateBiasTensorQuantization(m_Bias->GetTensorInfo(),
+ workloadInfo.m_InputTensorInfos[0], m_Weight->GetTensorInfo(), "FullyConnectedQueueDescriptor");
+
+ ValidateTensorDataType(m_Bias->GetTensorInfo(),
+ GetBiasDataType(workloadInfo.m_InputTensorInfos[0].GetDataType()),
+ "FullyConnectedQueueDescriptor", "bias");
+
+ ValidateTensorNumDimensions(m_Bias->GetTensorInfo(), "FullyConnectedQueueDescriptor", 1, "bias");
+ }
+
+ ValidateTensorQuantizationMultiplier(workloadInfo.m_InputTensorInfos[0], m_Weight->GetTensorInfo(),
+ workloadInfo.m_OutputTensorInfos[0], "FullyConnectedQueueDescriptor", "input", "weights", "output");
+}
+
+//---------------------------------------------------------------
+void NormalizationQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "NormalizationQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "NormalizationQueueDescriptor");
+ ValidateTensorShapesMatch(workloadInfo.m_InputTensorInfos[0],
+ workloadInfo.m_OutputTensorInfos[0],
+ "NormalizationQueueDescriptor",
+ "input",
+ "output");
+}
+
+void AdditionQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateTwoInputs(workloadInfo, "AdditionQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "AdditionQueueDescriptor");
+
+ ValidateBroadcastTensorShapesMatch(workloadInfo.m_InputTensorInfos[0],
+ workloadInfo.m_InputTensorInfos[1],
+ workloadInfo.m_OutputTensorInfos[0],
+ "AdditionQueueDescriptor",
+ "first input",
+ "second input");
+
+}
+
+//---------------------------------------------------------------
+void MultiplicationQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateTwoInputs(workloadInfo, "MultiplicationQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "MultiplicationQueueDescriptor");
+
+ ValidateBroadcastTensorShapesMatch(workloadInfo.m_InputTensorInfos[0],
+ workloadInfo.m_InputTensorInfos[1],
+ workloadInfo.m_OutputTensorInfos[0],
+ "MultiplicationQueueDescriptor",
+ "first input",
+ "second input");
+}
+
+void BatchNormalizationQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "BatchNormalizationQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "BatchNormalizationQueueDescriptor");
+ ValidateTensorShapesMatch(workloadInfo.m_InputTensorInfos[0],
+ workloadInfo.m_OutputTensorInfos[0],
+ "BatchNormalizationQueueDescriptor",
+ "input",
+ "output");
+ ValidatePointer(m_Mean, "BatchNormalizationQueueDescriptor", "mean");
+ ValidatePointer(m_Variance, "BatchNormalizationQueueDescriptor", "variance");
+ ValidatePointer(m_Beta, "BatchNormalizationQueueDescriptor", "beta");
+ ValidatePointer(m_Gamma, "BatchNormalizationQueueDescriptor", "gamma");
+
+
+ ValidateTensorNumDimensions(m_Mean->GetTensorInfo(), "BatchNormalizationQueueDescriptor", 1, "mean");
+ ValidateTensorNumDimensions(m_Variance->GetTensorInfo(), "BatchNormalizationQueueDescriptor", 1, "variance");
+ ValidateTensorNumDimensions(m_Beta->GetTensorInfo(), "BatchNormalizationQueueDescriptor", 1, "beta");
+ ValidateTensorNumDimensions(m_Gamma->GetTensorInfo(), "BatchNormalizationQueueDescriptor", 1, "gamma");
+
+ ValidateTensorShapesMatch(
+ m_Mean->GetTensorInfo(), m_Variance->GetTensorInfo(), "BatchNormalizationQueueDescriptor", "mean", "variance");
+ ValidateTensorShapesMatch(
+ m_Mean->GetTensorInfo(), m_Beta->GetTensorInfo(), "BatchNormalizationQueueDescriptor", "mean", "beta");
+ ValidateTensorShapesMatch(
+ m_Mean->GetTensorInfo(), m_Gamma->GetTensorInfo(), "BatchNormalizationQueueDescriptor", "mean", "gamma");
+}
+
+void Convolution2dQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "Convolution2dQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "Convolution2dQueueDescriptor");
+
+ ValidateTensorNumDimensions(workloadInfo.m_InputTensorInfos[0], "Convolution2dQueueDescriptor", 4, "input");
+ ValidateTensorNumDimensions(workloadInfo.m_OutputTensorInfos[0], "Convolution2dQueueDescriptor", 4, "output");
+
+ ValidatePointer(m_Weight, "Convolution2dQueueDescriptor", "weight");
+ ValidateTensorNumDimensions(m_Weight->GetTensorInfo(), "Convolution2dQueueDescriptor", 4, "weight");
+ ValidateTensorDataType(m_Weight->GetTensorInfo(), workloadInfo.m_InputTensorInfos[0].GetDataType(),
+ "Convolution2dQueueDescriptor", "weight");
+ if (m_Parameters.m_BiasEnabled)
+ {
+ ValidateTensorNumDimensions(m_Bias->GetTensorInfo(), "Convolution2dQueueDescriptor", 1, "bias");
+ ValidateTensorDataType(m_Bias->GetTensorInfo(),
+ GetBiasDataType(workloadInfo.m_InputTensorInfos[0].GetDataType()),
+ "Convolution2dQueueDescriptor", "bias");
+ ValidateBiasTensorQuantization(m_Bias->GetTensorInfo(),
+ workloadInfo.m_InputTensorInfos[0], m_Weight->GetTensorInfo(), "Convolution2dQueueDescriptor");
+ }
+
+ ValidateTensorQuantizationMultiplier(workloadInfo.m_InputTensorInfos[0], m_Weight->GetTensorInfo(),
+ workloadInfo.m_OutputTensorInfos[0], "Convolution2dQueueDescriptor", "input", "weights", "output");
+}
+
+void DepthwiseConvolution2dQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "DepthwiseConvolution2dQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "DepthwiseConvolution2dQueueDescriptor");
+
+ ValidateTensorNumDimensions(
+ workloadInfo.m_InputTensorInfos[0], "DepthwiseConvolution2dQueueDescriptor", 4, "input");
+ ValidateTensorNumDimensions(
+ workloadInfo.m_OutputTensorInfos[0], "DepthwiseConvolution2dQueueDescriptor", 4, "output");
+
+ ValidatePointer(m_Weight, "DepthwiseConvolution2dQueueDescriptor", "weight");
+ ValidateTensorNumDimensions(m_Weight->GetTensorInfo(), "DepthwiseConvolution2dQueueDescriptor", 4, "weight");
+
+ const unsigned int channelIndex = (m_Parameters.m_DataLayout == DataLayout::NCHW) ? 1 : 3;
+
+ //inputChannels * channelMultiplier should be equal to outputChannels.
+ const unsigned int numWeightChannelMultiplier = m_Weight->GetTensorInfo().GetShape()[0];
+ const unsigned int numWeightInputChannels = m_Weight->GetTensorInfo().GetShape()[channelIndex];
+ const unsigned int numWeightOutputChannels = workloadInfo.m_OutputTensorInfos[0].GetShape()[channelIndex];
+ if (numWeightChannelMultiplier * numWeightInputChannels != numWeightOutputChannels)
+ {
+ throw InvalidArgumentException(
+ boost::str(boost::format("DepthwiseConvolution2dQueueDescriptor: output_channels (provided %1%) should be "
+ "equal to input_channels (provided %2%) multiplied by channel_multiplier "
+ "(provided %3%).")
+ % numWeightOutputChannels % numWeightInputChannels % numWeightChannelMultiplier));
+ }
+
+ if (m_Parameters.m_BiasEnabled)
+ {
+ ValidatePointer(m_Bias, "DepthwiseConvolution2dQueueDescriptor", "bias");
+ ValidateTensorNumDimensions(m_Bias->GetTensorInfo(), "DepthwiseConvolution2dQueueDescriptor", 1, "bias");
+ ValidateBiasTensorQuantization(m_Bias->GetTensorInfo(),
+ workloadInfo.m_InputTensorInfos[0], m_Weight->GetTensorInfo(), "DepthwiseConvolution2dQueueDescriptor");
+
+ ValidateTensorDataType(m_Bias->GetTensorInfo(),
+ GetBiasDataType(workloadInfo.m_InputTensorInfos[0].GetDataType()),
+ "DepthwiseConvolution2dQueueDescriptor", "bias");
+ }
+
+ ValidateTensorQuantizationMultiplier(workloadInfo.m_InputTensorInfos[0], m_Weight->GetTensorInfo(),
+ workloadInfo.m_OutputTensorInfos[0], "DepthwiseConvolution2dQueueDescriptor", "input", "weights", "output");
+}
+
+void PermuteQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "PermuteQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "PermuteQueueDescriptor");
+
+ const PermutationVector& mapping = m_Parameters.m_DimMappings;
+
+ const TensorInfo& input = workloadInfo.m_InputTensorInfos[0];
+ const TensorInfo& output = workloadInfo.m_OutputTensorInfos[0];
+
+ ValidateTensorNumDimensions(input, "PermuteQueueDescriptor", mapping.GetSize(), "input");
+ ValidateTensorNumDimensions(output, "PermuteQueueDescriptor", mapping.GetSize(), "output");
+
+ for (unsigned int i = 0; i < mapping.GetSize(); ++i)
+ {
+ if (input.GetShape()[i] != output.GetShape()[mapping[i]])
+ {
+ throw InvalidArgumentException("PermuteQueueDescriptor: src dimension " + to_string(i) +
+ " (=" + to_string(input.GetShape()[i]) + ") " +
+ "must match dst dimension " + to_string(mapping[i]) +
+ " (=" + to_string(output.GetShape()[mapping[i]]) + ")");
+ }
+ }
+}
+
+void Pooling2dQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "Pooling2dQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "Pooling2dQueueDescriptor");
+
+ ValidateTensorNumDimensions(workloadInfo.m_InputTensorInfos[0], "Pooling2dQueueDescriptor", 4, "input");
+ ValidateTensorNumDimensions(workloadInfo.m_OutputTensorInfos[0], "Pooling2dQueueDescriptor", 4, "output");
+}
+
+void ResizeBilinearQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "ResizeBilinearQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "ResizeBilinearQueueDescriptor");
+
+ ValidateTensorNumDimensions(workloadInfo.m_InputTensorInfos[0], "ResizeBilinearQueueDescriptor", 4, "input");
+ ValidateTensorNumDimensions(workloadInfo.m_OutputTensorInfos[0], "ResizeBilinearQueueDescriptor", 4, "output");
+
+ // Resizes bilinear only changes width and height: batch and channel count must match.
+ {
+ const unsigned int inputBatchSize = workloadInfo.m_InputTensorInfos[0].GetShape()[0];
+ const unsigned int outputBatchSize = workloadInfo.m_OutputTensorInfos[0].GetShape()[0];
+ if (inputBatchSize != outputBatchSize)
+ {
+ throw InvalidArgumentException(
+ boost::str(boost::format("ResizeBilinearQueueDescriptor: Input batch size (%1%) "
+ "does not match output batch size (%2%)") % inputBatchSize % outputBatchSize));
+ }
+ }
+
+ {
+ const unsigned int inputChannelCount =
+ workloadInfo.m_InputTensorInfos[0].GetShape()[this->m_Parameters.m_DataLayout.GetChannelsIndex()];
+ const unsigned int outputChannelCount =
+ workloadInfo.m_OutputTensorInfos[0].GetShape()[this->m_Parameters.m_DataLayout.GetChannelsIndex()];
+ if (inputChannelCount != outputChannelCount)
+ {
+ throw InvalidArgumentException(
+ boost::str(boost::format("ResizeBilinearQueueDescriptor: Input channel count (%1%) "
+ "does not match output channel count (%2%)") % inputChannelCount % outputChannelCount));
+ }
+ }
+}
+
+void FakeQuantizationQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "FakeQuantizationQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "FakeQuantizationQueueDescriptor");
+
+ ValidateTensorNumDimensions(workloadInfo.m_InputTensorInfos[0], "FakeQuantizationQueueDescriptor", 2, "input");
+ ValidateTensorNumDimensions(workloadInfo.m_OutputTensorInfos[0], "FakeQuantizationQueueDescriptor", 2, "output");
+ ValidateTensorShapesMatch(workloadInfo.m_InputTensorInfos[0],
+ workloadInfo.m_OutputTensorInfos[0],
+ "FakeQuantizationQueueDescriptor",
+ "input",
+ "output");
+ if (m_Parameters.m_Min > m_Parameters.m_Max)
+ {
+ throw InvalidArgumentException("FakeQuantizationQueueDescriptor: min cannot be greater than max");
+ }
+
+}
+
+void L2NormalizationQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "L2NormalizationQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "L2NormalizationQueueDescriptor");
+
+ ValidateTensorNumDimensions(workloadInfo.m_InputTensorInfos[0], "L2NormalizationQueueDescriptor", 4, "input");
+ ValidateTensorNumDimensions(workloadInfo.m_OutputTensorInfos[0], "L2NormalizationQueueDescriptor", 4, "output");
+ ValidateTensorShapesMatch(workloadInfo.m_InputTensorInfos[0],
+ workloadInfo.m_OutputTensorInfos[0],
+ "L2NormalizationQueueDescriptor",
+ "input",
+ "output");
+}
+
+void ConstantQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateNoInputs(workloadInfo, "ConstantQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "ConstantQueueDescriptor");
+
+ if (!m_LayerOutput)
+ {
+ throw InvalidArgumentException("ConstantQueueDescriptor: No const input specified");
+ }
+
+ ValidateTensorShapesMatch(m_LayerOutput->GetTensorInfo(),
+ workloadInfo.m_OutputTensorInfos[0],
+ "ConstantQueueDescriptor",
+ "constant",
+ "output");
+}
+
+void ReshapeQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "ReshapeQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "ReshapeQueueDescriptor");
+
+ if (workloadInfo.m_InputTensorInfos[0].GetNumElements() != workloadInfo.m_OutputTensorInfos[0].GetNumElements())
+ {
+ throw InvalidArgumentException("ReshapeQueueDescriptor: Input tensor has " +
+ to_string(workloadInfo.m_InputTensorInfos[0].GetNumElements()) + " but output tensor has " +
+ to_string(workloadInfo.m_OutputTensorInfos[0].GetNumElements()) + " elements.");
+ }
+}
+
+void SpaceToBatchNdQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "SpaceToBatchNdQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "SpaceToBatchNdQueueDescriptor");
+
+ ValidateTensorNumDimensions(workloadInfo.m_InputTensorInfos[0], "SpaceToBatchNdQueueDescriptor", 4, "input");
+ ValidateTensorNumDimensions(workloadInfo.m_OutputTensorInfos[0], "SpaceToBatchNdQueueDescriptor", 4, "output");
+
+ if (workloadInfo.m_InputTensorInfos[0].GetNumElements() != workloadInfo.m_OutputTensorInfos[0].GetNumElements())
+ {
+ throw InvalidArgumentException("SpaceToBatchNdQueueDescriptor: Input tensor has " +
+ to_string(workloadInfo.m_InputTensorInfos[0].GetNumElements()) + " but output tensor has " +
+ to_string(workloadInfo.m_OutputTensorInfos[0].GetNumElements()) + " elements.");
+ }
+
+ if (m_Parameters.m_BlockShape.size() != 2)
+ {
+ throw InvalidArgumentException("Block Shape must contains 2 spatial dimensions");
+ }
+
+ if (m_Parameters.m_BlockShape.size() != m_Parameters.m_PadList.size())
+ {
+ throw InvalidArgumentException("Pad List must contains the same number of dimensions as Block Shape.");
+ }
+
+ const TensorShape inputShape = workloadInfo.m_InputTensorInfos[0].GetShape();
+
+ std::pair<unsigned int, unsigned int> heightPad = m_Parameters.m_PadList[0];
+ std::pair<unsigned int, unsigned int> widthPad = m_Parameters.m_PadList[1];
+
+ if ((inputShape[m_Parameters.m_DataLayout.GetHeightIndex()] + heightPad.first + heightPad.second)
+ % m_Parameters.m_BlockShape[0] != 0 ||
+ (inputShape[m_Parameters.m_DataLayout.GetWidthIndex()] + widthPad.first + widthPad.second)
+ % m_Parameters.m_BlockShape[1] != 0)
+ {
+ throw InvalidArgumentException(
+ "Input shape after padding must be divisible by Block Shape in all spatial dimensions");
+ }
+}
+
+void FloorQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "FloorQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "FlootQueueDescriptor");
+
+ if (workloadInfo.m_InputTensorInfos[0] != workloadInfo.m_OutputTensorInfos[0])
+ {
+ throw InvalidArgumentException("FloorQueueDescriptor: Input and output tensor infos do not match.");
+ }
+}
+
+void LstmQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateTensorNumDimensions(workloadInfo.m_InputTensorInfos[0], "LstmQueueDescriptor", 2, "input");
+ ValidateTensorNumDimensions(workloadInfo.m_OutputTensorInfos[0], "LstmQueueDescriptor", 2, "output");
+}
+
+void ConvertFp32ToFp16QueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "ConvertFp32ToFp16QueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "ConvertFp32ToFp16QueueDescriptor");
+
+ if (workloadInfo.m_InputTensorInfos[0].GetDataType() != DataType::Float32)
+ {
+ throw InvalidArgumentException("ConvertFp32ToFp16QueueDescriptor: Input tensor type must be Float32.");
+ }
+
+ if (workloadInfo.m_OutputTensorInfos[0].GetDataType() != DataType::Float16)
+ {
+ throw InvalidArgumentException("ConvertFp32ToFp16QueueDescriptor: Output tensor type must be Float16.");
+ }
+
+ ValidateTensorShapesMatch(workloadInfo.m_InputTensorInfos[0],
+ workloadInfo.m_OutputTensorInfos[0],
+ "ConvertFp32ToFp16QueueDescriptor",
+ "input",
+ "output");
+}
+
+void ConvertFp16ToFp32QueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "ConvertFp16ToFp32QueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "ConvertFp16ToFp32QueueDescriptor");
+
+ if (workloadInfo.m_InputTensorInfos[0].GetDataType() != DataType::Float16)
+ {
+ throw InvalidArgumentException("ConvertFp16ToFp32QueueDescriptor: Input tensor type must be Float16.");
+ }
+ if (workloadInfo.m_OutputTensorInfos[0].GetDataType() != DataType::Float32)
+ {
+ throw InvalidArgumentException("ConvertFp16ToFp32QueueDescriptor: Output tensor type must be Float32.");
+ }
+
+ ValidateTensorShapesMatch(workloadInfo.m_InputTensorInfos[0],
+ workloadInfo.m_OutputTensorInfos[0],
+ "ConvertFp16ToFp32QueueDescriptor",
+ "input",
+ "output");
+}
+
+void DivisionQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateTwoInputs(workloadInfo, "DivisionQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "DivisionQueueDescriptor");
+
+ ValidateBroadcastTensorShapesMatch(workloadInfo.m_InputTensorInfos[0],
+ workloadInfo.m_InputTensorInfos[1],
+ workloadInfo.m_OutputTensorInfos[0],
+ "DivisionQueueDescriptor",
+ "first input",
+ "second input");
+}
+
+void SubtractionQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateTwoInputs(workloadInfo, "SubtractionQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "SubtractionQueueDescriptor");
+
+ ValidateBroadcastTensorShapesMatch(workloadInfo.m_InputTensorInfos[0],
+ workloadInfo.m_InputTensorInfos[1],
+ workloadInfo.m_OutputTensorInfos[0],
+ "SubtractionQueueDescriptor",
+ "first input",
+ "second input");
+}
+
+void MeanQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "MeanQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "MeanQueueDescriptor");
+
+ const TensorInfo& input = workloadInfo.m_InputTensorInfos[0];
+ const TensorInfo& output = workloadInfo.m_OutputTensorInfos[0];
+
+ if (m_Parameters.m_KeepDims)
+ {
+ ValidateTensorNumDimensions(output, "MeanQueueDescriptor", input.GetNumDimensions(), "output");
+ }
+ else if (m_Parameters.m_Axis.empty())
+ {
+ ValidateTensorNumDimensions(output, "MeanQueueDescriptor", 1, "output");
+ }
+ else
+ {
+ auto outputDim = input.GetNumDimensions() - boost::numeric_cast<unsigned int>(m_Parameters.m_Axis.size());
+ ValidateTensorNumDimensions(output,
+ "MeanQueueDescriptor",
+ outputDim > 0 ? outputDim : 1,
+ "output");
+ }
+}
+
+void PadQueueDescriptor::Validate(const WorkloadInfo& workloadInfo) const
+{
+ ValidateSingleInput(workloadInfo, "PadQueueDescriptor");
+ ValidateSingleOutput(workloadInfo, "PadQueueDescriptor");
+
+ const TensorInfo& input = workloadInfo.m_InputTensorInfos[0];
+ const TensorInfo& output = workloadInfo.m_OutputTensorInfos[0];
+
+ // input and output should have the same number of dimensions
+ ValidateTensorNumDimensions(output, "PadQueueDescriptor", input.GetNumDimensions(), "output");
+ // there should be entry in the pad list for each dimension in the input tensor
+ if (m_Parameters.m_PadList.size() != input.GetNumDimensions()) {
+ throw InvalidArgumentException("Pad List should contain the same number of entries as there"
+ " are dimensions in the input tensor that is " +
+ to_string(input.GetNumDimensions()) + " entries " +
+ " not " + to_string(m_Parameters.m_PadList.size()) + " entries.");
+ }
+}
+
+} //namespace armnn
diff --git a/src/backends/backendsCommon/WorkloadData.hpp b/src/backends/backendsCommon/WorkloadData.hpp
new file mode 100644
index 0000000000..7fb8855bf6
--- /dev/null
+++ b/src/backends/backendsCommon/WorkloadData.hpp
@@ -0,0 +1,338 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "CpuTensorHandleFwd.hpp"
+#include "WorkloadDataFwd.hpp"
+
+#include <InternalTypes.hpp>
+
+#include <armnn/Descriptors.hpp>
+#include <armnn/Exceptions.hpp>
+#include <armnn/Types.hpp>
+#include <armnn/Tensor.hpp>
+
+#include <backendsCommon/OutputHandler.hpp>
+#include <backendsCommon/WorkloadInfo.hpp>
+
+namespace armnn
+{
+
+//A helper function that returns the bias data type required for given input data type.
+DataType GetBiasDataType(DataType inputDataType);
+
+struct WorkloadInfo;
+
+struct QueueDescriptor
+{
+ std::vector<ITensorHandle*> m_Inputs;
+ std::vector<ITensorHandle*> m_Outputs;
+
+ void ValidateInputsOutputs(const std::string& descName,
+ unsigned int numExpectedIn, unsigned int numExpectedOut) const;
+
+
+protected:
+ ~QueueDescriptor() = default;
+ QueueDescriptor() = default;
+ QueueDescriptor(QueueDescriptor const&) = default;
+ QueueDescriptor& operator=(QueueDescriptor const&) = default;
+};
+
+// Base class for queue descriptors which contain parameters.
+template <typename LayerDescriptor>
+struct QueueDescriptorWithParameters : public QueueDescriptor
+{
+ LayerDescriptor m_Parameters;
+
+protected:
+ ~QueueDescriptorWithParameters() = default;
+ QueueDescriptorWithParameters() = default;
+ QueueDescriptorWithParameters(QueueDescriptorWithParameters const&) = default;
+ QueueDescriptorWithParameters& operator=(QueueDescriptorWithParameters const&) = default;
+};
+
+struct MemCopyQueueDescriptor : QueueDescriptor
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+using InputQueueDescriptor = MemCopyQueueDescriptor;
+using OutputQueueDescriptor = MemCopyQueueDescriptor;
+
+// Softmax layer workload data.
+struct SoftmaxQueueDescriptor : QueueDescriptorWithParameters<SoftmaxDescriptor>
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+// Splitter layer workload data.
+struct SplitterQueueDescriptor : QueueDescriptorWithParameters<ViewsDescriptor>
+{
+ struct ViewOrigin
+ {
+ ViewOrigin() {}
+ ViewOrigin(std::vector<unsigned int> const& origin) : m_Origin(origin) {}
+
+ //View origin (size of the vector is the same as number of dimensions of the view).
+ std::vector<unsigned int> m_Origin;
+ };
+
+ //View defines a tensor that will be carved from the input tensor.
+ //View origins are stored here, the extents are defined by sizes of the output tensors.
+ std::vector<ViewOrigin> m_ViewOrigins;
+
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+// Merger layer workload data.
+struct MergerQueueDescriptor : QueueDescriptorWithParameters<OriginsDescriptor>
+{
+ struct ViewOrigin
+ {
+ ViewOrigin() {}
+ ViewOrigin(const std::vector<unsigned int>& origin) : m_Origin(origin) {}
+
+ //View origin (size of the vector is the same as number of dimensions of the view).
+ std::vector<unsigned int> m_Origin;
+ };
+
+ //View defines a sub-area of the output tensor that will be filled with the corresponding input tensor.
+ //View origins are stored here, the extents are defined by sizes of the input tensors.
+ std::vector<ViewOrigin> m_ViewOrigins;
+
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+// Activation layer workload data.
+struct ActivationQueueDescriptor : QueueDescriptorWithParameters<ActivationDescriptor>
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+// Fully connected layer workload data.
+struct FullyConnectedQueueDescriptor : QueueDescriptorWithParameters<FullyConnectedDescriptor>
+{
+ FullyConnectedQueueDescriptor()
+ : m_Weight(nullptr)
+ , m_Bias(nullptr)
+ {
+ }
+
+ const ConstCpuTensorHandle* m_Weight;
+ const ConstCpuTensorHandle* m_Bias;
+
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+// Permute layer workload data.
+struct PermuteQueueDescriptor : QueueDescriptorWithParameters<PermuteDescriptor>
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+// Pooling 2D layer workload data.
+struct Pooling2dQueueDescriptor : QueueDescriptorWithParameters<Pooling2dDescriptor>
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+// Convolution 2D layer workload data.
+struct Convolution2dQueueDescriptor : QueueDescriptorWithParameters<Convolution2dDescriptor>
+{
+ Convolution2dQueueDescriptor()
+ : m_Weight(nullptr)
+ , m_Bias(nullptr)
+ {
+ }
+
+ const ConstCpuTensorHandle* m_Weight;
+ const ConstCpuTensorHandle* m_Bias;
+
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+// Depthwise Convolution 2D layer workload data.
+struct DepthwiseConvolution2dQueueDescriptor : QueueDescriptorWithParameters<DepthwiseConvolution2dDescriptor>
+{
+ DepthwiseConvolution2dQueueDescriptor()
+ : m_Weight(nullptr)
+ , m_Bias(nullptr)
+ {
+ }
+
+ const ConstCpuTensorHandle* m_Weight;
+ const ConstCpuTensorHandle* m_Bias;
+
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+// Normalization layer workload data.
+struct NormalizationQueueDescriptor : QueueDescriptorWithParameters<NormalizationDescriptor>
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+// Add layer workload data.
+struct AdditionQueueDescriptor : QueueDescriptor
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+// Multiplication layer workload data.
+struct MultiplicationQueueDescriptor : QueueDescriptor
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+// Division layer workload data.
+struct DivisionQueueDescriptor : QueueDescriptor
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+// Subtraction layer workload data.
+struct SubtractionQueueDescriptor : QueueDescriptor
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+// Mean layer workload data.
+struct MeanQueueDescriptor : QueueDescriptorWithParameters<MeanDescriptor>
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+// Pad layer workload data
+struct PadQueueDescriptor : QueueDescriptorWithParameters<PadDescriptor>
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+// Batch norm layer workload data.
+struct BatchNormalizationQueueDescriptor : QueueDescriptorWithParameters<BatchNormalizationDescriptor>
+{
+ BatchNormalizationQueueDescriptor()
+ : m_Mean(nullptr)
+ , m_Variance(nullptr)
+ , m_Beta(nullptr)
+ , m_Gamma(nullptr)
+ {
+ }
+
+ const ConstCpuTensorHandle* m_Mean;
+ const ConstCpuTensorHandle* m_Variance;
+ const ConstCpuTensorHandle* m_Beta;
+ const ConstCpuTensorHandle* m_Gamma;
+
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+struct ResizeBilinearQueueDescriptor : QueueDescriptorWithParameters<ResizeBilinearDescriptor>
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+struct FakeQuantizationQueueDescriptor : QueueDescriptorWithParameters<FakeQuantizationDescriptor>
+{
+ FakeQuantizationQueueDescriptor()
+ : m_Min(nullptr)
+ , m_Max(nullptr)
+ {
+ }
+
+ const ConstCpuTensorHandle* m_Min;
+ const ConstCpuTensorHandle* m_Max;
+
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+struct L2NormalizationQueueDescriptor : QueueDescriptorWithParameters<L2NormalizationDescriptor>
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+struct ConstantQueueDescriptor : QueueDescriptor
+{
+ ConstantQueueDescriptor()
+ : m_LayerOutput(nullptr)
+ {
+ }
+
+ const ConstCpuTensorHandle* m_LayerOutput;
+
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+struct ReshapeQueueDescriptor : QueueDescriptorWithParameters<ReshapeDescriptor>
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+struct SpaceToBatchNdQueueDescriptor : QueueDescriptorWithParameters<SpaceToBatchNdDescriptor>
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+struct FloorQueueDescriptor : QueueDescriptor
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+struct LstmQueueDescriptor : QueueDescriptorWithParameters<LstmDescriptor>
+{
+ LstmQueueDescriptor()
+ : m_InputToInputWeights(nullptr)
+ , m_InputToForgetWeights(nullptr)
+ , m_InputToCellWeights(nullptr)
+ , m_InputToOutputWeights(nullptr)
+ , m_RecurrentToInputWeights(nullptr)
+ , m_RecurrentToForgetWeights(nullptr)
+ , m_RecurrentToCellWeights(nullptr)
+ , m_RecurrentToOutputWeights(nullptr)
+ , m_CellToInputWeights(nullptr)
+ , m_CellToForgetWeights(nullptr)
+ , m_CellToOutputWeights(nullptr)
+ , m_InputGateBias(nullptr)
+ , m_ForgetGateBias(nullptr)
+ , m_CellBias(nullptr)
+ , m_OutputGateBias(nullptr)
+ , m_ProjectionWeights(nullptr)
+ , m_ProjectionBias(nullptr)
+ {
+ }
+
+ const ConstCpuTensorHandle* m_InputToInputWeights;
+ const ConstCpuTensorHandle* m_InputToForgetWeights;
+ const ConstCpuTensorHandle* m_InputToCellWeights;
+ const ConstCpuTensorHandle* m_InputToOutputWeights;
+ const ConstCpuTensorHandle* m_RecurrentToInputWeights;
+ const ConstCpuTensorHandle* m_RecurrentToForgetWeights;
+ const ConstCpuTensorHandle* m_RecurrentToCellWeights;
+ const ConstCpuTensorHandle* m_RecurrentToOutputWeights;
+ const ConstCpuTensorHandle* m_CellToInputWeights;
+ const ConstCpuTensorHandle* m_CellToForgetWeights;
+ const ConstCpuTensorHandle* m_CellToOutputWeights;
+ const ConstCpuTensorHandle* m_InputGateBias;
+ const ConstCpuTensorHandle* m_ForgetGateBias;
+ const ConstCpuTensorHandle* m_CellBias;
+ const ConstCpuTensorHandle* m_OutputGateBias;
+ const ConstCpuTensorHandle* m_ProjectionWeights;
+ const ConstCpuTensorHandle* m_ProjectionBias;
+
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+struct ConvertFp16ToFp32QueueDescriptor : QueueDescriptor
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+struct ConvertFp32ToFp16QueueDescriptor : QueueDescriptor
+{
+ void Validate(const WorkloadInfo& workloadInfo) const;
+};
+
+} //namespace armnn
diff --git a/src/backends/backendsCommon/WorkloadDataCollector.hpp b/src/backends/backendsCommon/WorkloadDataCollector.hpp
new file mode 100644
index 0000000000..ac8c2e2ab9
--- /dev/null
+++ b/src/backends/backendsCommon/WorkloadDataCollector.hpp
@@ -0,0 +1,36 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/Tensor.hpp>
+
+#include <vector>
+
+namespace armnn
+{
+class ITensorHandle;
+
+class WorkloadDataCollector
+{
+public:
+ WorkloadDataCollector(std::vector<ITensorHandle*>& handles, std::vector<TensorInfo>& infos)
+ : m_Handles(handles)
+ , m_Infos(infos)
+ {
+ }
+
+ void Push(ITensorHandle* handle, const TensorInfo& info)
+ {
+ m_Handles.push_back(handle);
+ m_Infos.push_back(info);
+ }
+
+private:
+ std::vector<ITensorHandle*>& m_Handles;
+ std::vector<TensorInfo>& m_Infos;
+};
+
+
+} //namespace armnn
diff --git a/src/backends/backendsCommon/WorkloadDataFwd.hpp b/src/backends/backendsCommon/WorkloadDataFwd.hpp
new file mode 100644
index 0000000000..9ae20e0ce1
--- /dev/null
+++ b/src/backends/backendsCommon/WorkloadDataFwd.hpp
@@ -0,0 +1,27 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+namespace armnn
+{
+
+struct QueueDescriptor;
+template <typename LayerDescriptor>
+struct QueueDescriptorWithParameters;
+struct SoftmaxQueueDescriptor;
+struct SplitterQueueDescriptor;
+struct MergerQueueDescriptor;
+struct ActivationQueueDescriptor;
+struct FullyConnectedQueueDescriptor;
+struct PermuteQueueDescriptor;
+struct Pooling2dQueueDescriptor;
+struct Convolution2dQueueDescriptor;
+struct NormalizationQueueDescriptor;
+struct MultiplicationQueueDescriptor;
+struct BatchNormalizationQueueDescriptor;
+struct FakeQuantizationQueueDescriptor;
+struct ReshapeQueueDescriptor;
+
+} // namespace armnn \ No newline at end of file
diff --git a/src/backends/backendsCommon/WorkloadFactory.cpp b/src/backends/backendsCommon/WorkloadFactory.cpp
new file mode 100644
index 0000000000..83a20e8675
--- /dev/null
+++ b/src/backends/backendsCommon/WorkloadFactory.cpp
@@ -0,0 +1,612 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include "CpuTensorHandle.hpp"
+
+#include <Layer.hpp>
+#include <LayersFwd.hpp>
+
+#include <armnn/Types.hpp>
+#include <armnn/LayerSupport.hpp>
+
+#include <backendsCommon/LayerSupportRegistry.hpp>
+#include <backendsCommon/WorkloadFactory.hpp>
+
+#include <boost/cast.hpp>
+#include <boost/iterator/transform_iterator.hpp>
+
+#include <cstring>
+
+namespace armnn
+{
+
+namespace
+{
+
+const TensorInfo OverrideDataType(const TensorInfo& info, Optional<DataType> type)
+{
+ if (!type)
+ {
+ return info;
+ }
+
+ return TensorInfo(info.GetShape(), type.value(), info.GetQuantizationScale(), info.GetQuantizationOffset());
+}
+
+Optional<DataType> GetBiasTypeFromWeightsType(Optional<DataType> weightsType)
+{
+ if (!weightsType)
+ {
+ return weightsType;
+ }
+
+ switch(weightsType.value())
+ {
+ case DataType::Float16:
+ case DataType::Float32:
+ return weightsType;
+ case DataType::QuantisedAsymm8:
+ return DataType::Signed32;
+ default:
+ BOOST_ASSERT_MSG(false, "GetBiasTypeFromWeightsType(): Unsupported data type.");
+ }
+ return EmptyOptional();
+}
+
+} // anonymous namespace
+
+bool IWorkloadFactory::IsLayerSupported(const BackendId& backendId,
+ const IConnectableLayer& connectableLayer,
+ Optional<DataType> dataType,
+ std::string& outReasonIfUnsupported)
+{
+ Optional<std::string&> reason = outReasonIfUnsupported;
+ bool result;
+ const Layer& layer = *(boost::polymorphic_downcast<const Layer*>(&connectableLayer));
+
+ auto const& layerSupportRegistry = LayerSupportRegistryInstance();
+ auto layerSupportFactory = layerSupportRegistry.GetFactory(backendId);
+ auto layerSupportObject = layerSupportFactory(EmptyInitializer());
+
+ switch(layer.GetType())
+ {
+ case LayerType::Activation:
+ {
+ auto cLayer = boost::polymorphic_downcast<const ActivationLayer*>(&layer);
+ const TensorInfo& input = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+ result = layerSupportObject->IsActivationSupported(
+ OverrideDataType(input, dataType),
+ OverrideDataType(output, dataType),
+ cLayer->GetParameters(),
+ reason);
+ break;
+ }
+ case LayerType::Addition:
+ {
+ const TensorInfo& input0 = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ const TensorInfo& input1 = layer.GetInputSlot(1).GetConnection()->GetTensorInfo();
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+ result = layerSupportObject->IsAdditionSupported(
+ OverrideDataType(input0, dataType),
+ OverrideDataType(input1, dataType),
+ OverrideDataType(output, dataType),
+ reason);
+ break;
+ }
+ case LayerType::BatchNormalization:
+ {
+ auto cLayer = boost::polymorphic_downcast<const BatchNormalizationLayer*>(&layer);
+ const TensorInfo& input = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+ const TensorInfo& mean = cLayer->m_Mean->GetTensorInfo();
+ const TensorInfo& var = cLayer->m_Variance->GetTensorInfo();
+ const TensorInfo& beta = cLayer->m_Beta->GetTensorInfo();
+ const TensorInfo& gamma = cLayer->m_Gamma->GetTensorInfo();
+ result = layerSupportObject->IsBatchNormalizationSupported(
+ OverrideDataType(input, dataType),
+ OverrideDataType(output, dataType),
+ OverrideDataType(mean, dataType),
+ OverrideDataType(var, dataType),
+ OverrideDataType(beta, dataType),
+ OverrideDataType(gamma, dataType),
+ cLayer->GetParameters(),
+ reason);
+ break;
+ }
+ case LayerType::Constant:
+ {
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+ result = layerSupportObject->IsConstantSupported(OverrideDataType(output, dataType), reason);
+ break;
+ }
+ case LayerType::ConvertFp16ToFp32:
+ {
+ const TensorInfo& input = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+ result = layerSupportObject->IsConvertFp16ToFp32Supported(input, output, reason);
+ break;
+ }
+ case LayerType::ConvertFp32ToFp16:
+ {
+ const TensorInfo& input = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+ result = layerSupportObject->IsConvertFp32ToFp16Supported(input, output, reason);
+ break;
+ }
+ case LayerType::Convolution2d:
+ {
+ auto cLayer = boost::polymorphic_downcast<const Convolution2dLayer*>(&layer);
+
+ const TensorInfo input = OverrideDataType(layer.GetInputSlot(0).GetConnection()->GetTensorInfo(),
+ dataType);
+ const TensorInfo output = OverrideDataType(layer.GetOutputSlot(0).GetTensorInfo(), dataType);
+ BOOST_ASSERT(cLayer->m_Weight.get() != nullptr);
+
+ const Convolution2dDescriptor& descriptor = cLayer->GetParameters();
+
+ // Construct optional biases object based on the value of m_BiasEnabled
+ Optional<TensorInfo> biases;
+ if (descriptor.m_BiasEnabled)
+ {
+ biases =
+ OverrideDataType(cLayer->m_Bias->GetTensorInfo(), GetBiasTypeFromWeightsType(dataType));
+ }
+
+ result = layerSupportObject->IsConvolution2dSupported(
+ input,
+ output,
+ descriptor,
+ OverrideDataType(cLayer->m_Weight->GetTensorInfo(), dataType),
+ biases,
+ reason);
+ break;
+ }
+ case LayerType::MemCopy:
+ {
+ // MemCopy supported for CpuRef, CpuAcc and GpuAcc backends,
+ // (also treat Undefined as CpuRef to avoid breaking lots of Unit tests).
+ result = backendId == Compute::CpuRef || backendId == Compute::Undefined
+ || backendId == Compute::CpuAcc || backendId == Compute::GpuAcc;
+ reason.value() = "Unsupported backend type";
+ break;
+ }
+ case LayerType::DepthwiseConvolution2d:
+ {
+ auto cLayer = boost::polymorphic_downcast<const DepthwiseConvolution2dLayer*>(&layer);
+ const TensorInfo& input = OverrideDataType(layer.GetInputSlot(0).GetConnection()->GetTensorInfo(),
+ dataType);
+ const TensorInfo& output = OverrideDataType(layer.GetOutputSlot(0).GetTensorInfo(), dataType);
+ BOOST_ASSERT(cLayer->m_Weight.get() != nullptr);
+
+ const DepthwiseConvolution2dDescriptor& descriptor = cLayer->GetParameters();
+
+ // Construct optional biases object based on the value of m_BiasEnabled
+ Optional<TensorInfo> biases;
+ if (descriptor.m_BiasEnabled)
+ {
+ biases =
+ OverrideDataType(cLayer->m_Bias->GetTensorInfo(), GetBiasTypeFromWeightsType(dataType));
+ }
+
+ result = layerSupportObject->IsDepthwiseConvolutionSupported(
+ input,
+ output,
+ descriptor,
+ OverrideDataType(cLayer->m_Weight->GetTensorInfo(), dataType),
+ biases,
+ reason);
+ break;
+ }
+ case LayerType::FakeQuantization:
+ {
+ auto cLayer = boost::polymorphic_downcast<const FakeQuantizationLayer*>(&layer);
+ const TensorInfo& input = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ result = layerSupportObject->IsFakeQuantizationSupported(OverrideDataType(input, dataType),
+ cLayer->GetParameters(),
+ reason);
+ break;
+ }
+ case LayerType::Floor:
+ {
+ const TensorInfo& input = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+ result = layerSupportObject->IsFloorSupported(OverrideDataType(input, dataType),
+ OverrideDataType(output, dataType),
+ reason);
+ break;
+ }
+ case LayerType::FullyConnected:
+ {
+ auto cLayer = boost::polymorphic_downcast<const FullyConnectedLayer*>(&layer);
+ const TensorInfo& input = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+ BOOST_ASSERT(cLayer->m_Weight.get() != nullptr);
+
+ TensorInfo biasInfo;
+ const TensorInfo * biasInfoPtr = nullptr;
+ static const TensorInfo dummyFloat16Bias(TensorShape({1,1,1,1}), DataType::Float16);
+ static const TensorInfo dummyFloat32Bias(TensorShape({1,1,1,1}), DataType::Float32);
+ static const TensorInfo dummyQA8Bias(TensorShape({1,1,1,1}), DataType::Signed32);
+
+ const FullyConnectedDescriptor& descriptor = cLayer->GetParameters();
+ if (descriptor.m_BiasEnabled)
+ {
+ BOOST_ASSERT(cLayer->m_Bias.get() != nullptr);
+ biasInfo = OverrideDataType(cLayer->m_Bias->GetTensorInfo(), GetBiasTypeFromWeightsType(dataType));
+ biasInfoPtr = &biasInfo;
+ }
+ else
+ {
+ // If biases are not enabled pass a dummy tensorinfo for the validation
+ switch(input.GetDataType())
+ {
+ case DataType::Float16:
+ {
+ biasInfoPtr = &dummyFloat16Bias;
+ break;
+ }
+ case DataType::Float32:
+ {
+ biasInfoPtr = &dummyFloat32Bias;
+ break;
+ }
+ case DataType::QuantisedAsymm8:
+ {
+ biasInfoPtr = &dummyQA8Bias;
+ break;
+ }
+ default:
+ {
+ BOOST_ASSERT_MSG(false, "Unexpected bias type");
+ }
+ }
+ }
+
+ result = layerSupportObject->IsFullyConnectedSupported(
+ OverrideDataType(input, dataType),
+ OverrideDataType(output, dataType),
+ OverrideDataType(cLayer->m_Weight->GetTensorInfo(), dataType),
+ *biasInfoPtr,
+ descriptor,
+ reason);
+ break;
+ }
+ case LayerType::Input:
+ {
+ const TensorInfo& input = layer.GetOutputSlot(0).GetTensorInfo();
+ result = layerSupportObject->IsInputSupported(OverrideDataType(input, dataType), reason);
+ break;
+ }
+ case LayerType::L2Normalization:
+ {
+ auto cLayer = boost::polymorphic_downcast<const L2NormalizationLayer*>(&layer);
+ const L2NormalizationDescriptor& descriptor = cLayer->GetParameters();
+
+ const TensorInfo& input = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+
+ result = layerSupportObject->IsL2NormalizationSupported(
+ OverrideDataType(input, dataType),
+ OverrideDataType(output, dataType),
+ descriptor,
+ reason);
+ break;
+ }
+ case LayerType::Lstm:
+ {
+ auto cLayer = boost::polymorphic_downcast<const LstmLayer*>(&layer);
+ const LstmDescriptor& descriptor = cLayer->GetParameters();
+
+ // All inputs.
+ const TensorInfo& input = OverrideDataType(layer.GetInputSlot(0).GetConnection()->GetTensorInfo(),
+ dataType);
+ const TensorInfo& outputStateIn = OverrideDataType(layer.GetInputSlot(1).GetConnection()->GetTensorInfo(),
+ dataType);
+ const TensorInfo& cellStateIn = OverrideDataType(layer.GetInputSlot(2).GetConnection()->GetTensorInfo(),
+ dataType);
+ // All outputs
+ const TensorInfo& scratchBuffer = OverrideDataType(layer.GetOutputSlot(0).GetTensorInfo(), dataType);
+ const TensorInfo& outputStateOut = OverrideDataType(layer.GetOutputSlot(1).GetTensorInfo(), dataType);
+ const TensorInfo& cellStateOut = OverrideDataType(layer.GetOutputSlot(2).GetTensorInfo(), dataType);
+ const TensorInfo& output = OverrideDataType(layer.GetOutputSlot(3).GetTensorInfo(), dataType);
+
+ // Basic parameters
+ const TensorInfo& inputToForgetWeights
+ = OverrideDataType(cLayer->m_BasicParameters.m_InputToForgetWeights->GetTensorInfo(), dataType);
+ const TensorInfo& inputToCellWeights
+ = OverrideDataType(cLayer->m_BasicParameters.m_InputToCellWeights->GetTensorInfo(), dataType);
+ const TensorInfo& inputToOutputWeights
+ = OverrideDataType(cLayer->m_BasicParameters.m_InputToOutputWeights->GetTensorInfo(), dataType);
+ const TensorInfo& recurrentToForgetWeights
+ = OverrideDataType(cLayer->m_BasicParameters.m_RecurrentToForgetWeights->GetTensorInfo(), dataType);
+ const TensorInfo& recurrentToCellWeights
+ = OverrideDataType(cLayer->m_BasicParameters.m_RecurrentToCellWeights->GetTensorInfo(), dataType);
+ const TensorInfo& recurrentToOutputWeights
+ = OverrideDataType(cLayer->m_BasicParameters.m_RecurrentToOutputWeights->GetTensorInfo(), dataType);
+ const TensorInfo& forgetGateBias
+ = OverrideDataType(cLayer->m_BasicParameters.m_ForgetGateBias->GetTensorInfo(), dataType);
+ const TensorInfo& cellBias
+ = OverrideDataType(cLayer->m_BasicParameters.m_CellBias->GetTensorInfo(), dataType);
+ const TensorInfo& outputGateBias
+ = OverrideDataType(cLayer->m_BasicParameters.m_OutputGateBias->GetTensorInfo(), dataType);
+
+ // Optional parameters
+ const TensorInfo* inputToInputWeights = nullptr;
+ const TensorInfo* recurrentToInputWeights = nullptr;
+ const TensorInfo* cellToInputWeights = nullptr;
+ const TensorInfo* inputGateBias = nullptr;
+ const TensorInfo* projectionWeights = nullptr;
+ const TensorInfo* projectionBias = nullptr;
+ const TensorInfo* cellToForgetWeights = nullptr;
+ const TensorInfo* cellToOutputWeights = nullptr;
+
+ TensorInfo optInputToInputWeights;
+ TensorInfo optRecurrentToInputWeights;
+ TensorInfo optCellToInputWeights;
+ TensorInfo optInputGateBias;
+ TensorInfo optProjectionWeights;
+ TensorInfo optProjectionBias;
+ TensorInfo optCellToForgetWeights;
+ TensorInfo optCellToOutputWeights;
+
+ if(!descriptor.m_CifgEnabled)
+ {
+ optInputToInputWeights =
+ OverrideDataType(cLayer->m_CifgParameters.m_InputToInputWeights->GetTensorInfo(), dataType);
+ inputToInputWeights = &optInputToInputWeights;
+
+ optRecurrentToInputWeights =
+ OverrideDataType(cLayer->m_CifgParameters.m_RecurrentToInputWeights->GetTensorInfo(), dataType);
+ recurrentToInputWeights = &optRecurrentToInputWeights;
+ if (cLayer->m_CifgParameters.m_CellToInputWeights != nullptr)
+ {
+ optCellToInputWeights =
+ OverrideDataType(cLayer->m_CifgParameters.m_CellToInputWeights->GetTensorInfo(), dataType);
+ cellToInputWeights = &optCellToInputWeights;
+ }
+ optInputGateBias =
+ OverrideDataType(cLayer->m_CifgParameters.m_InputGateBias->GetTensorInfo(), dataType);
+ inputGateBias = &optInputGateBias;
+ }
+
+ if(descriptor.m_ProjectionEnabled)
+ {
+ optProjectionWeights =
+ OverrideDataType(cLayer->m_ProjectionParameters.m_ProjectionWeights->GetTensorInfo(), dataType);
+ projectionWeights = &optProjectionWeights;
+ if (cLayer->m_ProjectionParameters.m_ProjectionBias != nullptr)
+ {
+ optProjectionBias =
+ OverrideDataType(cLayer->m_ProjectionParameters.m_ProjectionBias->GetTensorInfo(), dataType);
+ projectionBias = &optProjectionBias;
+ }
+ }
+
+ if(descriptor.m_PeepholeEnabled)
+ {
+ optCellToForgetWeights =
+ OverrideDataType(cLayer->m_PeepholeParameters.m_CellToForgetWeights->GetTensorInfo(), dataType);
+ cellToForgetWeights = &optCellToForgetWeights;
+ optCellToOutputWeights =
+ OverrideDataType(cLayer->m_PeepholeParameters.m_CellToOutputWeights->GetTensorInfo(), dataType);
+ cellToOutputWeights = &optCellToOutputWeights;
+ }
+
+ result = layerSupportObject->IsLstmSupported(
+ input,
+ outputStateIn,
+ cellStateIn,
+ scratchBuffer,
+ outputStateOut,
+ cellStateOut,
+ output,
+ descriptor,
+ inputToForgetWeights,
+ inputToCellWeights,
+ inputToOutputWeights,
+ recurrentToForgetWeights,
+ recurrentToCellWeights,
+ recurrentToOutputWeights,
+ forgetGateBias,
+ cellBias,
+ outputGateBias,
+ inputToInputWeights,
+ recurrentToInputWeights,
+ cellToInputWeights,
+ inputGateBias,
+ projectionWeights,
+ projectionBias,
+ cellToForgetWeights,
+ cellToOutputWeights,
+ reason);
+ break;
+ }
+ case LayerType::Merger:
+ {
+ auto cLayer = boost::polymorphic_downcast<const MergerLayer*>(&layer);
+
+ // Get vector of all inputs.
+ auto getTensorInfo = [&dataType](const InputSlot& slot)
+ {
+ return OverrideDataType(slot.GetConnectedOutputSlot()->GetTensorInfo(), dataType);
+ };
+ auto beginI = boost::make_transform_iterator(layer.GetInputSlots().begin(), getTensorInfo);
+ auto endI = boost::make_transform_iterator(layer.GetInputSlots().end(), getTensorInfo);
+ std::vector<TensorInfo> inputs(beginI, endI);
+
+ auto getTensorInfoPtr = [](const TensorInfo& info)
+ {
+ return &info;
+ };
+ auto beginPtr = boost::make_transform_iterator(inputs.begin(), getTensorInfoPtr);
+ auto endPtr = boost::make_transform_iterator(inputs.end(), getTensorInfoPtr);
+ std::vector<const TensorInfo*> inputPtrs(beginPtr, endPtr);
+
+ result = layerSupportObject->IsMergerSupported(inputPtrs, cLayer->GetParameters(), reason);
+ break;
+ }
+ case LayerType::Multiplication:
+ {
+ const TensorInfo& input0 = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ const TensorInfo& input1 = layer.GetInputSlot(1).GetConnection()->GetTensorInfo();
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+ result = layerSupportObject->IsMultiplicationSupported(
+ OverrideDataType(input0, dataType),
+ OverrideDataType(input1, dataType),
+ OverrideDataType(output, dataType),
+ reason);
+ break;
+ }
+ case LayerType::Normalization:
+ {
+ auto cLayer = boost::polymorphic_downcast<const NormalizationLayer*>(&layer);
+ const TensorInfo& input = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+ result = layerSupportObject->IsNormalizationSupported(OverrideDataType(input, dataType),
+ OverrideDataType(output, dataType),
+ cLayer->GetParameters(),
+ reason);
+ break;
+ }
+ case LayerType::Output:
+ {
+ const TensorInfo& output = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ result = layerSupportObject->IsOutputSupported(OverrideDataType(output, dataType), reason);
+ break;
+ }
+ case LayerType::Permute:
+ {
+ auto cLayer = boost::polymorphic_downcast<const PermuteLayer*>(&layer);
+ const TensorInfo& input = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+ result = layerSupportObject->IsPermuteSupported(OverrideDataType(input, dataType),
+ OverrideDataType(output, dataType),
+ cLayer->GetParameters(),
+ reason);
+ break;
+ }
+ case LayerType::Pad:
+ {
+ auto cLayer = boost::polymorphic_downcast<const PadLayer*>(&layer);
+ const TensorInfo& input = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+ result = layerSupportObject->IsPadSupported(
+ OverrideDataType(input, dataType),
+ OverrideDataType(output, dataType),
+ cLayer->GetParameters(),
+ reason);
+ break;
+ }
+ case LayerType::Pooling2d:
+ {
+ auto cLayer = boost::polymorphic_downcast<const Pooling2dLayer*>(&layer);
+ const TensorInfo& input = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+ result = layerSupportObject->IsPooling2dSupported(OverrideDataType(input, dataType),
+ OverrideDataType(output, dataType),
+ cLayer->GetParameters(),
+ reason);
+ break;
+ }
+ case LayerType::Division:
+ {
+ const TensorInfo& input0 = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ const TensorInfo& input1 = layer.GetInputSlot(1).GetConnection()->GetTensorInfo();
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+ result = layerSupportObject->IsDivisionSupported(
+ OverrideDataType(input0, dataType),
+ OverrideDataType(input1, dataType),
+ OverrideDataType(output, dataType),
+ reason);
+ break;
+ }
+ case LayerType::Reshape:
+ {
+ const TensorInfo& input = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ result = layerSupportObject->IsReshapeSupported(OverrideDataType(input, dataType), reason);
+ break;
+ }
+ case LayerType::ResizeBilinear:
+ {
+ const TensorInfo& input = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ result = layerSupportObject->IsResizeBilinearSupported(OverrideDataType(input, dataType), reason);
+ break;
+ }
+ case LayerType::Softmax:
+ {
+ auto cLayer = boost::polymorphic_downcast<const SoftmaxLayer*>(&layer);
+ const TensorInfo& input = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+ result = layerSupportObject->IsSoftmaxSupported(OverrideDataType(input, dataType),
+ OverrideDataType(output, dataType),
+ cLayer->GetParameters(),
+ reason);
+ break;
+ }
+ case LayerType::SpaceToBatchNd:
+ {
+ auto cLayer = boost::polymorphic_downcast<const SpaceToBatchNdLayer*>(&layer);
+ const TensorInfo& input = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+ result = layerSupportObject->IsSpaceToBatchNdSupported(OverrideDataType(input, dataType),
+ OverrideDataType(output, dataType),
+ cLayer->GetParameters(),
+ reason);
+ break;
+ }
+ case LayerType::Splitter:
+ {
+ auto cLayer = boost::polymorphic_downcast<const SplitterLayer*>(&layer);
+ const TensorInfo& input = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ result = layerSupportObject->IsSplitterSupported(OverrideDataType(input, dataType),
+ cLayer->GetParameters(),
+ reason);
+ break;
+ }
+ case LayerType::Subtraction:
+ {
+ const TensorInfo& input0 = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ const TensorInfo& input1 = layer.GetInputSlot(1).GetConnection()->GetTensorInfo();
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+ result = layerSupportObject->IsSubtractionSupported(
+ OverrideDataType(input0, dataType),
+ OverrideDataType(input1, dataType),
+ OverrideDataType(output, dataType),
+ reason);
+ break;
+ }
+ case LayerType::Mean:
+ {
+ auto cLayer = boost::polymorphic_downcast<const MeanLayer*>(&layer);
+ const TensorInfo& input = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
+ const TensorInfo& output = layer.GetOutputSlot(0).GetTensorInfo();
+ result = layerSupportObject->IsMeanSupported(
+ OverrideDataType(input, dataType),
+ OverrideDataType(output, dataType),
+ cLayer->GetParameters(),
+ reason);
+ break;
+ }
+ default:
+ {
+ BOOST_ASSERT_MSG(false, "WorkloadFactory did not recognise type of layer.");
+ reason.value() = "Unrecognised layer type";
+ result = false;
+ break;
+ }
+ }
+ return result;
+}
+
+bool IWorkloadFactory::IsLayerSupported(const IConnectableLayer& connectableLayer,
+ Optional<DataType> dataType,
+ std::string& outReasonIfUnsupported)
+{
+ auto layer = boost::polymorphic_downcast<const Layer*>(&connectableLayer);
+ return IsLayerSupported(layer->GetBackendId(), connectableLayer, dataType, outReasonIfUnsupported);
+}
+
+}
diff --git a/src/backends/backendsCommon/WorkloadFactory.hpp b/src/backends/backendsCommon/WorkloadFactory.hpp
new file mode 100644
index 0000000000..34c1349021
--- /dev/null
+++ b/src/backends/backendsCommon/WorkloadFactory.hpp
@@ -0,0 +1,149 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/TensorFwd.hpp>
+#include <armnn/Optional.hpp>
+
+#include <backendsCommon/OutputHandler.hpp>
+#include <backendsCommon/Workload.hpp>
+
+#include <memory>
+
+namespace armnn
+{
+
+class Layer;
+
+// Workload factory interface for compute backends.
+class IWorkloadFactory
+{
+public:
+ virtual ~IWorkloadFactory() { }
+
+ virtual const BackendId& GetBackendId() const = 0;
+
+ /// Informs the memory manager that the network is finalized and ready for execution.
+ virtual void Finalize() { }
+
+ /// Inform the memory manager to release the memory
+ virtual void Release() { }
+
+ /// Inform the memory manager to acquire memory
+ virtual void Acquire() { }
+
+ static bool IsLayerSupported(const BackendId& backendId,
+ const IConnectableLayer& layer,
+ Optional<DataType> dataType,
+ std::string& outReasonIfUnsupported);
+
+ static bool IsLayerSupported(const IConnectableLayer& layer,
+ Optional<DataType> dataType,
+ std::string& outReasonIfUnsupported);
+
+ virtual bool SupportsSubTensors() const = 0;
+
+ virtual std::unique_ptr<ITensorHandle> CreateSubTensorHandle(ITensorHandle& parent,
+ TensorShape const& subTensorShape,
+ unsigned int const* subTensorOrigin
+ ) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateInput(const InputQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<ITensorHandle> CreateTensorHandle(const TensorInfo& tensorInfo) const = 0;
+
+ virtual std::unique_ptr<ITensorHandle> CreateTensorHandle(const TensorInfo& tensorInfo,
+ DataLayout dataLayout) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateOutput(const OutputQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateActivation(const ActivationQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateSoftmax(const SoftmaxQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateSplitter(const SplitterQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateMerger(const MergerQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateFullyConnected(const FullyConnectedQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreatePermute(const PermuteQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreatePooling2d(const Pooling2dQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateConvolution2d(const Convolution2dQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateDepthwiseConvolution2d(
+ const DepthwiseConvolution2dQueueDescriptor& descriptor, const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateNormalization(const NormalizationQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateAddition(const AdditionQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateMultiplication(const MultiplicationQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateBatchNormalization(const BatchNormalizationQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateMemCopy(const MemCopyQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateResizeBilinear(const ResizeBilinearQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateFakeQuantization(const FakeQuantizationQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateL2Normalization(const L2NormalizationQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateConstant(const ConstantQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateReshape(const ReshapeQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateSpaceToBatchNd(const SpaceToBatchNdQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateFloor(const FloorQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateLstm(const LstmQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateConvertFp16ToFp32(const ConvertFp16ToFp32QueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateConvertFp32ToFp16(const ConvertFp32ToFp16QueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateDivision(const DivisionQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateSubtraction(const SubtractionQueueDescriptor& descriptor,
+ const WorkloadInfo& info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreateMean(const MeanQueueDescriptor& descriptor,
+ const WorkloadInfo& Info) const = 0;
+
+ virtual std::unique_ptr<IWorkload> CreatePad(const PadQueueDescriptor& descriptor,
+ const WorkloadInfo& Info) const = 0;
+};
+
+} //namespace armnn
diff --git a/src/backends/backendsCommon/WorkloadInfo.hpp b/src/backends/backendsCommon/WorkloadInfo.hpp
new file mode 100644
index 0000000000..304bc0bf06
--- /dev/null
+++ b/src/backends/backendsCommon/WorkloadInfo.hpp
@@ -0,0 +1,18 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+namespace armnn
+{
+
+/// Contains information about inputs and outputs to a layer.
+/// This is needed at construction of workloads, but are not stored.
+struct WorkloadInfo
+{
+ std::vector<TensorInfo> m_InputTensorInfos;
+ std::vector<TensorInfo> m_OutputTensorInfos;
+};
+
+} //namespace armnn
diff --git a/src/backends/backendsCommon/WorkloadUtils.hpp b/src/backends/backendsCommon/WorkloadUtils.hpp
new file mode 100644
index 0000000000..b7e0e060f2
--- /dev/null
+++ b/src/backends/backendsCommon/WorkloadUtils.hpp
@@ -0,0 +1,140 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#pragma once
+
+#include "ITensorHandle.hpp"
+
+#include <armnn/Tensor.hpp>
+
+#include <boost/cast.hpp>
+
+namespace armnn
+{
+namespace
+{
+template<typename ArrayType, typename Arg>
+void AssignValues(unsigned int num, unsigned int& idx, const ArrayType& array, Arg& arg)
+{
+ if (idx >= num)
+ {
+ return;
+ }
+
+ arg = array[(num - 1) - idx];
+ idx++;
+};
+
+template<typename T, typename ArrayType, typename ...Args>
+void AssignValues(unsigned int num, unsigned int idx, const ArrayType& array, T& assignee, Args& ... args)
+{
+ AssignValues(num, idx, array, assignee);
+
+ AssignValues(num, idx, array, args...);
+}
+} // namespace
+
+template<typename CopyFunc>
+void CopyTensorContentsGeneric(const ITensorHandle* srcTensor, ITensorHandle* dstTensor, CopyFunc copy)
+{
+ static_assert(MaxNumOfTensorDimensions == 4, "Please update CopyTensorContents");
+
+ TensorShape srcStrides = srcTensor->GetStrides();
+ const TensorShape& srcShape = srcTensor->GetShape();
+ TensorShape dstStrides = dstTensor->GetStrides();
+ const TensorShape& dstShape = dstTensor->GetShape();
+
+ size_t srcBatches = 1;
+ size_t srcChannels = 1;
+ size_t srcHeight = 1;
+ size_t srcWidth = 1;
+ AssignValues(srcShape.GetNumDimensions(),0, srcShape,
+ srcWidth,
+ srcHeight,
+ srcChannels,
+ srcBatches);
+
+ size_t srcBatchStride = 0;
+ size_t srcChannelStride = 0;
+ size_t srcHeightStride = 0;
+ size_t srcWidthStride = 0;
+ AssignValues(srcStrides.GetNumDimensions(),0, srcStrides,
+ srcWidthStride,
+ srcHeightStride,
+ srcChannelStride,
+ srcBatchStride);
+
+ size_t dstBatches = 1;
+ size_t dstChannels = 1;
+ size_t dstHeight = 1;
+ size_t dstWidth = 1;
+ AssignValues(dstShape.GetNumDimensions(),0, dstShape,
+ dstWidth,
+ dstHeight,
+ dstChannels,
+ dstBatches);
+
+ size_t dstBatchStride = 0;
+ size_t dstChannelStride = 0;
+ size_t dstHeightStride = 0;
+ size_t dstWidthStride = 0;
+ AssignValues(dstStrides.GetNumDimensions(),0, dstStrides,
+ dstWidthStride,
+ dstHeightStride,
+ dstChannelStride,
+ dstBatchStride);
+
+ auto srcData = static_cast<const uint8_t*>(srcTensor->Map());
+ auto dstData = static_cast<uint8_t*>(dstTensor->Map());
+
+ size_t copyLength = std::min(srcWidth*srcWidthStride, dstWidth*dstWidthStride);
+ size_t copyHeight = std::min(srcHeight, dstHeight);
+ size_t copyChannels = std::min(srcChannels, dstChannels);
+ size_t copyBatches = std::min(srcBatches, dstBatches);
+
+ for(unsigned int b=0; b < copyBatches; ++b)
+ {
+ auto srcPtrBatch = srcData;
+ auto dstPtrBatch = dstData;
+ for (unsigned int c=0; c< copyChannels; ++c)
+ {
+ auto srcPtrChannel = srcData;
+ auto dstPtrChannel = dstData;
+ for (unsigned int h=0; h < copyHeight; ++h)
+ {
+ copy(dstData, srcData, copyLength);
+ dstData += dstHeightStride;
+ srcData += srcHeightStride;
+ }
+ dstData += (static_cast<long>(dstChannelStride) - (dstData - dstPtrChannel));
+ srcData += (static_cast<long>(srcChannelStride) - (srcData - srcPtrChannel));
+ }
+ dstData += (static_cast<long>(dstBatchStride)-(dstData - dstPtrBatch));
+ srcData += (static_cast<long>(srcBatchStride)-(srcData - srcPtrBatch));
+ }
+
+ srcTensor->Unmap();
+ dstTensor->Unmap();
+}
+
+template <typename SrcTensorHandleType, typename DstTensorHandleType, typename DescriptorType>
+void GatherTensorHandlePairs(const DescriptorType& descriptor,
+ std::vector<std::pair<SrcTensorHandleType*, DstTensorHandleType*>>& tensorHandlePairs)
+{
+ const unsigned int numInputs = static_cast<unsigned int>(descriptor.m_Inputs.size());
+ tensorHandlePairs.reserve(numInputs);
+
+ for (unsigned int i = 0; i < numInputs; ++i)
+ {
+ SrcTensorHandleType* const srcTensorHandle = boost::polymorphic_downcast<SrcTensorHandleType*>(
+ descriptor.m_Inputs[i]);
+ DstTensorHandleType* const dstTensorHandle = boost::polymorphic_downcast<DstTensorHandleType*>(
+ descriptor.m_Outputs[i]);
+
+ tensorHandlePairs.emplace_back(srcTensorHandle, dstTensorHandle);
+ }
+}
+
+} //namespace armnn \ No newline at end of file
diff --git a/src/backends/backendsCommon/common.cmake b/src/backends/backendsCommon/common.cmake
new file mode 100644
index 0000000000..347d60254b
--- /dev/null
+++ b/src/backends/backendsCommon/common.cmake
@@ -0,0 +1,8 @@
+#
+# Copyright © 2017 Arm Ltd. All rights reserved.
+# SPDX-License-Identifier: MIT
+#
+
+add_subdirectory(${PROJECT_SOURCE_DIR}/src/backends/backendsCommon)
+list(APPEND armnnLibraries armnnBackendsCommon)
+list(APPEND armnnUnitTestLibraries armnnBackendsCommonUnitTests)
diff --git a/src/backends/backendsCommon/common.mk b/src/backends/backendsCommon/common.mk
new file mode 100644
index 0000000000..152ada3532
--- /dev/null
+++ b/src/backends/backendsCommon/common.mk
@@ -0,0 +1,30 @@
+#
+# Copyright © 2017 ARM Ltd. All rights reserved.
+# SPDX-License-Identifier: MIT
+#
+
+# COMMON_SOURCES contains the list of files to be included
+# in the Android build and it is picked up by the Android.mk
+# file in the root of ArmNN
+
+COMMON_SOURCES := \
+ BackendContextRegistry.cpp \
+ BackendRegistry.cpp \
+ CpuTensorHandle.cpp \
+ ILayerSupport.cpp \
+ MemCopyWorkload.cpp \
+ LayerSupportRegistry.cpp \
+ OutputHandler.cpp \
+ StringMapping.cpp \
+ WorkloadData.cpp \
+ WorkloadFactory.cpp
+
+# COMMON_TEST_SOURCES contains the list of files to be included
+# in the Android unit test build (armnn-tests) and it is picked
+# up by the Android.mk file in the root of ArmNN
+
+COMMON_TEST_SOURCES := \
+ test/WorkloadDataValidation.cpp \
+ test/TensorCopyUtils.cpp \
+ test/LayerTests.cpp
+
diff --git a/src/backends/backendsCommon/test/ActivationFixture.hpp b/src/backends/backendsCommon/test/ActivationFixture.hpp
new file mode 100644
index 0000000000..8ff77f6c5d
--- /dev/null
+++ b/src/backends/backendsCommon/test/ActivationFixture.hpp
@@ -0,0 +1,61 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "TensorCopyUtils.hpp"
+#include "WorkloadTestUtils.hpp"
+
+#include <test/TensorHelpers.hpp>
+
+#include <boost/numeric/conversion/cast.hpp>
+#include <boost/multi_array.hpp>
+
+struct ActivationFixture
+{
+ ActivationFixture()
+ {
+ auto boostArrayExtents = boost::extents
+ [boost::numeric_cast<boost::multi_array_types::extent_gen::index>(batchSize)]
+ [boost::numeric_cast<boost::multi_array_types::extent_gen::index>(channels)]
+ [boost::numeric_cast<boost::multi_array_types::extent_gen::index>(height)]
+ [boost::numeric_cast<boost::multi_array_types::extent_gen::index>(width)];
+ output.resize(boostArrayExtents);
+ outputExpected.resize(boostArrayExtents);
+ input.resize(boostArrayExtents);
+
+ unsigned int inputShape[] = { batchSize, channels, height, width };
+ unsigned int outputShape[] = { batchSize, channels, height, width };
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ input = MakeRandomTensor<float, 4>(inputTensorInfo, 21453);
+ }
+
+ unsigned int width = 17;
+ unsigned int height = 29;
+ unsigned int channels = 2;
+ unsigned int batchSize = 5;
+
+ boost::multi_array<float, 4> output;
+ boost::multi_array<float, 4> outputExpected;
+ boost::multi_array<float, 4> input;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ // Parameters used by some of the activation functions.
+ float a = 0.234f;
+ float b = -12.345f;
+};
+
+
+struct PositiveActivationFixture : public ActivationFixture
+{
+ PositiveActivationFixture()
+ {
+ input = MakeRandomTensor<float, 4>(inputTensorInfo, 2342423, 0.0f, 1.0f);
+ }
+}; \ No newline at end of file
diff --git a/src/backends/backendsCommon/test/ActivationTestImpl.hpp b/src/backends/backendsCommon/test/ActivationTestImpl.hpp
new file mode 100644
index 0000000000..3b3ee9361c
--- /dev/null
+++ b/src/backends/backendsCommon/test/ActivationTestImpl.hpp
@@ -0,0 +1,560 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "ActivationFixture.hpp"
+#include "QuantizeHelper.hpp"
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+
+#include <backendsCommon/CpuTensorHandle.hpp>
+#include <backendsCommon/WorkloadFactory.hpp>
+
+#include <test/TensorHelpers.hpp>
+
+#include <algorithm>
+
+template<typename T>
+LayerTestResult<T, 4> BoundedReLuTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float upperBound, float lowerBound,
+ float inputScale, int32_t inputOffset, float outputScale, int32_t outputOffset,
+ const std::vector<T>& inputData, const std::vector<T>& outputExpectedData,
+ unsigned int inputWidth, unsigned int inputHeight,
+ unsigned int inputChannels, unsigned int inputBatchSize)
+{
+ unsigned int outputWidth = inputWidth;
+ unsigned int outputHeight = inputHeight;
+ unsigned int outputChannels = inputChannels;
+ unsigned int outputBatchSize = inputBatchSize;
+
+ armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::GetDataType<T>());
+
+ armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::GetDataType<T>());
+
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(inputScale);
+ inputTensorInfo.SetQuantizationOffset(inputOffset);
+
+ outputTensorInfo.SetQuantizationScale(outputScale);
+ outputTensorInfo.SetQuantizationOffset(outputOffset);
+ }
+
+ LayerTestResult<T, 4> result(inputTensorInfo);
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, inputData);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ // Setup bounded ReLu.
+ armnn::ActivationQueueDescriptor descriptor;
+ armnn::WorkloadInfo workloadInfo;
+ AddInputToWorkload(descriptor, workloadInfo, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, workloadInfo, outputTensorInfo, outputHandle.get());
+
+ descriptor.m_Parameters.m_Function = armnn::ActivationFunction::BoundedReLu;
+ descriptor.m_Parameters.m_A = upperBound;
+ descriptor.m_Parameters.m_B = lowerBound;
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateActivation(descriptor, workloadInfo);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+
+ result.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputExpectedData);
+
+ return result;
+}
+
+LayerTestResult<float, 4> BoundedReLuUpperAndLowerBoundTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int inputWidth = 4u;
+ unsigned int inputHeight = 5u;
+ unsigned int inputChannels = 1u;
+ unsigned int inputBatchSize = 1;
+
+ std::vector<float> input = std::vector<float>{
+ -2.0f, 0.1f, 0.5f, 1.25f,
+ 0.786f, 0.9875f, -1.5f, 0.384f,
+ 1.0001f, 3.5f, 7.5f, 0.896f,
+ 2.126f, 2.0f, 0.3f, 0.15f,
+ 0.999f, 1.2f, 0.89f, 6.1f,
+ };
+
+ // Calculated manually.
+ std::vector<float> output = std::vector<float>{
+ -1.0f, 0.1f, 0.5f, 1.0f,
+ 0.786f, 0.9875f, -1.0f, 0.384f,
+ 1.0f, 1.0f, 1.0f, 0.896f,
+ 1.0f, 1.0f, 0.3f, 0.15f,
+ 0.999f, 1.0f, 0.89f, 1.0f,
+ };
+
+ return BoundedReLuTestCommon(workloadFactory, 1.0f, -1.0f, 1.0f, 0, 1.0f, 0, input, output,
+ inputWidth, inputHeight, inputChannels, inputBatchSize);
+}
+
+LayerTestResult<float, 4> BoundedReLuUpperBoundOnlyTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int inputWidth = 4u;
+ unsigned int inputHeight = 5u;
+ unsigned int inputChannels = 1u;
+ unsigned int inputBatchSize = 1;
+
+ std::vector<float> input = std::vector<float>{
+ -1.0f, 0.1f, 0.5f, 6.25f,
+ 0.786f, 5.9875f, -0.5f, 0.384f,
+ 6.0001f, 3.5f, 7.5f, 0.896f,
+ 2.126f, 12.0f, 0.3f, 0.15f,
+ 0.999f, 1.2f, 0.89f, 6.1f,
+ };
+
+ // Calculated manually.
+ std::vector<float> output = std::vector<float>{
+ 0.0f, 0.1f, 0.5f, 6.0f,
+ 0.786f, 5.9875f, 0.0f, 0.384f,
+ 6.0f, 3.5f, 6.0f, 0.896f,
+ 2.126f, 6.0f, 0.3f, 0.15f,
+ 0.999f, 1.2f, 0.89f, 6.0f,
+ };
+
+ return BoundedReLuTestCommon(workloadFactory, 6.0f, 0.0f, 1.0f, 0, 1.0f, 0, input, output,
+ inputWidth, inputHeight, inputChannels, inputBatchSize);
+}
+
+LayerTestResult<uint8_t, 4> BoundedReLuUint8UpperBoundOnlyTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int inputWidth = 3u;
+ unsigned int inputHeight = 2u;
+ unsigned int inputChannels = 1u;
+ unsigned int inputBatchSize = 1;
+
+ std::vector<uint8_t> input = std::vector<uint8_t>{
+ 51, 124, 28,
+ 251, 8, 92
+ };
+
+ // Calculated manually.
+ std::vector<uint8_t> output = std::vector<uint8_t>{
+ 0, 122, 0,
+ 255, 0, 58
+ };
+
+ float inputScale = 12.0f / 255.0f;
+ int32_t inputOffset = 63;
+ float outputScale = 6.0f / 255.0f;
+ int32_t outputOffset = 0;
+
+ return BoundedReLuTestCommon(workloadFactory, 6.0f, 0.0f,
+ inputScale, inputOffset, outputScale, outputOffset,
+ input, output,
+ inputWidth, inputHeight, inputChannels, inputBatchSize);
+}
+
+LayerTestResult<uint8_t, 4> BoundedReLuUint8UpperAndLowerBoundTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int inputWidth = 3u;
+ unsigned int inputHeight = 2u;
+ unsigned int inputChannels = 1u;
+ unsigned int inputBatchSize = 1;
+
+ std::vector<uint8_t> input = std::vector<uint8_t>{
+ 51, 230, 28,
+ 251, 8, 92
+ };
+
+ // Calculated manually.
+ std::vector<uint8_t> output = std::vector<uint8_t>{
+ 51, 192, 32,
+ 192, 32, 92
+ };
+
+ int32_t inputOffset = 112;
+ float inputScale = 0.0125f;
+
+ return BoundedReLuTestCommon(workloadFactory, 1.0f, -1.0f,
+ inputScale, inputOffset, inputScale, inputOffset, // Input/output scale & offset same.
+ input, output,
+ inputWidth, inputHeight, inputChannels, inputBatchSize);
+}
+
+namespace
+{
+
+struct BoundedReLuRandomInputTestTraits
+{
+ constexpr static unsigned int inputHeight = 31u;
+ constexpr static unsigned int inputWidth = 19u;
+ constexpr static unsigned int inputChannels = 4u;
+ constexpr static unsigned int inputBatchSize = 2;
+
+ constexpr static unsigned int outputHeight = inputHeight;
+ constexpr static unsigned int outputWidth = inputWidth;
+ constexpr static unsigned int outputChannels = inputChannels;
+ constexpr static unsigned int outputBatchSize = inputBatchSize;
+
+ static armnn::TensorInfo GetInputTensorInfo()
+ {
+ return armnn::TensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::Float32);
+ }
+
+ static armnn::TensorInfo GetOutputTensorInfo()
+ {
+ return armnn::TensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::Float32);
+ }
+};
+
+boost::multi_array<float, 4> BoundedReLuRandomInputTest(armnn::IWorkloadFactory& workloadFactory,
+ float lowerBound,
+ float upperBound,
+ const armnn::ActivationDescriptor& activationDescriptor)
+{
+ const armnn::TensorInfo inputTensorInfo = BoundedReLuRandomInputTestTraits::GetInputTensorInfo();
+ const armnn::TensorInfo outputTensorInfo = BoundedReLuRandomInputTestTraits::GetOutputTensorInfo();
+
+ boost::multi_array<float, 4> output(GetTensorShapeAsArray<4>(outputTensorInfo));
+
+ // Min/max random values passed to MakeRandomTensor are purposely outside of the ReLu
+ // range [lowerBound, upperBound].
+ auto input = MakeRandomTensor<float, 4>(inputTensorInfo, 4605828, lowerBound - 5.0f, upperBound * 2.0f);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ // Set up bounded ReLu.
+ armnn::ActivationQueueDescriptor descriptor;
+ armnn::WorkloadInfo workloadInfo;
+ AddInputToWorkload(descriptor, workloadInfo, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, workloadInfo, outputTensorInfo, outputHandle.get());
+ descriptor.m_Parameters = activationDescriptor;
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateActivation(descriptor, workloadInfo);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&output[0][0][0][0], outputHandle.get());
+
+ return output;
+}
+
+} // namespace
+
+LayerTestResult<float, 4> CompareBoundedReLuTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& otherWorkloadFactory,
+ float upperBound,
+ float lowerBound)
+{
+ LayerTestResult<float, 4> result(BoundedReLuRandomInputTestTraits::GetOutputTensorInfo());
+
+ armnn::ActivationDescriptor activationDescriptor;
+ activationDescriptor.m_Function = armnn::ActivationFunction::BoundedReLu;
+ activationDescriptor.m_A = upperBound;
+ activationDescriptor.m_B = lowerBound;
+
+ result.output = BoundedReLuRandomInputTest(workloadFactory, 0.0f, upperBound, activationDescriptor);
+ result.outputExpected = BoundedReLuRandomInputTest(otherWorkloadFactory, 0.0f, upperBound, activationDescriptor);
+
+ return result;
+}
+
+template<typename T>
+LayerTestResult<T,4> ConstantLinearActivationTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 0.0f,
+ int32_t qOffset = 0)
+{
+ unsigned int inputHeight = 20;
+ unsigned int inputWidth = 17;
+ unsigned int inputChannels = 3;
+ unsigned int batchSize = 5;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int shape[] = {batchSize, inputChannels, inputHeight, inputWidth};
+
+ inputTensorInfo = armnn::TensorInfo(4, shape, armnn::GetDataType<T>());
+ outputTensorInfo = armnn::TensorInfo(4, shape, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ LayerTestResult<T, 4> ret(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ // Do linear activation that should leave the tensor unchanged.
+ armnn::ActivationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Parameters.m_A = 1.0f;
+ data.m_Parameters.m_B = 0.0f;
+ data.m_Parameters.m_Function = armnn::ActivationFunction::Linear;
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateActivation(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ boost::multi_array<T, 4> input = MakeRandomTensor<T, 4>(inputTensorInfo, 7123561);
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ // Ensure output equals input.
+ ret.outputExpected = input;
+
+ return ret;
+}
+
+LayerTestResult<float, 4> ConstantLinearActivationTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return ConstantLinearActivationTestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> ConstantLinearActivationUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return ConstantLinearActivationTestCommon<uint8_t>(workloadFactory, 4.0f, 3);
+}
+
+template<typename T>
+LayerTestResult<T, 4> SimpleActivationTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::ActivationFunction activationFunction,
+ float activationParameterA,
+ float activationParameterB,
+ float qScale,
+ int32_t qOffset,
+ const std::vector<float>& inputData,
+ const std::vector<float>& outputExpectedData)
+{
+ constexpr static unsigned int inputWidth = 16u;
+ constexpr static unsigned int inputHeight = 1u;
+ constexpr static unsigned int inputChannels = 1u;
+ constexpr static unsigned int inputBatchSize = 1u;
+
+ constexpr static unsigned int outputWidth = inputWidth;
+ constexpr static unsigned int outputHeight = inputHeight;
+ constexpr static unsigned int outputChannels = inputChannels;
+ constexpr static unsigned int outputBatchSize = inputBatchSize;
+
+ armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ LayerTestResult<T, 4> result(inputTensorInfo);
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, inputData));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ // Setup bounded ReLu.
+ armnn::ActivationQueueDescriptor descriptor;
+ armnn::WorkloadInfo workloadInfo;
+ AddInputToWorkload(descriptor, workloadInfo, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, workloadInfo, outputTensorInfo, outputHandle.get());
+
+ descriptor.m_Parameters.m_Function = activationFunction;
+ descriptor.m_Parameters.m_A = activationParameterA;
+ descriptor.m_Parameters.m_B = activationParameterB;
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateActivation(descriptor, workloadInfo);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+
+ // Calculated manually.
+ result.outputExpected = MakeTensor<T, 4>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, outputExpectedData));
+
+ return result;
+}
+
+template<typename T>
+LayerTestResult<T, 4> SimpleSigmoidTestCommon(armnn::IWorkloadFactory& workloadFactory, float qScale, int32_t qOffset)
+{
+ std::vector<float> inputData = {
+ -0.1f, -0.2f, -0.3f, -0.4f,
+ 0.1f, 0.2f, 0.3f, 0.4f,
+ -1.0f, -2.0f, -3.0f, -4.0f,
+ 1.0f, 2.0f, 3.0f, 4.0f
+ };
+
+ // Calculate output values for input.
+ auto f = [](float value)
+ {
+ return 1.0f / (1.0f + std::exp(-value));
+ };
+ std::vector<float> outputExpectedData(inputData.size());
+ std::transform(inputData.begin(), inputData.end(), outputExpectedData.begin(), f);
+
+ return SimpleActivationTest<T>(workloadFactory,
+ armnn::ActivationFunction::Sigmoid,
+ 0.f,
+ 0.f,
+ qScale,
+ qOffset,
+ inputData,
+ outputExpectedData);
+}
+
+LayerTestResult<float, 4> SimpleSigmoidTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return SimpleSigmoidTestCommon<float>(workloadFactory, 0.0f, 0);
+}
+
+LayerTestResult<uint8_t, 4> SimpleSigmoidUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return SimpleSigmoidTestCommon<uint8_t>(workloadFactory, 0.1f, 50);
+}
+
+template<typename T>
+LayerTestResult<T,4> CompareActivationTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::ActivationFunction f,
+ unsigned int batchSize = 5,
+ float qScale = 0.0f,
+ int32_t qOffset = 0)
+{
+ unsigned int width = 17;
+ unsigned int height = 29;
+ unsigned int channels = 2;
+
+ float a = 0.234f;
+ float b = -12.345f;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int shape[] = {batchSize, channels, height, width};
+
+ inputTensorInfo = armnn::TensorInfo(4, shape, armnn::GetDataType<T>());
+ outputTensorInfo = armnn::TensorInfo(4, shape, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ float minVal = -10.f;
+ if (f == armnn::ActivationFunction::Sqrt)
+ {
+ minVal = 0.f;
+ }
+
+ boost::multi_array<T, 4> input = MakeRandomTensor<T, 4>(inputTensorInfo, 21453, minVal, 10.f);
+
+
+ LayerTestResult<T,4> ret(outputTensorInfo);
+ auto boostArrayExtents = boost::extents
+ [boost::numeric_cast<boost::multi_array_types::extent_gen::index>(batchSize)]
+ [boost::numeric_cast<boost::multi_array_types::extent_gen::index>(channels)]
+ [boost::numeric_cast<boost::multi_array_types::extent_gen::index>(height)]
+ [boost::numeric_cast<boost::multi_array_types::extent_gen::index>(width)];
+ ret.output.resize(boostArrayExtents);
+ ret.outputExpected.resize(boostArrayExtents);
+
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandleRef = refWorkloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ActivationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Parameters.m_A = a;
+ data.m_Parameters.m_B = b;
+ data.m_Parameters.m_Function = f;
+
+ armnn::ActivationQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadInput(refData, refInfo, 0, inputTensorInfo, inputHandleRef.get());
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateActivation(data, info);
+ BOOST_ASSERT(workload != nullptr);
+ std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreateActivation(refData, refInfo);
+ BOOST_ASSERT(workloadRef != nullptr);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ inputHandleRef->Allocate();
+ outputHandleRef->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandleRef.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+ workloadRef->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+ CopyDataFromITensorHandle(&ret.outputExpected[0][0][0][0], outputHandleRef.get());
+
+ return ret;
+}
+
+LayerTestResult<float,4> CompareActivationTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::ActivationFunction f,
+ unsigned int batchSize)
+{
+ return CompareActivationTestImpl<float>(workloadFactory, refWorkloadFactory, f, batchSize);
+}
+
+LayerTestResult<uint8_t,4> CompareActivationUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::ActivationFunction f)
+{
+ return CompareActivationTestImpl<uint8_t>(workloadFactory, refWorkloadFactory, f, 5, 0.1f, 50);
+}
diff --git a/src/backends/backendsCommon/test/BackendIdTests.cpp b/src/backends/backendsCommon/test/BackendIdTests.cpp
new file mode 100644
index 0000000000..e11c13e6ae
--- /dev/null
+++ b/src/backends/backendsCommon/test/BackendIdTests.cpp
@@ -0,0 +1,28 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include <armnn/BackendId.hpp>
+#include <armnn/Types.hpp>
+
+#include <boost/test/unit_test.hpp>
+
+using namespace armnn;
+
+BOOST_AUTO_TEST_SUITE(BackendIdTests)
+
+BOOST_AUTO_TEST_CASE(CreateBackendIdFromCompute)
+{
+ BackendId fromCompute{Compute::GpuAcc};
+ BOOST_TEST(fromCompute.Get() == GetComputeDeviceAsCString(Compute::GpuAcc));
+}
+
+BOOST_AUTO_TEST_CASE(CreateBackendIdVectorFromCompute)
+{
+ std::vector<BackendId> fromComputes = {Compute::GpuAcc, Compute::CpuRef};
+ BOOST_TEST(fromComputes[0].Get() == GetComputeDeviceAsCString(Compute::GpuAcc));
+ BOOST_TEST(fromComputes[1].Get() == GetComputeDeviceAsCString(Compute::CpuRef));
+}
+
+BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/backends/backendsCommon/test/BackendRegistryTests.cpp b/src/backends/backendsCommon/test/BackendRegistryTests.cpp
new file mode 100644
index 0000000000..4afe273de4
--- /dev/null
+++ b/src/backends/backendsCommon/test/BackendRegistryTests.cpp
@@ -0,0 +1,103 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include <armnn/Types.hpp>
+
+#include <backendsCommon/BackendRegistry.hpp>
+
+#include <boost/test/unit_test.hpp>
+
+namespace
+{
+
+class SwapRegistryStorage : public armnn::BackendRegistry
+{
+public:
+ SwapRegistryStorage() : armnn::BackendRegistry()
+ {
+ Swap(armnn::BackendRegistryInstance(), m_TempStorage);
+ }
+
+ ~SwapRegistryStorage()
+ {
+ Swap(armnn::BackendRegistryInstance(),m_TempStorage);
+ }
+
+private:
+ FactoryStorage m_TempStorage;
+};
+
+}
+
+BOOST_AUTO_TEST_SUITE(BackendRegistryTests)
+
+BOOST_AUTO_TEST_CASE(SwapRegistry)
+{
+ using namespace armnn;
+ auto nFactories = BackendRegistryInstance().Size();
+ {
+ SwapRegistryStorage helper;
+ BOOST_TEST(BackendRegistryInstance().Size() == 0);
+ }
+ BOOST_TEST(BackendRegistryInstance().Size() == nFactories);
+}
+
+BOOST_AUTO_TEST_CASE(TestRegistryHelper)
+{
+ using namespace armnn;
+ SwapRegistryStorage helper;
+
+ bool called = false;
+
+ StaticRegistryInitializer<BackendRegistry> factoryHelper(
+ BackendRegistryInstance(),
+ "HelloWorld",
+ [&called](const EmptyInitializer&)
+ {
+ called = true;
+ return armnn::IBackendInternalUniquePtr(nullptr);
+ }
+ );
+
+ // sanity check: the factory has not been called yet
+ BOOST_TEST(called == false);
+
+ auto factoryFunction = BackendRegistryInstance().GetFactory("HelloWorld");
+
+ // sanity check: the factory still not called
+ BOOST_TEST(called == false);
+
+ factoryFunction(EmptyInitializer());
+ BOOST_TEST(called == true);
+}
+
+BOOST_AUTO_TEST_CASE(TestDirectCallToRegistry)
+{
+ using namespace armnn;
+ SwapRegistryStorage helper;
+
+ bool called = false;
+ BackendRegistryInstance().Register(
+ "HelloWorld",
+ [&called](const EmptyInitializer&)
+ {
+ called = true;
+ return armnn::IBackendInternalUniquePtr(nullptr);
+ }
+ );
+
+ // sanity check: the factory has not been called yet
+ BOOST_TEST(called == false);
+
+ auto factoryFunction = BackendRegistryInstance().GetFactory("HelloWorld");
+
+ // sanity check: the factory still not called
+ BOOST_TEST(called == false);
+
+ factoryFunction(EmptyInitializer());
+ BOOST_TEST(called == true);
+}
+
+BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/backends/backendsCommon/test/BatchNormTestImpl.hpp b/src/backends/backendsCommon/test/BatchNormTestImpl.hpp
new file mode 100644
index 0000000000..2360fd56e2
--- /dev/null
+++ b/src/backends/backendsCommon/test/BatchNormTestImpl.hpp
@@ -0,0 +1,186 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+
+#include <backendsCommon/CpuTensorHandle.hpp>
+#include <backendsCommon/WorkloadFactory.hpp>
+#include <backendsCommon/test/QuantizeHelper.hpp>
+
+#include <test/TensorHelpers.hpp>
+
+template<typename T>
+LayerTestResult<T, 4> BatchNormTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::TensorShape& inputOutputTensorShape,
+ const std::vector<float>& inputValues,
+ const std::vector<float>& expectedOutputValues,
+ float qScale,
+ int32_t qOffset,
+ armnn::DataLayout dataLayout)
+{
+ armnn::TensorInfo inputTensorInfo(inputOutputTensorShape, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo(inputOutputTensorShape, armnn::GetDataType<T>());
+
+ armnn::DataLayoutIndexed dataLayoutIndexed(dataLayout);
+
+ armnn::TensorInfo tensorInfo({ inputOutputTensorShape[dataLayoutIndexed.GetChannelsIndex()] },
+ armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if (armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ tensorInfo.SetQuantizationScale(qScale);
+ tensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto inputTensor = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, inputValues));
+
+ // These values are per-channel of the input.
+ auto mean = MakeTensor<T, 1>(tensorInfo, QuantizedVector<T>(qScale, qOffset, {3, -2}));
+ auto variance = MakeTensor<T, 1>(tensorInfo, QuantizedVector<T>(qScale, qOffset, {4, 9}));
+ auto beta = MakeTensor<T, 1>(tensorInfo, QuantizedVector<T>(qScale, qOffset, {3, 2}));
+ auto gamma = MakeTensor<T, 1>(tensorInfo, QuantizedVector<T>(qScale, qOffset, {2, 1}));
+
+ LayerTestResult<T, 4> result(outputTensorInfo);
+
+ result.outputExpected = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, expectedOutputValues));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ScopedCpuTensorHandle meanTensor(tensorInfo);
+ armnn::ScopedCpuTensorHandle varianceTensor(tensorInfo);
+ armnn::ScopedCpuTensorHandle betaTensor(tensorInfo);
+ armnn::ScopedCpuTensorHandle gammaTensor(tensorInfo);
+
+ armnn::BatchNormalizationQueueDescriptor descriptor;
+ descriptor.m_Mean = &meanTensor;
+ descriptor.m_Variance = &varianceTensor;
+ descriptor.m_Beta = &betaTensor;
+ descriptor.m_Gamma = &gammaTensor;
+ descriptor.m_Parameters.m_Eps = 0.0f;
+ descriptor.m_Parameters.m_DataLayout = dataLayout;
+ armnn::WorkloadInfo info;
+
+ AllocateAndCopyDataToITensorHandle(&meanTensor, &mean[0]);
+ AllocateAndCopyDataToITensorHandle(&varianceTensor, &variance[0]);
+ AllocateAndCopyDataToITensorHandle(&betaTensor, &beta[0]);
+ AllocateAndCopyDataToITensorHandle(&gammaTensor, &gamma[0]);
+
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateBatchNormalization(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &inputTensor[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+
+ return result;
+}
+
+
+template<typename T>
+LayerTestResult<T,4> BatchNormTestNhwcImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset)
+{
+ const unsigned int width = 2;
+ const unsigned int height = 3;
+ const unsigned int channels = 2;
+ const unsigned int num = 1;
+
+ armnn::TensorInfo inputTensorInfo({num, height, width, channels}, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({num, height, width, channels}, armnn::GetDataType<T>());
+ armnn::TensorInfo tensorInfo({channels}, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ tensorInfo.SetQuantizationScale(qScale);
+ tensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset,
+ {
+ 1.f, 1.f, 4.f, 1.f,
+ 4.f, 4.f, 2.f, 1.f,
+ 1.f, -2.f, 6.f, 4.f
+ }));
+ // These values are per-channel of the input.
+ auto mean = MakeTensor<T, 1>(tensorInfo, QuantizedVector<T>(qScale, qOffset, {3, -2}));
+ auto variance = MakeTensor<T, 1>(tensorInfo, QuantizedVector<T>(qScale, qOffset, {4, 9}));
+ auto beta = MakeTensor<T, 1>(tensorInfo, QuantizedVector<T>(qScale, qOffset, {3, 2}));
+ auto gamma = MakeTensor<T, 1>(tensorInfo, QuantizedVector<T>(qScale, qOffset, {2, 1}));
+ LayerTestResult<T,4> ret(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::BatchNormalizationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ armnn::ScopedCpuTensorHandle meanTensor(tensorInfo);
+ armnn::ScopedCpuTensorHandle varianceTensor(tensorInfo);
+ armnn::ScopedCpuTensorHandle betaTensor(tensorInfo);
+ armnn::ScopedCpuTensorHandle gammaTensor(tensorInfo);
+
+ AllocateAndCopyDataToITensorHandle(&meanTensor, &mean[0]);
+ AllocateAndCopyDataToITensorHandle(&varianceTensor, &variance[0]);
+ AllocateAndCopyDataToITensorHandle(&betaTensor, &beta[0]);
+ AllocateAndCopyDataToITensorHandle(&gammaTensor, &gamma[0]);
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Mean = &meanTensor;
+ data.m_Variance = &varianceTensor;
+ data.m_Beta = &betaTensor;
+ data.m_Gamma = &gammaTensor;
+ data.m_Parameters.m_Eps = 0.0f;
+ data.m_Parameters.m_DataLayout = armnn::DataLayout::NHWC;
+
+ // For each channel:
+ // substract mean, divide by standard deviation (with an epsilon to avoid div by 0),
+ // multiply by gamma and add beta
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset,
+ {
+ 1.f, 3.f, 4.f, 3.f,
+ 4.f, 4.f, 2.f, 3.f,
+ 1.f, 2.f, 6.f, 4.f
+ }));
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateBatchNormalization(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+} \ No newline at end of file
diff --git a/src/backends/backendsCommon/test/CMakeLists.txt b/src/backends/backendsCommon/test/CMakeLists.txt
new file mode 100644
index 0000000000..ae94ad5462
--- /dev/null
+++ b/src/backends/backendsCommon/test/CMakeLists.txt
@@ -0,0 +1,41 @@
+#
+# Copyright © 2017 Arm Ltd. All rights reserved.
+# SPDX-License-Identifier: MIT
+#
+
+list(APPEND armnnBackendsCommonUnitTests_sources
+ ActivationFixture.hpp
+ ActivationTestImpl.hpp
+ BackendIdTests.cpp
+ BackendRegistryTests.cpp
+ BatchNormTestImpl.hpp
+ Conv2dTestImpl.hpp
+ ConvertFp16ToFp32TestImpl.hpp
+ ConvertFp32ToFp16TestImpl.hpp
+ EndToEndTestImpl.hpp
+ FullyConnectedTestImpl.hpp
+ IsLayerSupportedTestImpl.hpp
+ JsonPrinterTestImpl.hpp
+ LayerReleaseConstantDataTest.cpp
+ LayerTests.cpp
+ LayerTests.hpp
+ LstmTestImpl.hpp
+ NormTestImpl.hpp
+ OptimizedNetworkTests.cpp
+ PermuteTestImpl.hpp
+ Pooling2dTestImpl.hpp
+ QuantizeHelper.hpp
+ ReshapeTestImpl.hpp
+ RuntimeTestImpl.hpp
+ SoftmaxTestImpl.hpp
+ SplitterTestImpl.hpp
+ TensorCopyUtils.cpp
+ TensorCopyUtils.hpp
+ WorkloadDataValidation.cpp
+ WorkloadTestUtils.hpp
+)
+
+add_library(armnnBackendsCommonUnitTests OBJECT ${armnnBackendsCommonUnitTests_sources})
+target_include_directories(armnnBackendsCommonUnitTests PRIVATE ${PROJECT_SOURCE_DIR}/src/armnn)
+target_include_directories(armnnBackendsCommonUnitTests PRIVATE ${PROJECT_SOURCE_DIR}/src/armnnUtils)
+target_include_directories(armnnBackendsCommonUnitTests PRIVATE ${PROJECT_SOURCE_DIR}/src/backends) \ No newline at end of file
diff --git a/src/backends/backendsCommon/test/Conv2dTestImpl.hpp b/src/backends/backendsCommon/test/Conv2dTestImpl.hpp
new file mode 100755
index 0000000000..aa3a44db5d
--- /dev/null
+++ b/src/backends/backendsCommon/test/Conv2dTestImpl.hpp
@@ -0,0 +1,1240 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <string>
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+
+#include <test/TensorHelpers.hpp>
+#include "QuantizeHelper.hpp"
+
+#include <backendsCommon/CpuTensorHandle.hpp>
+#include <backendsCommon/WorkloadFactory.hpp>
+#include "Permute.hpp"
+#include <boost/numeric/conversion/cast.hpp>
+
+// Mapping from input type to bias type for fully connected layers.
+// float => float, uint8_t => int32_t
+template<typename T>
+struct FullyConnectedBiasTypeForInputType;
+
+template<>
+struct FullyConnectedBiasTypeForInputType<float>
+{
+ using Type = float;
+};
+
+template<>
+struct FullyConnectedBiasTypeForInputType<uint8_t>
+{
+ using Type = int32_t;
+};
+
+// Modifies a std::vector in-place using a specified bias.
+template<typename T, typename B>
+void ApplyBias(std::vector<T>& v, float vScale, int32_t vOffset,
+ const std::vector<B>& bias, float bScale, int32_t bOffset, uint32_t w, uint32_t h)
+{
+ BOOST_ASSERT_MSG((armnn::IsQuantizedType<T>() && vScale != 0.0f) || (!armnn::IsQuantizedType<T>()),
+ "Invalid type and parameter combination.");
+ BOOST_ASSERT_MSG((armnn::IsQuantizedType<B>() && bScale != 0.0f) || (!armnn::IsQuantizedType<B>()),
+ "Invalid type and parameter combination.");
+
+ // Note we need to dequantize and re-quantize the image value and the bias.
+ for (uint32_t i = 0; i < bias.size(); ++i)
+ {
+ float dBias = SelectiveDequantize(bias[i], bScale, bOffset);
+ for (uint32_t y = 0; y < h; ++y)
+ {
+ for (uint32_t x = 0; x < w; ++x)
+ {
+ uint32_t offset = (i * h + y) * w + x;
+ BOOST_ASSERT(offset < v.size());
+ T& outRef = v[offset];
+ float dOutput = SelectiveDequantize(outRef, vScale, vOffset);
+ outRef = SelectiveQuantize<T>(dOutput + dBias, vScale, vOffset);
+ }
+ }
+ }
+}
+
+template<typename T, typename B>
+LayerTestResult<T, 4> SimpleConvolution2dTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const boost::multi_array<T, 4>& originalInput,
+ const boost::multi_array<T, 4>& originalKernel,
+ const boost::multi_array<B, 1>& bias,
+ const boost::multi_array<T, 4>& originalOutputExpected,
+ float qScale,
+ int32_t qOffset,
+ const armnn::DataLayoutIndexed& layout = armnn::DataLayout::NCHW,
+ uint32_t padLeft = 0,
+ uint32_t padTop = 0,
+ uint32_t padRight = 0,
+ uint32_t padBottom = 0)
+{
+ unsigned int inputHeight = boost::numeric_cast<unsigned int>(originalInput.shape()[2]);
+ unsigned int inputWidth = boost::numeric_cast<unsigned int>(originalInput.shape()[3]);
+ unsigned int inputChannels = boost::numeric_cast<unsigned int>(originalInput.shape()[1]);
+ unsigned int inputNum = boost::numeric_cast<unsigned int>(originalInput.shape()[0]);
+
+ unsigned int outputHeight = boost::numeric_cast<unsigned int>(originalOutputExpected.shape()[2]);
+ unsigned int outputWidth = boost::numeric_cast<unsigned int>(originalOutputExpected.shape()[3]);
+ unsigned int outputChannels = boost::numeric_cast<unsigned int>(originalOutputExpected.shape()[1]);
+ unsigned int outputNum = boost::numeric_cast<unsigned int>(originalOutputExpected.shape()[0]);
+
+ unsigned int kernelHeight = boost::numeric_cast<unsigned int>(originalKernel.shape()[2]);
+ unsigned int kernelWidth = boost::numeric_cast<unsigned int>(originalKernel.shape()[3]);
+ unsigned int kernelChannels = boost::numeric_cast<unsigned int>(originalKernel.shape()[1]);
+ unsigned int kernelDepthMul = boost::numeric_cast<unsigned int>(originalKernel.shape()[0]);
+
+ bool biasEnabled = bias.size() > 0;
+
+ // This function currently assumes 1 batch of input/output (and duplicates this into 2 batches).
+ BOOST_ASSERT(inputNum == 1);
+ BOOST_ASSERT(outputNum == 1);
+
+ // If a bias is used, its size must equal the number of output channels.
+ BOOST_ASSERT(!biasEnabled || bias.size() == outputChannels);
+
+
+ // Note these tensors will use two (identical) batches.
+ armnn::TensorInfo inputTensorInfo = GetTensorInfo<T>(2*inputNum, inputChannels, inputHeight, inputWidth, layout);
+ armnn::TensorInfo outputTensorInfo = GetTensorInfo<T>(
+ 2*outputNum, outputChannels, outputHeight, outputWidth, layout);
+ armnn::TensorInfo kernelDesc = GetTensorInfo<T>(kernelDepthMul, kernelChannels, kernelHeight, kernelWidth, layout);
+ armnn::TensorInfo biasDesc({static_cast<unsigned int>(bias.size())}, armnn::GetDataType<B>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ kernelDesc.SetQuantizationScale(qScale);
+ kernelDesc.SetQuantizationOffset(qOffset);
+ biasDesc.SetQuantizationScale(qScale*qScale);
+ biasDesc.SetQuantizationOffset(0);
+ }
+
+ LayerTestResult<T, 4> ret(outputTensorInfo);
+
+ // Construct input data - two batches of the same input image.
+ std::vector<T> inputImage;
+ inputImage.assign(originalInput.data(), originalInput.data() + 1*inputChannels*inputHeight*inputWidth);
+ std::vector<T> inputData;
+ inputData.insert(inputData.end(), inputImage.begin(), inputImage.end());
+ inputData.insert(inputData.end(), inputImage.begin(), inputImage.end());
+
+ // at this point if we require it permute the input data
+ const armnn::PermutationVector NCHWToNHWC = { 0, 3, 1, 2 };
+ if (layout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ std::vector<T> tmp(inputData.size());
+ armnnUtils::Permute(inputTensorInfo.GetShape(), NCHWToNHWC, inputData.data(), tmp.data());
+ inputData = tmp;
+ }
+
+ auto batchedInput = MakeTensor<T, 4>(inputTensorInfo, inputData);
+
+ std::vector<T> outputImage;
+ outputImage.assign(originalOutputExpected.data(),
+ originalOutputExpected.data() + outputChannels*outputHeight*outputWidth);
+
+ // Apply bias to output image if it is enabled.
+ if(biasEnabled)
+ {
+ std::vector<T> biasV;
+ biasV.assign(bias.data(), bias.data() + outputChannels);
+ ApplyBias(outputImage, outputTensorInfo.GetQuantizationScale(), outputTensorInfo.GetQuantizationOffset(),
+ biasV, biasDesc.GetQuantizationScale(), biasDesc.GetQuantizationOffset(),
+ outputWidth, outputHeight);
+ }
+
+ // Construct expected output data - two identical images.
+ std::vector<T> outputData;
+ outputData.insert(outputData.end(), outputImage.begin(), outputImage.end());
+ outputData.insert(outputData.end(), outputImage.begin(), outputImage.end());
+
+ // at this point if we require it permute the expected output
+ if (layout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ std::vector<T> tmp(outputData.size());
+ armnnUtils::Permute(outputTensorInfo.GetShape(), NCHWToNHWC, outputData.data(), tmp.data());
+ outputData = tmp;
+ }
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputData);
+
+ // Todo: nontrivial padding and strides.
+ uint32_t strideX = 1;
+ uint32_t strideY = 1;
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::Convolution2dQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ armnn::ScopedCpuTensorHandle weightsTensor(kernelDesc);
+ armnn::ScopedCpuTensorHandle biasTensor(biasDesc);
+ // Permute the kernel if necessary
+ boost::multi_array<T, 4> kernel = boost::multi_array<T, 4>(originalKernel);
+ if (layout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ armnnUtils::Permute(kernelDesc.GetShape(), NCHWToNHWC, originalKernel.data(), kernel.data());
+ }
+ AllocateAndCopyDataToITensorHandle(&weightsTensor, &kernel[0][0][0][0]);
+
+ if(biasEnabled)
+ {
+ AllocateAndCopyDataToITensorHandle(&biasTensor, &bias[0]);
+ }
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ data.m_Weight = &weightsTensor;
+ data.m_Bias = &biasTensor; // Still set this whether or not bias is enabled - can be a source of bugs.
+ data.m_Parameters.m_StrideX = strideX;
+ data.m_Parameters.m_StrideY = strideY;
+ data.m_Parameters.m_PadLeft = padLeft;
+ data.m_Parameters.m_PadRight = padRight;
+ data.m_Parameters.m_PadTop = padTop;
+ data.m_Parameters.m_PadBottom = padBottom;
+ data.m_Parameters.m_BiasEnabled = biasEnabled;
+ data.m_Parameters.m_DataLayout = layout.GetDataLayout();
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateConvolution2d(data, info);
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &batchedInput[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+template<typename T, typename B>
+LayerTestResult<T, 4> SimpleConvolution2dNhwcTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const boost::multi_array<T, 4>& input,
+ const boost::multi_array<T, 4>& kernel,
+ const boost::multi_array<B, 1>& bias,
+ const boost::multi_array<T, 4>& outputExpected,
+ armnn::DataLayout dataLayout,
+ float qScale,
+ int32_t qOffset,
+ uint32_t padLeft = 1,
+ uint32_t padTop = 1,
+ uint32_t padRight = 1,
+ uint32_t padBottom = 1,
+ uint32_t strideX = 1,
+ uint32_t strideY = 1)
+{
+ unsigned int inputNum = boost::numeric_cast<unsigned int>(input.shape()[0]);
+ unsigned int inputChannels = boost::numeric_cast<unsigned int>(input.shape()[3]);
+ unsigned int inputHeight = boost::numeric_cast<unsigned int>(input.shape()[1]);
+ unsigned int inputWidth = boost::numeric_cast<unsigned int>(input.shape()[2]);
+
+ unsigned int kernelChanMul = boost::numeric_cast<unsigned int>(kernel.shape()[0]);
+ unsigned int kernelChannels = boost::numeric_cast<unsigned int>(kernel.shape()[3]);
+ unsigned int kernelHeight = boost::numeric_cast<unsigned int>(kernel.shape()[1]);
+ unsigned int kernelWidth = boost::numeric_cast<unsigned int>(kernel.shape()[2]);
+
+ unsigned int outputNum = boost::numeric_cast<unsigned int>(outputExpected.shape()[0]);
+ unsigned int outputChannels = boost::numeric_cast<unsigned int>(outputExpected.shape()[3]);
+ unsigned int outputHeight = boost::numeric_cast<unsigned int>(outputExpected.shape()[1]);
+ unsigned int outputWidth = boost::numeric_cast<unsigned int>(outputExpected.shape()[2]);
+
+ bool biasEnabled = bias.size() > 0;
+
+ // Creates the tensors.
+ armnn::TensorInfo inputTensorInfo({inputNum, inputHeight, inputWidth, inputChannels}, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({outputNum, outputHeight, outputWidth, outputChannels},
+ armnn::GetDataType<T>());
+ armnn::TensorInfo kernelDesc({kernelChanMul, kernelHeight, kernelWidth, kernelChannels}, armnn::GetDataType<T>());
+ armnn::TensorInfo biasDesc({static_cast<unsigned int>(bias.size())}, armnn::GetDataType<B>());
+
+ // Construct the input data.
+ std::vector<T> inputData;
+ inputData.assign(input.data(), input.data() + inputHeight*inputWidth*inputChannels);
+ auto batchedInput = MakeTensor<T, 4>(inputTensorInfo, inputData);
+
+ // Construct the output data, with bias applied, as appropriate.
+ std::vector<T> outputData;
+ outputData.assign(outputExpected.data(), outputExpected.data() + outputHeight*outputWidth*outputChannels);
+
+ LayerTestResult<T, 4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputData);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ScopedCpuTensorHandle weightsTensor(kernelDesc);
+ AllocateAndCopyDataToITensorHandle(&weightsTensor, &kernel[0][0][0][0]);
+
+ armnn::ScopedCpuTensorHandle biasTensor(biasDesc);
+
+ armnn::Convolution2dQueueDescriptor data;
+
+ data.m_Weight = &weightsTensor;
+ data.m_Bias = &biasTensor; // Still set this whether or not bias is enabled - can be a source of bugs.
+ data.m_Parameters.m_StrideX = strideX;
+ data.m_Parameters.m_StrideY = strideY;
+ data.m_Parameters.m_PadLeft = padLeft;
+ data.m_Parameters.m_PadRight = padRight;
+ data.m_Parameters.m_PadTop = padTop;
+ data.m_Parameters.m_PadBottom = padBottom;
+ data.m_Parameters.m_BiasEnabled = biasEnabled;
+ data.m_Parameters.m_DataLayout = dataLayout;
+
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateConvolution2d(data, info);
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &batchedInput[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+template<typename T, typename B>
+LayerTestResult<T, 4> DepthwiseConvolution2dAsymmetricTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const boost::multi_array<T, 4>& input,
+ const boost::multi_array<T, 4>& originalKernel,
+ const boost::multi_array<B, 1>& bias,
+ const boost::multi_array<T, 4>& outputExpected,
+ float qScale,
+ int32_t qOffset,
+ const armnn::DataLayoutIndexed& layout,
+ uint32_t padLeft = 0,
+ uint32_t padTop = 0,
+ uint32_t padRight = 0,
+ uint32_t padBottom = 0,
+ uint32_t strideX = 1,
+ uint32_t strideY = 1)
+{
+ unsigned int inputNum = boost::numeric_cast<unsigned int>(input.shape()[0]);
+ unsigned int inputChannels = boost::numeric_cast<unsigned int>(input.shape()[1]);
+ unsigned int inputHeight = boost::numeric_cast<unsigned int>(input.shape()[2]);
+ unsigned int inputWidth = boost::numeric_cast<unsigned int>(input.shape()[3]);
+ unsigned int kernelChanMul = boost::numeric_cast<unsigned int>(originalKernel.shape()[0]);
+ unsigned int kernelChannels = boost::numeric_cast<unsigned int>(originalKernel.shape()[1]);
+ unsigned int kernelHeight = boost::numeric_cast<unsigned int>(originalKernel.shape()[2]);
+ unsigned int kernelWidth = boost::numeric_cast<unsigned int>(originalKernel.shape()[3]);
+ unsigned int outputNum = boost::numeric_cast<unsigned int>(outputExpected.shape()[0]);
+ unsigned int outputChannels = boost::numeric_cast<unsigned int>(outputExpected.shape()[1]);
+ unsigned int outputHeight = boost::numeric_cast<unsigned int>(outputExpected.shape()[2]);
+ unsigned int outputWidth = boost::numeric_cast<unsigned int>(outputExpected.shape()[3]);
+
+ // If a bias is used, its size must equal the number of output channels.
+ bool biasEnabled = bias.size() > 0;
+ BOOST_ASSERT(!biasEnabled || bias.size() == outputChannels);
+
+ // Creates the tensors.
+ armnn::TensorInfo inputTensorInfo = GetTensorInfo<T>(inputNum, inputChannels, inputHeight, inputWidth, layout);
+ armnn::TensorInfo outputTensorInfo = GetTensorInfo<T>(outputNum, outputChannels, outputHeight, outputWidth, layout);
+ armnn::TensorInfo kernelDesc = GetTensorInfo<T>(kernelChanMul, kernelChannels, kernelHeight, kernelWidth, layout);
+ armnn::TensorInfo biasDesc({static_cast<unsigned int>(bias.size())}, armnn::GetDataType<B>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if (armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ kernelDesc.SetQuantizationScale(qScale);
+ kernelDesc.SetQuantizationOffset(qOffset);
+ biasDesc.SetQuantizationScale(qScale*qScale);
+ biasDesc.SetQuantizationOffset(0);
+ }
+
+ // Construct the input data.
+ std::vector<T> inputData;
+ inputData.assign(input.data(), input.data() + inputChannels*inputHeight*inputWidth);
+
+ // At this point if we require it permute the input data
+ const armnn::PermutationVector NCHWToNHWC = { 0, 3, 1, 2 };
+ if (layout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ std::vector<T> tmp(inputData.size());
+ armnnUtils::Permute(inputTensorInfo.GetShape(), NCHWToNHWC, inputData.data(), tmp.data());
+ inputData = tmp;
+ }
+
+ auto batchedInput = MakeTensor<T, 4>(inputTensorInfo, inputData);
+
+ // Construct the output data, with bias applied, as appropriate.
+ std::vector<T> outputData;
+ outputData.assign(outputExpected.data(), outputExpected.data() + outputChannels*outputHeight*outputWidth);
+ if (biasEnabled)
+ {
+ std::vector<T> biasV;
+ biasV.assign(bias.data(), bias.data() + outputChannels);
+ ApplyBias(outputData, outputTensorInfo.GetQuantizationScale(), outputTensorInfo.GetQuantizationOffset(),
+ biasV, biasDesc.GetQuantizationScale(), biasDesc.GetQuantizationOffset(),
+ outputWidth, outputHeight);
+ }
+
+ LayerTestResult<T, 4> ret(outputTensorInfo);
+
+ // At this point if we require it permute the expected output
+ if (layout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ std::vector<T> tmp(outputData.size());
+ armnnUtils::Permute(outputTensorInfo.GetShape(), NCHWToNHWC, outputData.data(), tmp.data());
+ outputData = tmp;
+ }
+
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputData);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ScopedCpuTensorHandle weightsTensor(kernelDesc);
+
+ // Permute the kernel if necessary
+ boost::multi_array<T, 4> kernel = boost::multi_array<T, 4>(originalKernel);
+ if (layout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ armnnUtils::Permute(kernelDesc.GetShape(), NCHWToNHWC, originalKernel.data(), kernel.data());
+ }
+
+ AllocateAndCopyDataToITensorHandle(&weightsTensor, &kernel[0][0][0][0]);
+
+ armnn::ScopedCpuTensorHandle biasTensor(biasDesc);
+ if (biasEnabled)
+ {
+ AllocateAndCopyDataToITensorHandle(&biasTensor, &bias[0]);
+ }
+
+ armnn::DepthwiseConvolution2dQueueDescriptor data;
+ data.m_Weight = &weightsTensor;
+ data.m_Bias = &biasTensor; // Still set this whether or not bias is enabled - it can be a source of bugs.
+ data.m_Parameters.m_StrideX = strideX;
+ data.m_Parameters.m_StrideY = strideY;
+ data.m_Parameters.m_PadLeft = padLeft;
+ data.m_Parameters.m_PadRight = padRight;
+ data.m_Parameters.m_PadTop = padTop;
+ data.m_Parameters.m_PadBottom = padBottom;
+ data.m_Parameters.m_BiasEnabled = biasEnabled;
+ data.m_Parameters.m_DataLayout = layout.GetDataLayout();
+
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateDepthwiseConvolution2d(data, info);
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &batchedInput[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+template<typename T, typename B>
+LayerTestResult<T, 4> DepthwiseConvolution2dDepthMul1TestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout)
+{
+ unsigned int inputHeight = 3;
+ unsigned int inputWidth = 3;
+ unsigned int inputChannels = 2;
+ unsigned int inputNum = 1;
+
+ unsigned int kernelHeight = 3;
+ unsigned int kernelWidth = 3;
+ unsigned int kernelChannels = inputChannels;
+
+ unsigned int outputHeight = 1;
+ unsigned int outputWidth = 1;
+ unsigned int outputChannels = kernelChannels;
+ unsigned int outputNum = inputNum;
+
+ armnn::TensorInfo inputTensorInfo = GetTensorInfo<T>(inputNum, inputChannels, inputHeight, inputWidth, layout);
+ armnn::TensorInfo outputTensorInfo = GetTensorInfo<T>(outputNum, outputChannels, outputHeight, outputWidth, layout);
+ armnn::TensorInfo kernelDesc = GetTensorInfo<T>(1, outputChannels, kernelHeight, kernelWidth, layout);
+ armnn::TensorInfo biasDesc({ outputChannels }, armnn::GetDataType<B>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ kernelDesc.SetQuantizationScale(qScale);
+ kernelDesc.SetQuantizationOffset(qOffset);
+ biasDesc.SetQuantizationScale(qScale*qScale);
+ biasDesc.SetQuantizationOffset(0);
+ }
+ std::vector<T> inputData = std::vector<T>(
+ QuantizedVector<T>(inputTensorInfo.GetQuantizationScale(), inputTensorInfo.GetQuantizationOffset(), {
+ 1.f, 2.f, 1.f,
+ 2.f, 1.f, 2.f,
+ 1.f, 2.f, 1.f,
+
+ 1.f, 2.f, 1.f,
+ 2.f, 1.f, 2.f,
+ 1.f, 2.f, 1.f,
+ }));
+ // at this point if we require it permute the input data
+ const armnn::PermutationVector NCHWToNHWC = { 0, 3, 1, 2 };
+ if (layout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ std::vector<T> tmp(inputData.size());
+ armnnUtils::Permute(inputTensorInfo.GetShape(), NCHWToNHWC, inputData.data(), tmp.data());
+ inputData = tmp;
+ }
+ auto input = MakeTensor<T, 4>(inputTensorInfo, inputData);
+
+ std::vector<B> biasV(QuantizedVector<B>(biasDesc.GetQuantizationScale(), biasDesc.GetQuantizationOffset(),
+ {0, 2}));
+ auto bias = MakeTensor<B, 1>(biasDesc, biasV);
+
+ std::vector<T> kernelData = std::vector<T>(
+ QuantizedVector<T>(kernelDesc.GetQuantizationScale(), kernelDesc.GetQuantizationOffset(), {
+ 1.f, 0.f, 1.f,
+ 0.f, 0.f, 0.f,
+ -1.f, 0.f, -1.f,
+
+ 1.f, 0.f, 1.f,
+ 0.f, 0.f, 0.f,
+ -1.f, 0.f, -1.f,
+ }));
+ if (layout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ std::vector<T> tmp(kernelData.size());
+ armnnUtils::Permute(kernelDesc.GetShape(), NCHWToNHWC, kernelData.data(), tmp.data());
+ kernelData = tmp;
+ }
+ auto kernel = MakeTensor<T, 4>(kernelDesc, kernelData);
+
+ // Manually calculated.
+ std::vector<T> outputImage(
+ QuantizedVector<T>(outputTensorInfo.GetQuantizationScale(),
+ outputTensorInfo.GetQuantizationOffset(),
+ {0.f, 0.f})
+ );
+
+ // Optionally apply bias to output image.
+ if(biasEnabled)
+ {
+ ApplyBias(outputImage, outputTensorInfo.GetQuantizationScale(), outputTensorInfo.GetQuantizationOffset(),
+ biasV, biasDesc.GetQuantizationScale(), biasDesc.GetQuantizationOffset(),
+ outputWidth, outputHeight);
+ }
+
+ LayerTestResult<T, 4> ret(outputTensorInfo);
+ if (layout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ std::vector<T> tmp(outputImage.size());
+ armnnUtils::Permute(outputTensorInfo.GetShape(), NCHWToNHWC, outputImage.data(), tmp.data());
+ outputImage = tmp;
+ }
+
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputImage);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::DepthwiseConvolution2dQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ armnn::ScopedCpuTensorHandle weightsTensor(kernelDesc);
+ armnn::ScopedCpuTensorHandle biasTensor(biasDesc);
+
+ AllocateAndCopyDataToITensorHandle(&weightsTensor, &kernel[0][0][0][0]);
+ AllocateAndCopyDataToITensorHandle(&biasTensor, &bias[0]);
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ data.m_Weight = &weightsTensor;
+ data.m_Bias = &biasTensor; // Still set this whether or not bias is enabled.
+ data.m_Parameters.m_StrideX = 1;
+ data.m_Parameters.m_StrideY = 1;
+ data.m_Parameters.m_PadLeft = 0;
+ data.m_Parameters.m_PadRight = 0;
+ data.m_Parameters.m_PadTop = 0;
+ data.m_Parameters.m_PadBottom = 0;
+ data.m_Parameters.m_BiasEnabled = biasEnabled;
+ data.m_Parameters.m_DataLayout = layout.GetDataLayout();
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateDepthwiseConvolution2d(data, info);
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+template<typename T, typename B>
+LayerTestResult<T, 4> DepthwiseConvolution2dTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout)
+{
+ unsigned int depthMultiplier = 2;
+
+ unsigned int inputHeight = 8;
+ unsigned int inputWidth = 16;
+ unsigned int inputChannels = 2;
+ unsigned int inputBatchSize = 1;
+
+ unsigned int kernelHeight = 5;
+ unsigned int kernelWidth = 3;
+
+ unsigned int outputHeight = inputHeight - kernelHeight + 1 + 2;
+ unsigned int outputWidth = (inputWidth - kernelWidth + 1)/2;
+ unsigned int outputChannels = inputChannels * depthMultiplier;
+ unsigned int outputBatchSize = inputBatchSize;
+
+ armnn::TensorInfo inputTensorInfo = GetTensorInfo<T>(
+ inputBatchSize, inputChannels, inputHeight, inputWidth, layout);
+ armnn::TensorInfo outputTensorInfo = GetTensorInfo<T>(
+ outputBatchSize, outputChannels, outputHeight, outputWidth, layout);
+ armnn::TensorInfo kernelDesc = GetTensorInfo<T>(
+ depthMultiplier, inputChannels, kernelHeight, kernelWidth, layout);
+ armnn::TensorInfo biasDesc({outputChannels}, armnn::GetDataType<B>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ kernelDesc.SetQuantizationScale(qScale);
+ kernelDesc.SetQuantizationOffset(qOffset);
+ biasDesc.SetQuantizationScale(qScale*qScale);
+ biasDesc.SetQuantizationOffset(0);
+ }
+
+ // NOTE: originalInputData is in NCHW format
+ std::vector<T> originalInputData = std::vector<T>(
+ QuantizedVector<T>(inputTensorInfo.GetQuantizationScale(), inputTensorInfo.GetQuantizationOffset(), {
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+ }));
+ std::vector<T> inputData = originalInputData;
+ // at this point if we require it permute the input data
+ const armnn::PermutationVector NCHWToNHWC = { 0, 3, 1, 2 };
+ if (layout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ armnnUtils::Permute(inputTensorInfo.GetShape(), NCHWToNHWC, originalInputData.data(), inputData.data());
+ }
+ auto input = MakeTensor<T, 4>(inputTensorInfo, inputData);
+
+ std::vector<B> biasV(QuantizedVector<B>(biasDesc.GetQuantizationScale(), biasDesc.GetQuantizationOffset(),
+ {0, 2, 1, -1}));
+ auto bias = MakeTensor<B, 1>(biasDesc, biasV);
+
+ std::vector<T> originalKernelData = std::vector<T>(
+ QuantizedVector<T>(kernelDesc.GetQuantizationScale(), kernelDesc.GetQuantizationOffset(), {
+ 1, 1, 1,
+ 1, -1, 1,
+ 1, 1, 1,
+ 1, 1, 1,
+ 1, 1, 1,
+
+ 2, 2, 2,
+ 2, 2, 2,
+ 2, 2, 2,
+ 2, 2, 2,
+ 2, 2, 2,
+
+ 0, 0, 0,
+ 0, -1, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 1, 0,
+ 0, 0, 0,
+ 0, 0, 0
+ }));
+ std::vector<T> kernelData = originalKernelData;
+ if (layout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ armnnUtils::Permute(kernelDesc.GetShape(), NCHWToNHWC, originalKernelData.data(), kernelData.data());
+ }
+ auto kernel = MakeTensor<T, 4>(kernelDesc, kernelData);
+
+ // Manually calculated.
+ std::vector<T> originalOutputImage = std::vector<T>(
+ QuantizedVector<T>(outputTensorInfo.GetQuantizationScale(), outputTensorInfo.GetQuantizationOffset(), {
+ 3.5f, 3.5f, 3.5f, 3.5f, 3.5f, 3.5f, 3.5f,
+ 6.0f, 6.0f, 6.0f, 6.0f, 6.0f, 6.0f, 6.0f,
+ 5.0f, 5.0f, 5.0f, 5.0f, 5.0f, 5.0f, 5.0f,
+ 6.5f, 6.5f, 6.5f, 6.5f, 6.5f, 6.5f, 6.5f,
+ 6.5f, 6.5f, 6.5f, 6.5f, 6.5f, 6.5f, 6.5f,
+ 5.0f, 5.0f, 5.0f, 5.0f, 5.0f, 5.0f, 5.0f,
+
+ -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f,
+ -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f,
+ -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f,
+ -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f,
+
+ 8.0f, 8.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 10.0f, 10.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 10.0f, 10.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 10.0f, 10.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 10.0f, 10.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 8.0f, 8.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f
+ }));
+
+ // Optionally apply bias to output image.
+ if(biasEnabled)
+ {
+ ApplyBias(originalOutputImage,
+ outputTensorInfo.GetQuantizationScale(),
+ outputTensorInfo.GetQuantizationOffset(),
+ biasV,
+ biasDesc.GetQuantizationScale(),
+ biasDesc.GetQuantizationOffset(),
+ outputWidth,
+ outputHeight);
+ }
+
+ LayerTestResult<T, 4> ret(outputTensorInfo);
+ std::vector<T> outputImage = originalOutputImage;
+ if (layout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ armnnUtils::Permute(outputTensorInfo.GetShape(), NCHWToNHWC, originalOutputImage.data(), outputImage.data());
+ }
+
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputImage);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::DepthwiseConvolution2dQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ armnn::ScopedCpuTensorHandle weightsTensor(kernelDesc);
+ armnn::ScopedCpuTensorHandle biasTensor(biasDesc);
+
+ AllocateAndCopyDataToITensorHandle(&weightsTensor, &kernel[0][0][0][0]);
+ AllocateAndCopyDataToITensorHandle(&biasTensor, &bias[0]);
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ data.m_Weight = &weightsTensor;
+ data.m_Bias = &biasTensor; // Still set this whether or not bias is enabled.
+ data.m_Parameters.m_StrideX = 2;
+ data.m_Parameters.m_StrideY = 1;
+ data.m_Parameters.m_PadLeft = 0;
+ data.m_Parameters.m_PadRight = 0;
+ data.m_Parameters.m_PadTop = 1;
+ data.m_Parameters.m_PadBottom = 1;
+ data.m_Parameters.m_BiasEnabled = biasEnabled;
+ data.m_Parameters.m_DataLayout = layout.GetDataLayout();
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateDepthwiseConvolution2d(data, info);
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+template<typename T, typename B>
+LayerTestResult<T, 4> DepthwiseConvolution2dNhwcTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const boost::multi_array<T, 4>& input,
+ const boost::multi_array<T, 4>& kernel,
+ const boost::multi_array<B, 1>& bias,
+ const boost::multi_array<T, 4>& outputExpected,
+ float qScale,
+ int32_t qOffset,
+ uint32_t padLeft = 0,
+ uint32_t padTop = 0,
+ uint32_t padRight = 0,
+ uint32_t padBottom = 0,
+ uint32_t strideX = 1,
+ uint32_t strideY = 1)
+{
+ unsigned int inputNum = boost::numeric_cast<unsigned int>(input.shape()[0]);
+ unsigned int inputChannels = boost::numeric_cast<unsigned int>(input.shape()[3]);
+ unsigned int inputHeight = boost::numeric_cast<unsigned int>(input.shape()[1]);
+ unsigned int inputWidth = boost::numeric_cast<unsigned int>(input.shape()[2]);
+
+ unsigned int kernelChanMul = boost::numeric_cast<unsigned int>(kernel.shape()[0]);
+ unsigned int kernelChannels = boost::numeric_cast<unsigned int>(kernel.shape()[3]);
+ unsigned int kernelHeight = boost::numeric_cast<unsigned int>(kernel.shape()[1]);
+ unsigned int kernelWidth = boost::numeric_cast<unsigned int>(kernel.shape()[2]);
+
+ unsigned int outputNum = boost::numeric_cast<unsigned int>(outputExpected.shape()[0]);
+ unsigned int outputChannels = boost::numeric_cast<unsigned int>(outputExpected.shape()[3]);
+ unsigned int outputHeight = boost::numeric_cast<unsigned int>(outputExpected.shape()[1]);
+ unsigned int outputWidth = boost::numeric_cast<unsigned int>(outputExpected.shape()[2]);
+
+ // Creates the tensors.
+ armnn::TensorInfo inputTensorInfo({inputNum, inputHeight, inputWidth, inputChannels}, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({outputNum, outputHeight, outputWidth, outputChannels},
+ armnn::GetDataType<T>());
+ armnn::TensorInfo kernelDesc({kernelChanMul, kernelHeight, kernelWidth, kernelChannels}, armnn::GetDataType<T>());
+ armnn::TensorInfo biasDesc({static_cast<unsigned int>(bias.size())}, armnn::GetDataType<B>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if (armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ kernelDesc.SetQuantizationScale(qScale);
+ kernelDesc.SetQuantizationOffset(qOffset);
+ biasDesc.SetQuantizationScale(qScale*qScale);
+ biasDesc.SetQuantizationOffset(0);
+ }
+
+ // Construct the input data.
+ std::vector<T> inputData;
+ inputData.assign(input.data(), input.data() + inputHeight*inputWidth*inputChannels);
+ auto batchedInput = MakeTensor<T, 4>(inputTensorInfo, inputData);
+
+ // Construct the output data, with bias applied, as appropriate.
+ std::vector<T> outputData;
+ outputData.assign(outputExpected.data(), outputExpected.data() + outputHeight*outputWidth*outputChannels);
+
+ LayerTestResult<T, 4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputData);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ScopedCpuTensorHandle weightsTensor(kernelDesc);
+ AllocateAndCopyDataToITensorHandle(&weightsTensor, &kernel[0][0][0][0]);
+
+ armnn::ScopedCpuTensorHandle biasTensor(biasDesc);
+
+ armnn::DepthwiseConvolution2dQueueDescriptor data;
+ data.m_Weight = &weightsTensor;
+ data.m_Bias = &biasTensor; // Still set this whether or not bias is enabled - it can be a source of bugs.
+ data.m_Parameters.m_StrideX = strideX;
+ data.m_Parameters.m_StrideY = strideY;
+ data.m_Parameters.m_PadLeft = padLeft;
+ data.m_Parameters.m_PadRight = padRight;
+ data.m_Parameters.m_PadTop = padTop;
+ data.m_Parameters.m_PadBottom = padBottom;
+ data.m_Parameters.m_DataLayout = armnn::DataLayout::NHWC;
+
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateDepthwiseConvolution2d(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &batchedInput[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+template<typename T>
+LayerTestResult<T,4> Convolution1dTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset,
+ bool biasEnabled)
+{
+ using B = typename FullyConnectedBiasTypeForInputType<T>::Type;
+
+ // Until we have a specialist 1D convolution layer, we can fake one using
+ // 2D convolution with the final dimension set to 1.
+ // I don't anticipate this being particularly slow, given that convolution is implemented
+ // as a matrix multiplication, at which point dimension doesn't matter.
+
+ unsigned int batchSize = 1;
+ unsigned int inputChannels = 2;
+ unsigned int outputChannels = 3;
+ unsigned int inputSize = 5; // The 1D size (could view as 'width' or 'height').
+ unsigned int kernelSize = 3;
+ unsigned int padSize = 2;
+ unsigned int stride = 1;
+ unsigned int outputSize = 7; // (inputSize + 2 * padSize - kernelSize + 1) / stride.
+
+ armnn::TensorInfo inputInfo({batchSize, inputChannels, inputSize, 1}, armnn::GetDataType<T>());
+ armnn::TensorInfo outputInfo({batchSize, outputChannels, outputSize, 1}, armnn::GetDataType<T>());
+ armnn::TensorInfo kernelInfo({outputChannels, inputChannels, kernelSize, 1}, armnn::GetDataType<T>());
+ armnn::TensorInfo biasInfo({outputChannels}, armnn::GetDataType<B>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputInfo.SetQuantizationScale(qScale);
+ inputInfo.SetQuantizationOffset(qOffset);
+ outputInfo.SetQuantizationScale(qScale);
+ outputInfo.SetQuantizationOffset(qOffset);
+ kernelInfo.SetQuantizationScale(qScale);
+ kernelInfo.SetQuantizationOffset(qOffset);
+ biasInfo.SetQuantizationScale(inputInfo.GetQuantizationScale()*kernelInfo.GetQuantizationScale());
+ biasInfo.SetQuantizationOffset(0);
+ }
+
+ std::vector<T> inputData(
+ QuantizedVector<T>(inputInfo.GetQuantizationScale(), inputInfo.GetQuantizationOffset(), {
+ 5.0f, -2.0f, 2.5f, 0.0f, 1.0f,
+ -3.0f, 3.2f, 5.0f, 2.0f, 3.0f,
+ }));
+
+ std::vector<T> kernelData(
+ QuantizedVector<T>(kernelInfo.GetQuantizationScale(), kernelInfo.GetQuantizationOffset(), {
+ 1.0f, 0.0f, 0.0f,
+ 0.0f, 2.0f, -1.5f,
+
+ 0.0f, 0.0f, 0.0f,
+ 0.2f, 0.2f, 0.2f,
+
+ 0.5f, 0.0f, 0.5f,
+ 0.0f, -1.0f, 0.0f
+ }));
+
+ std::vector<B> biasData(
+ QuantizedVector<B>(biasInfo.GetQuantizationScale(), biasInfo.GetQuantizationOffset(), {
+ 1.0f, 0.0f, 0.0f
+ }));
+
+ std::vector<T> outputData(
+ QuantizedVector<T>(outputInfo.GetQuantizationScale(), outputInfo.GetQuantizationOffset(), {
+ 4.5f, -10.8f, 5.0f + 6.4f - 7.5f, -2.0f + 10.0f -3.0f, 2.5f + 4.0f - 4.5f, 6.0f, 1.0f,
+ -0.6f, -0.6f + 0.64f, -0.6f + 0.64f + 1.0f, 0.64f + 1.0f + 0.4f, 1.0f + 0.4f + 0.6f, 0.4f + 0.6f, 0.6f,
+ 2.5f, -1.0f + 3.0f, 1.25f - 3.2f + 2.5f, -1.0f - 5.0f, 1.25f + 0.5f - 2.0f, -3.0f, 0.5f
+ }));
+
+ // Optionally apply bias to output image.
+ if(biasEnabled)
+ {
+ ApplyBias(outputData, outputInfo.GetQuantizationScale(), outputInfo.GetQuantizationOffset(),
+ biasData, biasInfo.GetQuantizationScale(), biasInfo.GetQuantizationOffset(),
+ 1, outputSize);
+ }
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputInfo);
+
+ armnn::Convolution2dQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ armnn::ScopedCpuTensorHandle weightsTensor(kernelInfo);
+ armnn::ScopedCpuTensorHandle biasTensor(biasInfo);
+
+ AllocateAndCopyDataToITensorHandle(&weightsTensor, kernelData.data());
+ AllocateAndCopyDataToITensorHandle(&biasTensor, biasData.data());
+
+ AddInputToWorkload(data, info, inputInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputInfo, outputHandle.get());
+
+ data.m_Weight = &weightsTensor;
+ data.m_Bias = &biasTensor;
+ data.m_Parameters.m_StrideX = 1;
+ data.m_Parameters.m_StrideY = stride;
+ data.m_Parameters.m_PadLeft = 0;
+ data.m_Parameters.m_PadRight = 0;
+ data.m_Parameters.m_PadTop = padSize;
+ data.m_Parameters.m_PadBottom = padSize;
+ data.m_Parameters.m_BiasEnabled = biasEnabled;
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateConvolution2d(data, info);
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), inputData.data());
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ // Output
+ LayerTestResult<T,4> ret(outputInfo);
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+ ret.outputExpected = MakeTensor<T, 4>(outputInfo, outputData);
+ return ret;
+}
+
+
+
+template<typename T>
+LayerTestResult<T,4> CompareConvolution2dTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory)
+{
+ unsigned int inputHeight = 8;
+ unsigned int inputWidth = 16;
+ unsigned int inputChannels = 3;
+ unsigned int inputNum = 5;
+
+ unsigned int kernelHeight = 3;
+ unsigned int kernelWidth = 3;
+
+ unsigned int strideX = 2;
+ unsigned int strideY = 3;
+ unsigned int padX = 1;
+ unsigned int padY = 1;
+
+ unsigned int outputNum = inputNum;
+ unsigned int outputChannels = 2;
+ unsigned int outputHeight = (inputHeight + 2 * padY - kernelHeight + strideY) / strideY;
+ unsigned int outputWidth = (inputWidth + 2 * padX - kernelWidth + strideX) / strideX;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+ armnn::TensorInfo kernelDesc;
+ armnn::TensorInfo biasDesc;
+
+ unsigned int inputShape[] = {inputNum, inputChannels, inputHeight, inputWidth};
+ unsigned int outputShape[] = {outputNum, outputChannels, outputHeight, outputWidth};
+ unsigned int kernelShape[] = {outputChannels, inputChannels, kernelHeight, kernelWidth};
+ unsigned int biasShape[] = {outputChannels};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::GetDataType<T>());
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::GetDataType<T>());
+ kernelDesc = armnn::TensorInfo(4, kernelShape, armnn::GetDataType<T>());
+ biasDesc = armnn::TensorInfo(1, biasShape, armnn::GetDataType<T>());
+
+ LayerTestResult<T,4> ret(outputTensorInfo);
+
+ auto input = MakeRandomTensor<T, 4>(inputTensorInfo, 124908);
+ auto kernel = MakeRandomTensor<T, 4>(kernelDesc, 891234);
+ auto bias = MakeRandomTensor<T, 1>(biasDesc, 1028);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::Convolution2dQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ armnn::ScopedCpuTensorHandle weightsTensor(kernelDesc);
+ armnn::ScopedCpuTensorHandle biasTensor(biasDesc);
+
+ AllocateAndCopyDataToITensorHandle(&weightsTensor, &kernel[0][0][0][0]);
+ AllocateAndCopyDataToITensorHandle(&biasTensor, &bias[0]);
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Weight = &weightsTensor;
+ data.m_Bias = &biasTensor;
+ data.m_Parameters.m_StrideX = strideX;
+ data.m_Parameters.m_StrideY = strideY;
+ data.m_Parameters.m_PadLeft = padX;
+ data.m_Parameters.m_PadRight = padX;
+ data.m_Parameters.m_PadTop = padY;
+ data.m_Parameters.m_PadBottom = padY;
+ data.m_Parameters.m_BiasEnabled = true;
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> inputHandleRef = refWorkloadFactory.CreateTensorHandle(inputTensorInfo);
+
+ armnn::Convolution2dQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadInput(refData, refInfo, 0, inputTensorInfo, inputHandleRef.get());
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateConvolution2d(data, info);
+ std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreateConvolution2d(refData, refInfo);
+
+ outputHandleRef->Allocate();
+ inputHandleRef->Allocate();
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandleRef.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+ refWorkloadFactory.Finalize();
+ workloadRef->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+ CopyDataFromITensorHandle(&ret.outputExpected[0][0][0][0], outputHandleRef.get());
+
+ return ret;
+}
+
+template<typename T>
+LayerTestResult<T, 4> CompareDepthwiseConvolution2dTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ const armnn::DataLayoutIndexed& layout)
+{
+ unsigned int inputHeight = 8;
+ unsigned int inputWidth = 16;
+ unsigned int inputChannels = 3;
+ unsigned int inputNum = 5;
+
+ unsigned int kernelHeight = 3;
+ unsigned int kernelWidth = 3;
+ unsigned int channelMultiplier = 1;
+
+ unsigned int strideX = 2;
+ unsigned int strideY = 3;
+ unsigned int padX = 1;
+ unsigned int padY = 1;
+
+ unsigned int outputNum = inputNum;
+ unsigned int outputChannels = inputChannels * channelMultiplier;
+ unsigned int outputHeight = (inputHeight + 2 * padY - kernelHeight + strideY) / strideY;
+ unsigned int outputWidth = (inputWidth + 2 * padX - kernelWidth + strideX) / strideX;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+ armnn::TensorInfo kernelDesc;
+ armnn::TensorInfo biasDesc;
+
+
+ std::vector<unsigned int> inputShape;
+ std::vector<unsigned int> outputShape;
+ std::vector<unsigned int> kernelShape;
+ std::vector<unsigned int> biasShape= { outputChannels };
+ switch (layout.GetDataLayout())
+ {
+ case armnn::DataLayout::NCHW:
+ inputShape = { inputNum, inputChannels, inputHeight, inputWidth };
+ outputShape = { outputNum, outputChannels, outputHeight, outputWidth };
+ kernelShape = { channelMultiplier, inputChannels, kernelHeight, kernelWidth };
+ break;
+ case armnn::DataLayout ::NHWC:
+ inputShape = { inputNum, inputHeight, inputWidth, inputChannels };
+ outputShape = { outputNum, outputHeight, outputWidth, outputChannels };
+ kernelShape = { channelMultiplier, kernelHeight, kernelWidth, inputChannels };
+ break;
+ default:
+ throw armnn::InvalidArgumentException("unknown data layout ["
+ + std::to_string(static_cast<int>(layout.GetDataLayout())) + "]");
+ }
+
+ float inputsQScale = armnn::IsQuantizedType<T>() ? 1.0f : 0;
+ float outputQScale = armnn::IsQuantizedType<T>() ? 2.0f : 0;
+ int32_t qOffset = 0;
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape.data(), armnn::GetDataType<T>(), inputsQScale, qOffset);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape.data(), armnn::GetDataType<T>(), outputQScale, qOffset);
+ kernelDesc = armnn::TensorInfo(4, kernelShape.data(), armnn::GetDataType<T>(), inputsQScale, qOffset);
+ biasDesc = armnn::TensorInfo(
+ 1, biasShape.data(), armnn::GetBiasDataType(armnn::GetDataType<T>()), inputsQScale, qOffset);
+
+ LayerTestResult<T, 4> ret(outputTensorInfo);
+
+ auto input = MakeRandomTensor<T, 4>(inputTensorInfo, 124908, 0.0f, 255.0f);
+ auto kernel = MakeRandomTensor<T, 4>(kernelDesc, 891234, 0.0f, 255.0f);
+ auto bias = MakeRandomTensor<typename FullyConnectedBiasTypeForInputType<T>::Type, 1>(
+ biasDesc, 1028, 0.0f, 255.0f);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::DepthwiseConvolution2dQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ armnn::ScopedCpuTensorHandle weightsTensor(kernelDesc);
+ armnn::ScopedCpuTensorHandle biasTensor(biasDesc);
+
+ AllocateAndCopyDataToITensorHandle(&weightsTensor, &kernel[0][0][0][0]);
+ AllocateAndCopyDataToITensorHandle(&biasTensor, &bias[0]);
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Weight = &weightsTensor;
+ data.m_Bias = &biasTensor;
+ data.m_Parameters.m_StrideX = strideX;
+ data.m_Parameters.m_StrideY = strideY;
+ data.m_Parameters.m_PadLeft = padX;
+ data.m_Parameters.m_PadRight = padX;
+ data.m_Parameters.m_PadTop = padY;
+ data.m_Parameters.m_PadBottom = padY;
+ data.m_Parameters.m_BiasEnabled = true;
+ data.m_Parameters.m_DataLayout = layout.GetDataLayout();
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> inputHandleRef = refWorkloadFactory.CreateTensorHandle(inputTensorInfo);
+
+ armnn::DepthwiseConvolution2dQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadInput(refData, refInfo, 0, inputTensorInfo, inputHandleRef.get());
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateDepthwiseConvolution2d(data, info);
+ std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreateDepthwiseConvolution2d(refData, refInfo);
+
+ outputHandleRef->Allocate();
+ inputHandleRef->Allocate();
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandleRef.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+ refWorkloadFactory.Finalize();
+ workloadRef->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+ CopyDataFromITensorHandle(&ret.outputExpected[0][0][0][0], outputHandleRef.get());
+
+ return ret;
+}
diff --git a/src/backends/backendsCommon/test/ConvertFp16ToFp32TestImpl.hpp b/src/backends/backendsCommon/test/ConvertFp16ToFp32TestImpl.hpp
new file mode 100644
index 0000000000..a63f0cbd1d
--- /dev/null
+++ b/src/backends/backendsCommon/test/ConvertFp16ToFp32TestImpl.hpp
@@ -0,0 +1,54 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+
+#include <Half.hpp>
+
+#include <backendsCommon/CpuTensorHandle.hpp>
+
+#include <test/TensorHelpers.hpp>
+
+LayerTestResult<float, 4> SimpleConvertFp16ToFp32Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ using namespace half_float::literal;
+
+ const armnn::TensorInfo inputTensorInfo({1, 3, 2, 3}, armnn::DataType::Float16);
+ const armnn::TensorInfo outputTensorInfo({1, 3, 2, 3}, armnn::DataType::Float32);
+
+ auto input = MakeTensor<armnn::Half, 4>(inputTensorInfo,
+ { -37.5_h, -15.2_h, -8.76_h, -2.0_h, -1.5_h, -1.3_h, -0.5_h, -0.4_h, 0.0_h,
+ 1.0_h, 0.4_h, 0.5_h, 1.3_h, 1.5_h, 2.0_h, 8.76_h, 15.2_h, 37.5_h });
+
+ LayerTestResult<float, 4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<float, 4>(outputTensorInfo,
+ { -37.5f, -15.2f, -8.76f, -2.0f, -1.5f, -1.3f, -0.5f, -0.4f, 0.0f,
+ 1.0f, 0.4f, 0.5f, 1.3f, 1.5f, 2.0f, 8.76f, 15.2f, 37.5f });
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ConvertFp16ToFp32QueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateConvertFp16ToFp32(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
diff --git a/src/backends/backendsCommon/test/ConvertFp32ToFp16TestImpl.hpp b/src/backends/backendsCommon/test/ConvertFp32ToFp16TestImpl.hpp
new file mode 100644
index 0000000000..3513823b4e
--- /dev/null
+++ b/src/backends/backendsCommon/test/ConvertFp32ToFp16TestImpl.hpp
@@ -0,0 +1,55 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#pragma once
+
+#include <Half.hpp>
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+
+#include <backendsCommon/CpuTensorHandle.hpp>
+
+#include <test/TensorHelpers.hpp>
+
+
+LayerTestResult<armnn::Half, 4> SimpleConvertFp32ToFp16Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ using namespace half_float::literal;
+
+ const armnn::TensorInfo inputTensorInfo({1, 3, 2, 3}, armnn::DataType::Float32);
+ const armnn::TensorInfo outputTensorInfo({1, 3, 2, 3}, armnn::DataType::Float16);
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo,
+ { -37.5f, -15.2f, -8.76f, -2.0f, -1.5f, -1.3f, -0.5f, -0.4f, 0.0f,
+ 1.0f, 0.4f, 0.5f, 1.3f, 1.5f, 2.0f, 8.76f, 15.2f, 37.5f });
+
+ LayerTestResult<armnn::Half, 4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<armnn::Half, 4>(outputTensorInfo,
+ { -37.5_h, -15.2_h, -8.76_h, -2.0_h, -1.5_h, -1.3_h, -0.5_h, -0.4_h, 0.0_h,
+ 1.0_h, 0.4_h, 0.5_h, 1.3_h, 1.5_h, 2.0_h, 8.76_h, 15.2_h, 37.5_h });
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ConvertFp32ToFp16QueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateConvertFp32ToFp16(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
diff --git a/src/backends/backendsCommon/test/EndToEndTestImpl.hpp b/src/backends/backendsCommon/test/EndToEndTestImpl.hpp
new file mode 100644
index 0000000000..e16116ee10
--- /dev/null
+++ b/src/backends/backendsCommon/test/EndToEndTestImpl.hpp
@@ -0,0 +1,102 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+
+#include <backendsCommon/test/QuantizeHelper.hpp>
+
+#include <vector>
+
+namespace
+{
+
+using namespace armnn;
+
+template<typename T>
+bool ConstantUsageTest(const std::vector<BackendId>& computeDevice,
+ const TensorInfo& commonTensorInfo,
+ const std::vector<T>& inputData,
+ const std::vector<T>& constantData,
+ const std::vector<T>& expectedOutputData)
+{
+ // Create runtime in which test will run
+ IRuntime::CreationOptions options;
+ IRuntimePtr runtime(IRuntime::Create(options));
+
+ // Builds up the structure of the network.
+ INetworkPtr net(INetwork::Create());
+
+ IConnectableLayer* input = net->AddInputLayer(0);
+ IConnectableLayer* constant = net->AddConstantLayer(ConstTensor(commonTensorInfo, constantData));
+ IConnectableLayer* add = net->AddAdditionLayer();
+ IConnectableLayer* output = net->AddOutputLayer(0);
+
+ input->GetOutputSlot(0).Connect(add->GetInputSlot(0));
+ constant->GetOutputSlot(0).Connect(add->GetInputSlot(1));
+ add->GetOutputSlot(0).Connect(output->GetInputSlot(0));
+
+ // Sets the tensors in the network.
+ input->GetOutputSlot(0).SetTensorInfo(commonTensorInfo);
+ constant->GetOutputSlot(0).SetTensorInfo(commonTensorInfo);
+ add->GetOutputSlot(0).SetTensorInfo(commonTensorInfo);
+
+ // optimize the network
+ IOptimizedNetworkPtr optNet = Optimize(*net, computeDevice, runtime->GetDeviceSpec());
+
+ // Loads it into the runtime.
+ NetworkId netId;
+ runtime->LoadNetwork(netId, std::move(optNet));
+
+ // Creates structures for input & output.
+ std::vector<T> outputData(inputData.size());
+
+ InputTensors inputTensors
+ {
+ {0, ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputData.data())}
+ };
+ OutputTensors outputTensors
+ {
+ {0, Tensor(runtime->GetOutputTensorInfo(netId, 0), outputData.data())}
+ };
+
+ // Does the inference.
+ runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
+
+ // Checks the results.
+ return outputData == expectedOutputData;
+}
+
+inline bool ConstantUsageFloat32Test(const std::vector<BackendId>& backends)
+{
+ const TensorInfo commonTensorInfo({ 2, 3 }, DataType::Float32);
+
+ return ConstantUsageTest(backends,
+ commonTensorInfo,
+ std::vector<float>{ 1.f, 2.f, 3.f, 4.f, 5.f, 6.f }, // Input.
+ std::vector<float>{ 6.f, 5.f, 4.f, 3.f, 2.f, 1.f }, // Const input.
+ std::vector<float>{ 7.f, 7.f, 7.f, 7.f, 7.f, 7.f } // Expected output.
+ );
+}
+
+inline bool ConstantUsageUint8Test(const std::vector<BackendId>& backends)
+{
+ TensorInfo commonTensorInfo({ 2, 3 }, DataType::QuantisedAsymm8);
+
+ const float scale = 0.023529f;
+ const int8_t offset = -43;
+
+ commonTensorInfo.SetQuantizationScale(scale);
+ commonTensorInfo.SetQuantizationOffset(offset);
+
+ return ConstantUsageTest(backends,
+ commonTensorInfo,
+ QuantizedVector<uint8_t>(scale, offset, { 1.f, 2.f, 3.f, 4.f, 5.f, 6.f }), // Input.
+ QuantizedVector<uint8_t>(scale, offset, { 6.f, 5.f, 4.f, 3.f, 2.f, 1.f }), // Const input.
+ QuantizedVector<uint8_t>(scale, offset, { 7.f, 7.f, 7.f, 7.f, 7.f, 7.f }) // Expected output.
+ );
+}
+
+} // anonymous namespace \ No newline at end of file
diff --git a/src/backends/backendsCommon/test/FullyConnectedTestImpl.hpp b/src/backends/backendsCommon/test/FullyConnectedTestImpl.hpp
new file mode 100644
index 0000000000..125b7e62b1
--- /dev/null
+++ b/src/backends/backendsCommon/test/FullyConnectedTestImpl.hpp
@@ -0,0 +1,287 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+template<typename T, typename B>
+LayerTestResult<T, 2> SimpleFullyConnectedTestImpl(
+ armnn::IWorkloadFactory& workloadFactory,
+ armnn::TensorInfo inputTensorInfo,
+ armnn::TensorInfo outputTensorInfo,
+ armnn::TensorInfo weightsDesc,
+ armnn::TensorInfo biasesDesc,
+ boost::multi_array<T, 2>& weights,
+ boost::multi_array<B, 1>& bias,
+ boost::multi_array<T, 4>& input,
+ bool biasEnabled,
+ bool transposeWeights)
+{
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::FullyConnectedQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ armnn::ScopedCpuTensorHandle weightsTensor(weightsDesc);
+ armnn::ScopedCpuTensorHandle biasTensor(biasesDesc);
+
+ AllocateAndCopyDataToITensorHandle(&weightsTensor, &weights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&biasTensor, &bias[0]);
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Weight = &weightsTensor;
+ data.m_Bias = &biasTensor;
+ data.m_Parameters.m_BiasEnabled = biasEnabled;
+ data.m_Parameters.m_TransposeWeightMatrix = transposeWeights;
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateFullyConnected(data, info);
+ LayerTestResult<T, 2> result(outputTensorInfo);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0], outputHandle.get());
+
+ return result;
+}
+
+LayerTestResult<float, 2> FullyConnectedFloat32Test(armnn::IWorkloadFactory& workloadFactory, bool biasEnabled,
+ bool transposeWeights)
+{
+ unsigned int inputWidth = 1;
+ unsigned int inputHeight = 1;
+ unsigned int inputChannels = 5;
+ unsigned int inputNum = 2;
+
+ unsigned int outputChannels = 3;
+ unsigned int outputNum = 2;
+
+ // Define the tensor descriptors.
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+ armnn::TensorInfo weightsDesc;
+ armnn::TensorInfo biasesDesc;
+
+ unsigned int inputShape[] = { inputNum, inputChannels, inputHeight, inputWidth };
+ unsigned int outputShape[] = { outputNum, outputChannels };
+ unsigned int weightsShape[] = { inputChannels, outputChannels };
+ if (transposeWeights)
+ {
+ std::swap(weightsShape[0], weightsShape[1]);
+ }
+ unsigned int biasShape[] = { outputChannels };
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(2, outputShape, armnn::DataType::Float32);
+ weightsDesc = armnn::TensorInfo(2, weightsShape, armnn::DataType::Float32);
+ biasesDesc = armnn::TensorInfo(1, biasShape, armnn::DataType::Float32);
+
+ LayerTestResult<float, 2> result(outputTensorInfo);
+
+ boost::multi_array<float, 4> input = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>(
+ {
+ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f,
+
+ 5.0f, 4.0f, 3.0f, 2.0f, 1.0f
+ })
+ );
+
+ boost::multi_array<float, 2> weights = MakeTensor<float, 2>(weightsDesc, std::vector<float>(
+ {
+ .5f, 2.f, .5f,
+ .5f, 2.f, 1.f,
+ .5f, 2.f, 2.f,
+ .5f, 2.f, 3.f,
+ .5f, 2.f, 4.f
+ }));
+
+ if (transposeWeights)
+ {
+ weights = MakeTensor<float, 2>(weightsDesc, std::vector<float>(
+ {
+ .5f, .5f, .5f, .5f, .5f,
+ 2.f, 2.f, 2.f, 2.f, 2.f,
+ .5f, 1.f, 2.f, 3.f, 4.f
+ }));
+ }
+
+
+ std::vector<float> biasValues({0.f, 0.f, 0.f});
+ if (biasEnabled)
+ {
+ biasValues = std::vector<float>({10.f, 20.f, 30.f});
+ }
+ boost::multi_array<float, 1> bias = MakeTensor<float, 1>(biasesDesc, biasValues);
+
+ result = SimpleFullyConnectedTestImpl<float>(
+ workloadFactory,
+ inputTensorInfo, outputTensorInfo,
+ weightsDesc, biasesDesc,
+ weights, bias, input,
+ biasEnabled, transposeWeights
+ );
+
+ result.outputExpected = MakeTensor<float, 2>(outputTensorInfo, std::vector<float>(
+ {
+ 0.5f + 1.0f + 1.5f + 2.0f + 2.5f + biasValues[0],
+ 2.0f + 4.0f + 6.0f + 8.0f + 10.f + biasValues[1],
+ 0.5f + 2.0f + 6.0f + 12.f + 20.f + biasValues[2],
+
+ 2.5f + 2.0f + 1.5f + 1.0f + 0.5f + biasValues[0],
+ 10.0f + 8.0f + 6.0f + 4.0f + 2.f + biasValues[1],
+ 2.5f + 4.0f + 6.0f + 6.f + 4.f + biasValues[2]
+ })
+ );
+
+ return result;
+}
+
+LayerTestResult<uint8_t, 2> FullyConnectedUint8Test(armnn::IWorkloadFactory& workloadFactory, bool biasEnabled)
+{
+ constexpr static unsigned int inputWidth = 3u;
+ constexpr static unsigned int inputHeight = 2u;
+ constexpr static unsigned int inputChannels = 1u;
+
+ constexpr static unsigned int inputSize = inputWidth * inputHeight * inputChannels;
+
+ constexpr static unsigned int outputChannels = 2u;
+
+ armnn::TensorInfo inputTensorInfo({ 1, inputChannels, inputHeight, inputWidth }, armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo.SetQuantizationScale(0.1f);
+ inputTensorInfo.SetQuantizationOffset(63);
+
+ armnn::TensorInfo outputTensorInfo({ 1, outputChannels }, armnn::DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationScale(5.f);
+ outputTensorInfo.SetQuantizationOffset(biasEnabled ? -50 : 10);
+
+ armnn::TensorInfo weightsDesc({ outputChannels, inputSize }, armnn::DataType::QuantisedAsymm8);
+ weightsDesc.SetQuantizationScale(0.2f);
+ weightsDesc.SetQuantizationOffset(93);
+
+ armnn::TensorInfo biasesDesc({ outputChannels }, armnn::DataType::Signed32);
+ biasesDesc.SetQuantizationScale(inputTensorInfo.GetQuantizationScale() * weightsDesc.GetQuantizationScale());
+ biasesDesc.SetQuantizationOffset(0);
+
+ LayerTestResult<uint8_t, 2> result(outputTensorInfo);
+
+ auto input = MakeTensor<uint8_t, 4>(inputTensorInfo, std::vector<uint8_t>{51, 124, 28,
+ 251, 8, 92});
+
+ auto weights = MakeTensor<uint8_t, 2>(weightsDesc, std::vector<uint8_t>{51, 193, 42, 53, 175, 34,
+ 210, 145, 23, 74, 34, 150});
+
+ // scale = 0.02
+ // offset = 0
+ auto bias = MakeTensor<int32_t, 1>(biasesDesc, std::vector<int32_t>{9250, 67500});
+
+ result = SimpleFullyConnectedTestImpl<uint8_t>(
+ workloadFactory,
+ inputTensorInfo, outputTensorInfo,
+ weightsDesc, biasesDesc,
+ weights, bias, input,
+ biasEnabled, true
+ );
+
+ // Manually calculated.
+ // Note one of these values has been clamped to 0.
+ if (biasEnabled)
+ {
+ result.outputExpected = MakeTensor<uint8_t, 2>(outputTensorInfo, std::vector<uint8_t>{0, 242});
+ }
+ else
+ {
+ result.outputExpected = MakeTensor<uint8_t, 2>(outputTensorInfo, std::vector<uint8_t>{0, 32});
+ }
+
+ return result;
+}
+
+
+
+//
+// ArmNN variant of the AndroidNN fully_connected_float_large test.
+//
+// Tests the fully connected layer with large values, optionally transposing weights.
+// Note this is templated for consistency, but the nature of this tests makes it unlikely to be useful in Uint8 mode.
+//
+template<typename T>
+LayerTestResult<T, 2> FullyConnectedLargeTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ bool transposeWeights,
+ float qScale = 0.0f,
+ int32_t qOffset = 0)
+{
+ unsigned int inputWidth = 1;
+ unsigned int inputHeight = 1;
+ unsigned int inputChannels = 5;
+ unsigned int inputNum = 1;
+
+ unsigned int outputChannels = 1;
+ unsigned int outputNum = 1;
+
+ // Define the tensor descriptors.
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+ armnn::TensorInfo weightsDesc;
+ armnn::TensorInfo biasesDesc;
+
+ unsigned int inputShape[] = { inputNum, inputChannels, inputHeight, inputWidth };
+ unsigned int outputShape[] = { outputNum, outputChannels };
+ unsigned int weightsShape[] = { inputChannels, outputChannels };
+ if (transposeWeights)
+ {
+ std::swap(weightsShape[0], weightsShape[1]);
+ }
+
+ unsigned int biasShape[] = { outputChannels };
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::GetDataType<T>());
+ outputTensorInfo = armnn::TensorInfo(2, outputShape, armnn::GetDataType<T>());
+ weightsDesc = armnn::TensorInfo(2, weightsShape, armnn::GetDataType<T>());
+ biasesDesc = armnn::TensorInfo(1, biasShape, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ LayerTestResult<T, 2> result(outputTensorInfo);
+
+ boost::multi_array<T, 4> input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 10.0f, 100.0f, 1000.0f, 10000.0f,
+ })
+ );
+
+ boost::multi_array<T, 2> weights = MakeTensor<T, 2>(weightsDesc,
+ QuantizedVector<T>(qScale, qOffset, {
+ 2.0f, 3.0f, 4.0f, 5.0f, 6.0f
+ })
+ );
+
+ std::vector<T> biasValues({900000.f});
+ boost::multi_array<T, 1> bias = MakeTensor<T, 1>(biasesDesc, biasValues);
+
+ result = SimpleFullyConnectedTestImpl<T>(
+ workloadFactory,
+ inputTensorInfo, outputTensorInfo,
+ weightsDesc, biasesDesc,
+ weights, bias, input,
+ true, transposeWeights
+ );
+
+ result.outputExpected = MakeTensor<T, 2>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 965432.0f,
+ })
+ );
+
+ return result;
+}
diff --git a/src/backends/backendsCommon/test/IsLayerSupportedTestImpl.hpp b/src/backends/backendsCommon/test/IsLayerSupportedTestImpl.hpp
new file mode 100644
index 0000000000..2c992bc10b
--- /dev/null
+++ b/src/backends/backendsCommon/test/IsLayerSupportedTestImpl.hpp
@@ -0,0 +1,565 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <Graph.hpp>
+
+#include <backendsCommon/WorkloadFactory.hpp>
+
+#include <boost/core/ignore_unused.hpp>
+
+namespace
+{
+armnn::Graph dummyGraph;
+
+// Make a dummy TensorInfo object.
+template<armnn::DataType DataType>
+armnn::TensorInfo MakeDummyTensorInfo()
+{
+ return armnn::TensorInfo({2,2,2,2}, DataType);
+}
+
+
+// Make a dummy WorkloadInfo using a dummy TensorInfo.
+template<armnn::DataType DataType>
+armnn::WorkloadInfo MakeDummyWorkloadInfo(unsigned int numInputs, unsigned int numOutputs)
+{
+ armnn::WorkloadInfo info;
+ for (unsigned int i=0; i < numInputs; i++)
+ {
+ info.m_InputTensorInfos.push_back(MakeDummyTensorInfo<DataType>());
+ }
+ for (unsigned int o=0; o < numOutputs; o++)
+ {
+ info.m_OutputTensorInfos.push_back(MakeDummyTensorInfo<DataType>());
+ }
+ return info;
+}
+
+// Template class to create a dummy layer (2 parameters).
+template<typename LayerType, typename DescType = typename LayerType::DescriptorType>
+struct DummyLayer
+{
+ DummyLayer()
+ {
+ m_Layer = dummyGraph.AddLayer<LayerType>(DescType(), "");
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ LayerType* m_Layer;
+};
+
+// Template class to create a dummy layer (1 parameter).
+template<typename LayerType>
+struct DummyLayer<LayerType, void>
+{
+ DummyLayer()
+ {
+ m_Layer = dummyGraph.AddLayer<LayerType>("");
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ LayerType* m_Layer;
+};
+
+template<>
+struct DummyLayer<armnn::BatchNormalizationLayer>
+{
+ DummyLayer()
+ {
+ m_Layer = dummyGraph.AddLayer<armnn::BatchNormalizationLayer>(armnn::BatchNormalizationDescriptor(), "");
+ m_Layer->m_Mean = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_Variance = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_Beta = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_Gamma = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::BatchNormalizationLayer* m_Layer;
+
+};
+
+template<>
+struct DummyLayer<armnn::ConstantLayer, void>
+{
+ DummyLayer()
+ {
+ m_Layer = dummyGraph.AddLayer<armnn::ConstantLayer>("");
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::ConstantLayer* m_Layer;
+};
+
+template<>
+struct DummyLayer<armnn::InputLayer, armnn::LayerBindingId>
+{
+ DummyLayer()
+ {
+ m_Layer = dummyGraph.AddLayer<armnn::InputLayer>(armnn::LayerBindingId(), "");
+
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::InputLayer* m_Layer;
+};
+
+template<>
+struct DummyLayer<armnn::MergerLayer>
+{
+ DummyLayer()
+ {
+ armnn::OriginsDescriptor desc(2);
+ m_Layer = dummyGraph.AddLayer<armnn::MergerLayer>(desc, "");
+
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::MergerLayer* m_Layer;
+};
+
+template<>
+struct DummyLayer<armnn::OutputLayer, armnn::LayerBindingId>
+{
+ DummyLayer()
+ {
+ m_Layer = dummyGraph.AddLayer<armnn::OutputLayer>(armnn::LayerBindingId(), "");
+
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::OutputLayer* m_Layer;
+};
+
+template<>
+struct DummyLayer<armnn::SplitterLayer>
+{
+ DummyLayer()
+ {
+ armnn::ViewsDescriptor desc(1);
+ m_Layer = dummyGraph.AddLayer<armnn::SplitterLayer>(desc, "");
+
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::SplitterLayer* m_Layer;
+};
+
+template <typename ConvolutionLayerType>
+struct DummyConvolutionLayer
+{
+ DummyConvolutionLayer()
+ {
+ typename ConvolutionLayerType::DescriptorType desc;
+ m_Layer = dummyGraph.AddLayer<ConvolutionLayerType>(desc, "");
+ m_Layer->m_Weight = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_Bias = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ }
+ ~DummyConvolutionLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ ConvolutionLayerType* m_Layer;
+};
+
+template<>
+struct DummyLayer<armnn::Convolution2dLayer>
+ : public DummyConvolutionLayer<armnn::Convolution2dLayer>
+{
+};
+
+template<>
+struct DummyLayer<armnn::DepthwiseConvolution2dLayer>
+ : public DummyConvolutionLayer<armnn::DepthwiseConvolution2dLayer>
+{
+};
+
+template <typename LstmLayerType>
+struct DummyLstmLayer
+{
+ DummyLstmLayer()
+ {
+ typename LstmLayerType::DescriptorType desc;
+ desc.m_CifgEnabled = false;
+
+ m_Layer = dummyGraph.AddLayer<LstmLayerType>(armnn::LstmDescriptor(), "");
+ m_Layer->m_BasicParameters.m_InputToForgetWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_InputToCellWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_InputToOutputWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_RecurrentToForgetWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_RecurrentToCellWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_RecurrentToOutputWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_ForgetGateBias = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_CellBias = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_BasicParameters.m_OutputGateBias = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+
+ m_Layer->m_CifgParameters.m_InputToInputWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_CifgParameters.m_RecurrentToInputWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_CifgParameters.m_CellToInputWeights = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ m_Layer->m_CifgParameters.m_InputGateBias = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ }
+ ~DummyLstmLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::LstmLayer* m_Layer;
+};
+
+template<>
+struct DummyLayer<armnn::LstmLayer>
+ : public DummyLstmLayer<armnn::LstmLayer>
+{
+};
+
+template<>
+struct DummyLayer<armnn::FullyConnectedLayer>
+{
+ DummyLayer()
+ {
+ armnn::FullyConnectedLayer::DescriptorType desc;
+ m_Layer = dummyGraph.AddLayer<armnn::FullyConnectedLayer>(desc, "");
+ m_Layer->m_Weight = std::make_unique<armnn::ScopedCpuTensorHandle>(
+ armnn::TensorInfo(armnn::TensorShape({1,1,1,1}), armnn::DataType::Float32));
+ }
+ ~DummyLayer()
+ {
+ dummyGraph.EraseLayer(m_Layer);
+ }
+ armnn::FullyConnectedLayer* m_Layer;
+};
+
+// Tag for giving LayerType entries a unique strong type each.
+template<armnn::LayerType>
+struct Tag{};
+
+#define DECLARE_LAYER_POLICY_CUSTOM_PARAM(name, descType) \
+template<armnn::DataType DataType> \
+struct LayerTypePolicy<armnn::LayerType::name, DataType> \
+{ \
+ using Type = armnn::name##Layer; \
+ using Desc = descType; \
+ using QueueDesc = armnn::name##QueueDescriptor; \
+ constexpr static const char* NameStr = #name; \
+ \
+ static std::unique_ptr<armnn::IWorkload> MakeDummyWorkload(armnn::IWorkloadFactory *factory, \
+ unsigned int nIn, unsigned int nOut) \
+ { \
+ QueueDesc desc; \
+ armnn::WorkloadInfo info = MakeDummyWorkloadInfo<DataType>(nIn, nOut); \
+ return factory->Create##name(desc, info); \
+ } \
+};
+
+// Define a layer policy specialization for use with the IsLayerSupported tests.
+// Use this version for layers whose constructor takes 1 parameter(name).
+#define DECLARE_LAYER_POLICY_1_PARAM(name) DECLARE_LAYER_POLICY_CUSTOM_PARAM(name, void)
+
+// Define a layer policy specialization for use with the IsLayerSupported tests.
+// Use this version for layers whose constructor takes 2 parameters(descriptor and name).
+#define DECLARE_LAYER_POLICY_2_PARAM(name) DECLARE_LAYER_POLICY_CUSTOM_PARAM(name, armnn::name##Descriptor)
+
+// Layer policy template.
+template<armnn::LayerType Type, armnn::DataType DataType>
+struct LayerTypePolicy;
+
+// Every entry in the armnn::LayerType enum must be accounted for below.
+DECLARE_LAYER_POLICY_2_PARAM(Activation)
+
+DECLARE_LAYER_POLICY_1_PARAM(Addition)
+
+DECLARE_LAYER_POLICY_2_PARAM(BatchNormalization)
+
+DECLARE_LAYER_POLICY_1_PARAM(Constant)
+
+DECLARE_LAYER_POLICY_1_PARAM(ConvertFp16ToFp32)
+
+DECLARE_LAYER_POLICY_1_PARAM(ConvertFp32ToFp16)
+
+DECLARE_LAYER_POLICY_2_PARAM(Convolution2d)
+
+DECLARE_LAYER_POLICY_1_PARAM(MemCopy)
+
+DECLARE_LAYER_POLICY_2_PARAM(DepthwiseConvolution2d)
+
+DECLARE_LAYER_POLICY_2_PARAM(FakeQuantization)
+
+DECLARE_LAYER_POLICY_1_PARAM(Floor)
+
+DECLARE_LAYER_POLICY_2_PARAM(FullyConnected)
+
+DECLARE_LAYER_POLICY_CUSTOM_PARAM(Input, armnn::LayerBindingId)
+
+DECLARE_LAYER_POLICY_2_PARAM(L2Normalization)
+
+DECLARE_LAYER_POLICY_2_PARAM(Lstm)
+
+DECLARE_LAYER_POLICY_2_PARAM(Mean)
+
+DECLARE_LAYER_POLICY_2_PARAM(Merger)
+
+DECLARE_LAYER_POLICY_1_PARAM(Multiplication)
+
+DECLARE_LAYER_POLICY_2_PARAM(Normalization)
+
+DECLARE_LAYER_POLICY_CUSTOM_PARAM(Output, armnn::LayerBindingId)
+
+DECLARE_LAYER_POLICY_2_PARAM(Pad)
+
+DECLARE_LAYER_POLICY_2_PARAM(Permute)
+
+DECLARE_LAYER_POLICY_2_PARAM(Pooling2d)
+
+DECLARE_LAYER_POLICY_1_PARAM(Division)
+
+DECLARE_LAYER_POLICY_2_PARAM(ResizeBilinear)
+
+DECLARE_LAYER_POLICY_2_PARAM(Reshape)
+
+DECLARE_LAYER_POLICY_2_PARAM(Softmax)
+
+DECLARE_LAYER_POLICY_2_PARAM(SpaceToBatchNd)
+
+DECLARE_LAYER_POLICY_2_PARAM(Splitter)
+
+DECLARE_LAYER_POLICY_1_PARAM(Subtraction)
+
+
+// Generic implementation to get the number of input slots for a given layer type;
+template<armnn::LayerType Type>
+unsigned int GetNumInputs(const armnn::Layer& layer)
+{
+ return layer.GetNumInputSlots();
+}
+
+// Generic implementation to get the number of output slots for a given layer type;
+template<armnn::LayerType Type>
+unsigned int GetNumOutputs(const armnn::Layer& layer)
+{
+ return layer.GetNumOutputSlots();
+}
+
+template<>
+unsigned int GetNumInputs<armnn::LayerType::Merger>(const armnn::Layer& layer)
+{
+ boost::ignore_unused(layer);
+ return 2;
+}
+
+// Tests that the IsLayerSupported() function returns the correct value.
+// We determined the correct value by *trying* to create the relevant workload and seeing if it matches what we expect.
+// Returns true if expectations are met, otherwise returns false.
+template<typename FactoryType, armnn::DataType DataType, armnn::LayerType Type>
+bool IsLayerSupportedTest(FactoryType *factory, Tag<Type>)
+{
+ using LayerPolicy = LayerTypePolicy<Type, DataType>;
+ using LayerType = typename LayerPolicy::Type;
+ using LayerDesc = typename LayerPolicy::Desc;
+ DummyLayer<LayerType, LayerDesc> layer;
+
+ unsigned int numIn = GetNumInputs<Type>(*layer.m_Layer);
+ unsigned int numOut = GetNumOutputs<Type>(*layer.m_Layer);
+
+ // Make another dummy layer just to make IsLayerSupported have valid inputs.
+ DummyLayer<armnn::ConstantLayer, void> previousLayer;
+ // Set output of the previous layer to a dummy tensor.
+ armnn::TensorInfo output = MakeDummyTensorInfo<DataType>();
+ previousLayer.m_Layer->GetOutputSlot(0).SetTensorInfo(output);
+ // Connect all outputs of the previous layer to inputs of tested layer.
+ for (unsigned int i = 0; i < numIn; i++)
+ {
+ armnn::IOutputSlot& previousLayerOutputSlot = previousLayer.m_Layer->GetOutputSlot(0);
+ armnn::IInputSlot& layerInputSlot = layer.m_Layer->GetInputSlot(i);
+ previousLayerOutputSlot.Connect(layerInputSlot);
+ }
+ // Set outputs of tested layer to a dummy tensor.
+ for (unsigned int i = 0; i < numOut; i++)
+ {
+ layer.m_Layer->GetOutputSlot(0).SetTensorInfo(output);
+ }
+
+ std::string layerName = LayerPolicy::NameStr;
+ std::string reasonIfUnsupported;
+ if (FactoryType::IsLayerSupported(*layer.m_Layer, DataType, reasonIfUnsupported))
+ {
+ std::string errorMsg = " layer expected support but found none.";
+ try
+ {
+ bool retVal = LayerPolicy::MakeDummyWorkload(factory, numIn, numOut).get() != nullptr;
+ BOOST_CHECK_MESSAGE(retVal, layerName << errorMsg);
+ return retVal;
+ }
+ catch(const armnn::InvalidArgumentException& e)
+ {
+ boost::ignore_unused(e);
+ // This is ok since we throw InvalidArgumentException when creating the dummy workload.
+ return true;
+ }
+ catch(const std::exception& e)
+ {
+ errorMsg = e.what();
+ BOOST_TEST_ERROR(layerName << ": " << errorMsg);
+ return false;
+ }
+ catch(...)
+ {
+ errorMsg = "Unexpected error while testing support for ";
+ BOOST_TEST_ERROR(errorMsg << layerName);
+ return false;
+ }
+ }
+ else
+ {
+ std::string errorMsg = "layer expected no support (giving reason: " + reasonIfUnsupported + ") but found some.";
+ try
+ {
+ bool retVal = LayerPolicy::MakeDummyWorkload(factory, numIn, numOut).get() == nullptr;
+ BOOST_CHECK_MESSAGE(retVal, layerName << errorMsg);
+ return retVal;
+ }
+ // These two exceptions are ok: For workloads that are partially supported, attempting to instantiate them
+ // using parameters that make IsLayerSupported() return false should throw an
+ // InvalidArgumentException or UnimplementedException.
+ catch(const armnn::InvalidArgumentException& e)
+ {
+ boost::ignore_unused(e);
+ return true;
+ }
+ catch(const armnn::UnimplementedException& e)
+ {
+ boost::ignore_unused(e);
+ return true;
+ }
+ catch(const std::exception& e)
+ {
+ errorMsg = e.what();
+ BOOST_TEST_ERROR(layerName << ": " << errorMsg);
+ return false;
+ }
+ catch(...)
+ {
+ errorMsg = "Unexpected error while testing support for ";
+ BOOST_TEST_ERROR(errorMsg << layerName);
+ return false;
+ }
+ }
+}
+
+// Helper function to compute the next type in the LayerType enum.
+constexpr armnn::LayerType NextType(armnn::LayerType type)
+{
+ return static_cast<armnn::LayerType>(static_cast<int>(type)+1);
+}
+
+// Termination function for determining the end of the LayerType enumeration.
+template<typename FactoryType, armnn::DataType DataType, armnn::LayerType Type>
+bool IsLayerSupportedTestsImpl(FactoryType *factory, Tag<armnn::LayerType::LastLayer>)
+{
+ return IsLayerSupportedTest<FactoryType, DataType, Type>(factory, Tag<Type>());
+};
+
+// Recursive function to test and enter in the LayerType enum and then iterate on the next entry.
+template<typename FactoryType, armnn::DataType DataType, armnn::LayerType Type>
+bool IsLayerSupportedTestsImpl(FactoryType *factory, Tag<Type>)
+{
+ bool v = IsLayerSupportedTest<FactoryType, DataType, Type>(factory, Tag<Type>());
+
+ return v &&
+ IsLayerSupportedTestsImpl<FactoryType, DataType, NextType(Type)>
+ (factory, Tag<NextType(Type)>());
+};
+
+// Helper function to pass through to the test framework.
+template<typename FactoryType, armnn::DataType DataType>
+bool IsLayerSupportedTests(FactoryType *factory)
+{
+ return IsLayerSupportedTestsImpl<FactoryType, DataType>(factory, Tag<armnn::LayerType::FirstLayer>());
+};
+
+template<armnn::LayerType Type>
+bool TestLayerTypeMatches()
+{
+ using LayerPolicy = LayerTypePolicy<Type, armnn::DataType::Float32>;
+ using LayerType = typename LayerPolicy::Type;
+ using LayerDesc = typename LayerPolicy::Desc;
+ DummyLayer<LayerType, LayerDesc> layer;
+
+ std::stringstream ss;
+ ss << LayerPolicy::NameStr << " layer type mismatches expected layer type value.";
+ bool v = Type == layer.m_Layer->GetType();
+ BOOST_CHECK_MESSAGE(v, ss.str());
+ return v;
+};
+
+template<armnn::LayerType Type>
+bool LayerTypeMatchesTestImpl(Tag<armnn::LayerType::LastLayer>)
+{
+ return TestLayerTypeMatches<Type>();
+};
+
+template<armnn::LayerType Type>
+bool LayerTypeMatchesTestImpl(Tag<Type>)
+{
+ return TestLayerTypeMatches<Type>() &&
+ LayerTypeMatchesTestImpl<NextType(Type)>(Tag<NextType(Type)>());
+};
+
+template<typename FactoryType, typename LayerType, armnn::DataType InputDataType , armnn::DataType OutputDataType>
+bool IsConvertLayerSupportedTests(std::string& reasonIfUnsupported)
+{
+ armnn::Graph graph;
+ LayerType* const layer = graph.AddLayer<LayerType>("LayerName");
+
+ armnn::Layer* const input = graph.AddLayer<armnn::InputLayer>(0, "input");
+ armnn::Layer* const output = graph.AddLayer<armnn::OutputLayer>(0, "output");
+
+ armnn::TensorInfo inputTensorInfo({1, 3, 2, 3}, InputDataType);
+ armnn::TensorInfo outputTensorInfo({1, 3, 2, 3}, OutputDataType);
+
+ input->GetOutputSlot(0).Connect(layer->GetInputSlot(0));
+ input->GetOutputHandler(0).SetTensorInfo(inputTensorInfo);
+ layer->GetOutputSlot(0).Connect(output->GetInputSlot(0));
+ layer->GetOutputHandler(0).SetTensorInfo(outputTensorInfo);
+
+ bool result = FactoryType::IsLayerSupported(*layer, InputDataType, reasonIfUnsupported);
+
+ return result;
+};
+
+} //namespace
diff --git a/src/backends/backendsCommon/test/JsonPrinterTestImpl.hpp b/src/backends/backendsCommon/test/JsonPrinterTestImpl.hpp
new file mode 100644
index 0000000000..a286b28307
--- /dev/null
+++ b/src/backends/backendsCommon/test/JsonPrinterTestImpl.hpp
@@ -0,0 +1,355 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include <Profiling.hpp>
+
+#include <armnn/Descriptors.hpp>
+#include <armnn/IRuntime.hpp>
+#include <armnn/INetwork.hpp>
+
+#include <boost/test/unit_test.hpp>
+#include <boost/algorithm/string.hpp>
+#include <boost/lexical_cast.hpp>
+
+#include <sstream>
+#include <stack>
+#include <string>
+#include <vector>
+
+inline bool AreMatchingPair(const char opening, const char closing)
+{
+ return (opening == '{' && closing == '}') || (opening == '[' && closing == ']');
+}
+
+inline bool AreParenthesesMatching(const std::string& exp)
+{
+ std::stack<char> expStack;
+ for (size_t i = 0; i < exp.length(); ++i)
+ {
+ if (exp[i] == '{' || exp[i] == '[')
+ {
+ expStack.push(exp[i]);
+ }
+ else if (exp[i] == '}' || exp[i] == ']')
+ {
+ if (expStack.empty() || !AreMatchingPair(expStack.top(), exp[i]))
+ {
+ return false;
+ }
+ else
+ {
+ expStack.pop();
+ }
+ }
+ }
+ return expStack.empty();
+}
+
+inline std::vector<double> ExtractMeasurements(const std::string& exp)
+{
+ std::vector<double> numbers;
+ bool inArray = false;
+ std::string numberString;
+ for (size_t i = 0; i < exp.size(); ++i)
+ {
+ if (exp[i] == '[')
+ {
+ inArray = true;
+ }
+ else if (exp[i] == ']' && inArray)
+ {
+ try
+ {
+ boost::trim_if(numberString, boost::is_any_of("\t,\n"));
+ numbers.push_back(std::stod(numberString));
+ }
+ catch (std::invalid_argument const& e)
+ {
+ BOOST_FAIL("Could not convert measurements to double: " + numberString);
+ }
+
+ numberString.clear();
+ inArray = false;
+ }
+ else if (exp[i] == ',' && inArray)
+ {
+ try
+ {
+ boost::trim_if(numberString, boost::is_any_of("\t,\n"));
+ numbers.push_back(std::stod(numberString));
+ }
+ catch (std::invalid_argument const& e)
+ {
+ BOOST_FAIL("Could not convert measurements to double: " + numberString);
+ }
+ numberString.clear();
+ }
+ else if (exp[i] != '[' && inArray && exp[i] != ',' && exp[i] != ' ')
+ {
+ numberString += exp[i];
+ }
+ }
+ return numbers;
+}
+
+inline std::vector<std::string> ExtractSections(const std::string& exp)
+{
+ std::vector<std::string> sections;
+
+ std::stack<size_t> s;
+ for (size_t i = 0; i < exp.size(); i++)
+ {
+ if (exp.at(i) == '{')
+ {
+ s.push(i);
+ }
+ else if (exp.at(i) == '}')
+ {
+ size_t from = s.top();
+ s.pop();
+ sections.push_back(exp.substr(from, i - from + 1));
+ }
+ }
+
+ return sections;
+}
+
+inline std::string SoftmaxProfilerTestSetupHelper(const std::vector<armnn::BackendId>& backends)
+{
+ using namespace armnn;
+
+ BOOST_CHECK(!backends.empty());
+
+ ProfilerManager& profilerManager = armnn::ProfilerManager::GetInstance();
+
+ // Create runtime in which test will run
+ IRuntime::CreationOptions options;
+ options.m_EnableGpuProfiling = backends.front() == armnn::Compute::GpuAcc;
+ IRuntimePtr runtime(IRuntime::Create(options));
+
+ // build up the structure of the network
+ INetworkPtr net(INetwork::Create());
+
+ IConnectableLayer* input = net->AddInputLayer(0, "input");
+ IConnectableLayer* softmax = net->AddSoftmaxLayer(SoftmaxDescriptor(), "softmax");
+ IConnectableLayer* output = net->AddOutputLayer(0, "output");
+
+ input->GetOutputSlot(0).Connect(softmax->GetInputSlot(0));
+ softmax->GetOutputSlot(0).Connect(output->GetInputSlot(0));
+
+ // set the tensors in the network
+ TensorInfo inputTensorInfo(TensorShape({1, 5}), DataType::QuantisedAsymm8);
+ inputTensorInfo.SetQuantizationOffset(100);
+ inputTensorInfo.SetQuantizationScale(10000.0f);
+ input->GetOutputSlot(0).SetTensorInfo(inputTensorInfo);
+
+ TensorInfo outputTensorInfo(TensorShape({1, 5}), DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationOffset(0);
+ outputTensorInfo.SetQuantizationScale(1.0f / 256.0f);
+ softmax->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
+
+ // optimize the network
+ IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec());
+ if(!optNet)
+ {
+ BOOST_FAIL("Error occurred during Optimization, Optimize() returned nullptr.");
+ }
+ // load it into the runtime
+ NetworkId netId;
+ auto error = runtime->LoadNetwork(netId, std::move(optNet));
+ BOOST_TEST(error == Status::Success);
+
+ // create structures for input & output
+ std::vector<uint8_t> inputData
+ {
+ 1, 10, 3, 200, 5
+ // one of inputs is sufficiently larger than the others to saturate softmax
+ };
+ std::vector<uint8_t> outputData(5);
+
+ armnn::InputTensors inputTensors
+ {
+ {0, armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputData.data())}
+ };
+ armnn::OutputTensors outputTensors
+ {
+ {0, armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), outputData.data())}
+ };
+
+ runtime->GetProfiler(netId)->EnableProfiling(true);
+
+ // do the inferences
+ runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
+ runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
+ runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
+
+ // retrieve the Profiler.Print() output
+ std::stringstream ss;
+ profilerManager.GetProfiler()->Print(ss);
+
+ return ss.str();
+}
+
+inline void SoftmaxProfilerTestValidationHelper(std::string& result, const std::string& testData)
+{
+ // ensure all measurements are greater than zero
+ std::vector<double> measurementsVector = ExtractMeasurements(result);
+ BOOST_CHECK(!measurementsVector.empty());
+
+ // check sections contain raw and unit tags
+ // first ensure Parenthesis are balanced
+ if (AreParenthesesMatching(result))
+ {
+ // remove parent sections that will not have raw or unit tag
+ std::vector<std::string> sectionVector = ExtractSections(result);
+ for (size_t i = 0; i < sectionVector.size(); ++i)
+ {
+ if (boost::contains(sectionVector[i], "\"ArmNN\":")
+ || boost::contains(sectionVector[i], "\"inference_measurements\":"))
+ {
+ sectionVector.erase(sectionVector.begin() + static_cast<int>(i));
+ }
+ }
+ BOOST_CHECK(!sectionVector.empty());
+
+ BOOST_CHECK(std::all_of(sectionVector.begin(), sectionVector.end(),
+ [](std::string i) { return boost::contains(i, "\"raw\":"); }));
+
+ BOOST_CHECK(std::all_of(sectionVector.begin(), sectionVector.end(),
+ [](std::string i) { return boost::contains(i, "\"unit\":"); }));
+ }
+
+ // remove the time measurements as they vary from test to test
+ result.erase(std::remove_if (result.begin(),result.end(),
+ [](char c) { return c == '.'; }), result.end());
+ result.erase(std::remove_if (result.begin(), result.end(), &isdigit), result.end());
+ result.erase(std::remove_if (result.begin(),result.end(),
+ [](char c) { return c == '\t'; }), result.end());
+
+ BOOST_CHECK(boost::contains(result, "ArmNN"));
+ BOOST_CHECK(boost::contains(result, "inference_measurements"));
+ BOOST_CHECK(boost::contains(result, "layer_measurements"));
+ BOOST_CHECK_EQUAL(result, testData);
+
+ // ensure no spare parenthesis present in print output
+ BOOST_CHECK(AreParenthesesMatching(result));
+}
+
+inline void SetupSoftmaxProfilerWithSpecifiedBackendsAndValidateJsonPrinterResult(
+ const std::vector<armnn::BackendId>& backends)
+{
+ // setup the test fixture and obtain JSON Printer result
+ std::string result = SoftmaxProfilerTestSetupHelper(backends);
+
+ std::string backend = "Ref";
+ std::string changeLine31 = "\n},\n\"CopyMemGeneric_Execute\": {";
+ std::string changeLine39 = "us\"";
+ std::string changeLine40;
+ std::string changeLine45;
+
+ if (backends[0] == armnn::Compute::GpuAcc) {
+ backend = "Cl";
+ changeLine31 = ",\n\"OpenClKernelTimer/: softmax_layer_max_shift_exp_sum_quantized_serial GWS[,,]\": {";
+ changeLine39 = R"(us"
+},
+"OpenClKernelTimer/: softmax_layer_norm_quantized GWS[,,]": {
+"raw": [
+,
+,
+
+],
+"unit": "us")";
+
+ changeLine40 = R"(
+},
+"CopyMemGeneric_Execute": {
+"raw": [
+,
+,
+
+],
+"unit": "us")";
+ changeLine45 = "}\n";
+ }
+ else if (backends[0] == armnn::Compute::CpuAcc)
+ {
+ backend = "Neon";
+ changeLine31 = ",\n\"NeonKernelTimer/: NEFillBorderKernel\": {";
+ changeLine39 = R"(us"
+},
+"NeonKernelTimer/: NELogitsDMaxKernel": {
+"raw": [
+,
+,
+
+],
+"unit": "us"
+},
+"NeonKernelTimer/: NELogitsDSoftmaxKernel": {
+"raw": [
+,
+,
+
+],
+"unit": "us")";
+ changeLine40 = R"(
+},
+"CopyMemGeneric_Execute": {
+"raw": [
+,
+,
+
+],
+"unit": "us")";
+ changeLine45 = "}\n";
+ }
+
+ std::string testData = R"({
+"ArmNN": {
+"inference_measurements": {
+"raw": [
+,
+,
+
+],
+"unit": "us",
+"layer_measurements": {
+"raw": [
+,
+,
+
+],
+"unit": "us",
+"CopyMemGeneric_Execute": {
+"raw": [
+,
+,
+
+],
+"unit": "us"
+},
+")" + backend + R"(SoftmaxUintWorkload_Execute": {
+"raw": [
+,
+,
+
+],
+"unit": "us")" + changeLine31 + R"(
+"raw": [
+,
+,
+
+],
+"unit": ")" + changeLine39 + R"(
+})" + changeLine40 + R"(
+}
+}
+}
+}
+)" + changeLine45 + R"()";
+
+ // validate the JSON Printer result
+ SoftmaxProfilerTestValidationHelper(result, testData);
+}
diff --git a/src/backends/backendsCommon/test/LayerReleaseConstantDataTest.cpp b/src/backends/backendsCommon/test/LayerReleaseConstantDataTest.cpp
new file mode 100644
index 0000000000..fc32fdcd02
--- /dev/null
+++ b/src/backends/backendsCommon/test/LayerReleaseConstantDataTest.cpp
@@ -0,0 +1,213 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include <Graph.hpp>
+
+#include <backendsCommon/CpuTensorHandle.hpp>
+#include <backendsCommon/WorkloadData.hpp>
+
+#include <cl/ClWorkloadFactory.hpp>
+
+#include <boost/cast.hpp>
+#include <boost/test/unit_test.hpp>
+
+#include <utility>
+
+using namespace armnn;
+using namespace std;
+
+// connects two layers
+void Connect(Layer* from, Layer* to, const TensorInfo& tensorInfo, unsigned int fromIndex = 0, unsigned int toIndex = 0)
+{
+ from->GetOutputSlot(fromIndex).Connect(to->GetInputSlot(toIndex));
+ from->GetOutputHandler(fromIndex).SetTensorInfo(tensorInfo);
+}
+
+/////////////////////////////////////////////////////////////////////////////////////////////
+// The following test are created specifically to test ReleaseConstantData() method in the Layer
+// They build very simple graphs including the layer will be checked.
+// Checks weights and biases before the method called and after.
+/////////////////////////////////////////////////////////////////////////////////////////////
+
+BOOST_AUTO_TEST_SUITE(LayerReleaseConstantDataTest)
+
+BOOST_AUTO_TEST_CASE(ReleaseBatchNormalizationLayerConstantDataTest)
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ // create the layer we're testing
+ BatchNormalizationDescriptor layerDesc;
+ layerDesc.m_Eps = 0.05f;
+ BatchNormalizationLayer* const layer = graph.AddLayer<BatchNormalizationLayer>(layerDesc, "layer");
+
+ armnn::TensorInfo weightInfo({3}, armnn::DataType::Float32);
+ layer->m_Mean = std::make_unique<ScopedCpuTensorHandle>(weightInfo);
+ layer->m_Variance = std::make_unique<ScopedCpuTensorHandle>(weightInfo);
+ layer->m_Beta = std::make_unique<ScopedCpuTensorHandle>(weightInfo);
+ layer->m_Gamma = std::make_unique<ScopedCpuTensorHandle>(weightInfo);
+ layer->m_Mean->Allocate();
+ layer->m_Variance->Allocate();
+ layer->m_Beta->Allocate();
+ layer->m_Gamma->Allocate();
+
+ // create extra layers
+ Layer* const input = graph.AddLayer<InputLayer>(0, "input");
+ Layer* const output = graph.AddLayer<OutputLayer>(0, "output");
+
+ // connect up
+ armnn::TensorInfo tensorInfo({2, 3, 1, 1}, armnn::DataType::Float32);
+ Connect(input, layer, tensorInfo);
+ Connect(layer, output, tensorInfo);
+
+ // check the constants that they are not NULL
+ BOOST_CHECK(layer->m_Mean != nullptr);
+ BOOST_CHECK(layer->m_Variance != nullptr);
+ BOOST_CHECK(layer->m_Beta != nullptr);
+ BOOST_CHECK(layer->m_Gamma != nullptr);
+
+ // free up the constants..
+ layer->ReleaseConstantData();
+
+ // check the constants that they are NULL now
+ BOOST_CHECK(layer->m_Mean == nullptr);
+ BOOST_CHECK(layer->m_Variance == nullptr);
+ BOOST_CHECK(layer->m_Beta == nullptr);
+ BOOST_CHECK(layer->m_Gamma == nullptr);
+
+ }
+
+
+ BOOST_AUTO_TEST_CASE(ReleaseConvolution2dLayerConstantDataTest)
+ {
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ // create the layer we're testing
+ Convolution2dDescriptor layerDesc;
+ layerDesc.m_PadLeft = 3;
+ layerDesc.m_PadRight = 3;
+ layerDesc.m_PadTop = 1;
+ layerDesc.m_PadBottom = 1;
+ layerDesc.m_StrideX = 2;
+ layerDesc.m_StrideY = 4;
+ layerDesc.m_BiasEnabled = true;
+
+ Convolution2dLayer* const layer = graph.AddLayer<Convolution2dLayer>(layerDesc, "layer");
+
+ layer->m_Weight = std::make_unique<ScopedCpuTensorHandle>(TensorInfo({2, 3, 5, 3},
+ armnn::DataType::Float32));
+ layer->m_Bias = std::make_unique<ScopedCpuTensorHandle>
+ (TensorInfo({2}, GetBiasDataType(armnn::DataType::Float32)));
+
+ layer->m_Weight->Allocate();
+ layer->m_Bias->Allocate();
+
+ // create extra layers
+ Layer* const input = graph.AddLayer<InputLayer>(0, "input");
+ Layer* const output = graph.AddLayer<OutputLayer>(0, "output");
+
+ // connect up
+ Connect(input, layer, TensorInfo({2, 3, 8, 16}, armnn::DataType::Float32));
+ Connect(layer, output, TensorInfo({2, 2, 2, 10}, armnn::DataType::Float32));
+
+ // check the constants that they are not NULL
+ BOOST_CHECK(layer->m_Weight != nullptr);
+ BOOST_CHECK(layer->m_Bias != nullptr);
+
+ // free up the constants..
+ layer->ReleaseConstantData();
+
+ // check the constants that they are NULL now
+ BOOST_CHECK(layer->m_Weight == nullptr);
+ BOOST_CHECK(layer->m_Bias == nullptr);
+}
+
+BOOST_AUTO_TEST_CASE(ReleaseDepthwiseConvolution2dLayerConstantDataTest)
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ // create the layer we're testing
+ DepthwiseConvolution2dDescriptor layerDesc;
+ layerDesc.m_PadLeft = 3;
+ layerDesc.m_PadRight = 3;
+ layerDesc.m_PadTop = 1;
+ layerDesc.m_PadBottom = 1;
+ layerDesc.m_StrideX = 2;
+ layerDesc.m_StrideY = 4;
+ layerDesc.m_BiasEnabled = true;
+
+ DepthwiseConvolution2dLayer* const layer = graph.AddLayer<DepthwiseConvolution2dLayer>(layerDesc, "layer");
+
+ layer->m_Weight = std::make_unique<ScopedCpuTensorHandle>(TensorInfo({3, 3, 5, 3}, DataType::Float32));
+ layer->m_Bias = std::make_unique<ScopedCpuTensorHandle>(TensorInfo({9}, DataType::Float32));
+ layer->m_Weight->Allocate();
+ layer->m_Bias->Allocate();
+
+ // create extra layers
+ Layer* const input = graph.AddLayer<InputLayer>(0, "input");
+ Layer* const output = graph.AddLayer<OutputLayer>(0, "output");
+
+ // connect up
+ Connect(input, layer, TensorInfo({2, 3, 8, 16}, armnn::DataType::Float32));
+ Connect(layer, output, TensorInfo({2, 9, 2, 10}, armnn::DataType::Float32));
+
+ // check the constants that they are not NULL
+ BOOST_CHECK(layer->m_Weight != nullptr);
+ BOOST_CHECK(layer->m_Bias != nullptr);
+
+ // free up the constants..
+ layer->ReleaseConstantData();
+
+ // check the constants that they are NULL now
+ BOOST_CHECK(layer->m_Weight == nullptr);
+ BOOST_CHECK(layer->m_Bias == nullptr);
+}
+
+BOOST_AUTO_TEST_CASE(ReleaseFullyConnectedLayerConstantDataTest)
+{
+ Graph graph;
+ ClWorkloadFactory factory;
+
+ // create the layer we're testing
+ FullyConnectedDescriptor layerDesc;
+ layerDesc.m_BiasEnabled = true;
+ layerDesc.m_TransposeWeightMatrix = true;
+
+ FullyConnectedLayer* const layer = graph.AddLayer<FullyConnectedLayer>(layerDesc, "layer");
+
+ float inputsQScale = 1.0f;
+ float outputQScale = 2.0f;
+
+ layer->m_Weight = std::make_unique<ScopedCpuTensorHandle>(TensorInfo({7, 20},
+ DataType::QuantisedAsymm8, inputsQScale, 0));
+ layer->m_Bias = std::make_unique<ScopedCpuTensorHandle>(TensorInfo({7},
+ GetBiasDataType(DataType::QuantisedAsymm8), inputsQScale));
+ layer->m_Weight->Allocate();
+ layer->m_Bias->Allocate();
+
+ // create extra layers
+ Layer* const input = graph.AddLayer<InputLayer>(0, "input");
+ Layer* const output = graph.AddLayer<OutputLayer>(0, "output");
+
+ // connect up
+ Connect(input, layer, TensorInfo({3, 1, 4, 5}, DataType::QuantisedAsymm8, inputsQScale));
+ Connect(layer, output, TensorInfo({3, 7}, DataType::QuantisedAsymm8, outputQScale));
+
+ // check the constants that they are not NULL
+ BOOST_CHECK(layer->m_Weight != nullptr);
+ BOOST_CHECK(layer->m_Bias != nullptr);
+
+ // free up the constants..
+ layer->ReleaseConstantData();
+
+ // check the constants that they are NULL now
+ BOOST_CHECK(layer->m_Weight == nullptr);
+ BOOST_CHECK(layer->m_Bias == nullptr);
+}
+
+BOOST_AUTO_TEST_SUITE_END()
+
diff --git a/src/backends/backendsCommon/test/LayerTests.cpp b/src/backends/backendsCommon/test/LayerTests.cpp
new file mode 100755
index 0000000000..12a7063e22
--- /dev/null
+++ b/src/backends/backendsCommon/test/LayerTests.cpp
@@ -0,0 +1,6125 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#include "LayerTests.hpp"
+
+#include "test/TensorHelpers.hpp"
+#include "TensorCopyUtils.hpp"
+#include "Permute.hpp"
+
+#include <boost/test/unit_test.hpp>
+#include <boost/assert.hpp>
+
+#include <armnn/LayerSupport.hpp>
+
+#include <backendsCommon/CpuTensorHandle.hpp>
+#include <backendsCommon/WorkloadFactory.hpp>
+
+#include <algorithm>
+#include <boost/cast.hpp>
+
+#include "WorkloadTestUtils.hpp"
+#include "Conv2dTestImpl.hpp"
+#include "BatchNormTestImpl.hpp"
+#include "ActivationTestImpl.hpp"
+#include "Pooling2dTestImpl.hpp"
+#include "ReshapeTestImpl.hpp"
+#include "FullyConnectedTestImpl.hpp"
+#include "SplitterTestImpl.hpp"
+#include "SoftmaxTestImpl.hpp"
+#include "NormTestImpl.hpp"
+#include "PermuteTestImpl.hpp"
+#include "LstmTestImpl.hpp"
+#include "ConvertFp16ToFp32TestImpl.hpp"
+#include "ConvertFp32ToFp16TestImpl.hpp"
+
+// 3-channel 16x8 image used as common input data for a number of Conv2d tests.
+static std::vector<float> ConvInput3x8x16({
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
+});
+
+// 2-channel bias used by a number of Conv2d tests.
+static std::vector<float> Bias2({0, 2});
+
+// Helper function that returns either Bias2 or an empty vector depending on whether bias is enabled.
+template<typename T>
+boost::multi_array<T, 1> GetBias2(bool biasEnabled, float qScale, int32_t qOffset)
+{
+ if(biasEnabled)
+ {
+ armnn::TensorInfo biasDesc({static_cast<unsigned int>(Bias2.size())}, armnn::GetDataType<T>());
+ boost::multi_array<T, 1> bias = MakeTensor<T, 1>(biasDesc, QuantizedVector<T>(qScale, qOffset, Bias2));
+ return bias;
+ }
+ else
+ {
+ return boost::multi_array<T, 1>();
+ }
+}
+
+template<typename T>
+LayerTestResult<T, 4> SimpleConvolution2d3x5TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout)
+{
+ // Use common single-batch 3-channel 16x8 image.
+ armnn::TensorInfo inputDesc({1, 3, 8, 16}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> input = MakeTensor<T, 4>(inputDesc, QuantizedVector<T>(qScale, qOffset, ConvInput3x8x16));
+
+ // Use a 2-element batch with 3-channel 3x5 kernels.
+ armnn::TensorInfo kernelDesc({2, 3, 5, 3}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> kernel = MakeTensor<T, 4>(kernelDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 1, 1, 1,
+ 1, -1, 1,
+ 1, 1, 1,
+ 1, 1, 1,
+ 1, 1, 1,
+
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+
+ 2, 2, 2,
+ 2, 2, 2,
+ 2, 2, 2,
+ 2, 2, 2,
+ 2, 2, 2,
+
+
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+
+ 1, 1, 1,
+ 1, 1, 1,
+ 1, 1, 1,
+ 1, 1, 1,
+ 1, 1, 1,
+
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0
+ })));
+
+ // Expected output is 2 batch elements of a 1-channel 14x4 image.
+ armnn::TensorInfo outputDesc({1, 2, 4, 14}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> expectedOutput = MakeTensor<T, 4>(outputDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ -24, -24, -24, -24, -24, -24, -24, -24, -24, -24, -24, -24, -24, -24,
+ -25, -25, -25, -25, -25, -25, -25, -25, -25, -25, -25, -25, -25, -25,
+ -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f,
+ -23.5f, -23.5f, -23.5f,
+ -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f, -23.5f,
+ -23.5f, -23.5f, -23.5f,
+
+ 5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+ })));
+
+ return SimpleConvolution2dTestImpl<T>(workloadFactory,
+ input,
+ kernel,
+ GetBias2<typename FullyConnectedBiasTypeForInputType<T>::Type>(biasEnabled, qScale, qOffset),
+ expectedOutput,
+ qScale,
+ qOffset,
+ layout);
+}
+
+template<typename T>
+LayerTestResult<T, 4> SimpleConvolution2d3x3TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout)
+{
+ // Use a 3x3 kernel, which exercises ArmCompute's direct convolution path.
+
+ // Use common single-batch 3-channel 16x8 image.
+ armnn::TensorInfo inputDesc({1, 3, 8, 16}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> input = MakeTensor<T, 4>(inputDesc, QuantizedVector<T>(qScale, qOffset, ConvInput3x8x16));
+
+ // Use a 2-element batch of 3-channel 3x3 kernels.
+ armnn::TensorInfo kernelDesc({2, 3, 3, 3}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> kernel = MakeTensor<T, 4>(kernelDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 1, 1, 1,
+ 1, -1, 1,
+ 1, 1, 1,
+
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+
+ 2, 2, 2,
+ 2, 2, 2,
+ 2, 2, 2,
+
+
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0,
+
+ 1, 1, 1,
+ 1, 1, 1,
+ 1, 1, 1,
+
+ 0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0
+ })));
+
+ // Expected output is 1 batch of a 2-channel 14x6 image.
+ armnn::TensorInfo outputDesc({1, 2, 6, 14}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> expectedOutput = MakeTensor<T, 4>(outputDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15,
+ -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16,
+ -14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,
+ -14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,
+ -14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,
+ -14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,-14.5f,
+
+ 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+ })));
+
+ return SimpleConvolution2dTestImpl<T>(workloadFactory,
+ input,
+ kernel,
+ GetBias2<typename FullyConnectedBiasTypeForInputType<T>::Type>(biasEnabled, qScale, qOffset),
+ expectedOutput,
+ qScale,
+ qOffset,
+ layout);
+}
+
+template<typename T>
+LayerTestResult<T, 4> SimpleConvolution2d3x3NhwcTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset,
+ bool biasEnabled,
+ armnn::DataLayout dataLayout)
+{
+ // Use common single-batch 5x5 image.
+
+ armnn::TensorInfo inputDesc({1, 3, 4, 1}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> input = MakeTensor<T, 4>(inputDesc,
+ {
+ 1, 5, 2, 3,
+ 8, 7, 3, 6,
+ 3, 3, 9, 1
+ });
+
+
+ // Use a 2-element batch of 3-channel 3x3 kernels.
+ armnn::TensorInfo kernelDesc({1, 3, 3, 1}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> kernel = MakeTensor<T, 4>(kernelDesc, {
+ 4, 5, 6,
+ 0, 0, 0,
+ 3, 2, 1
+ });
+
+ // Expected output is 1 batch of a 5x5 image.
+ armnn::TensorInfo outputDesc({1, 3, 4, 1}, armnn::GetDataType<T>());
+
+ const std::vector<float> outputData =
+ {
+ 23, 41, 33, 21,
+ 44, 65, 76, 52,
+ 82, 85, 79, 42
+ };
+
+ boost::multi_array<T, 4> expectedOutput = MakeTensor<T, 4>(outputDesc, outputData);
+
+ return SimpleConvolution2dNhwcTestImpl<T>(workloadFactory,
+ input,
+ kernel,
+ boost::multi_array<T, 1>(),
+ expectedOutput,
+ dataLayout,
+ qScale,
+ qOffset);
+}
+
+LayerTestResult<float, 4> SimpleConvolution2d3x5Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout)
+{
+ return SimpleConvolution2d3x5TestCommon<float>(workloadFactory, 0.f, 0, biasEnabled, layout);
+}
+
+LayerTestResult<uint8_t, 4> SimpleConvolution2d3x5Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout)
+{
+ return SimpleConvolution2d3x5TestCommon<uint8_t>(workloadFactory, 0.5f, 50, biasEnabled, layout);
+}
+
+LayerTestResult<float, 4> SimpleConvolution2d3x3Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout)
+{
+ return SimpleConvolution2d3x3TestCommon<float>(workloadFactory, 0.f, 0, biasEnabled, layout);
+}
+
+LayerTestResult<float, 4> SimpleConvolution2d3x3NhwcTest(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled)
+{
+ return SimpleConvolution2d3x3NhwcTestCommon<float>(workloadFactory, 0.f, 0, biasEnabled, armnn::DataLayout::NHWC);
+}
+
+LayerTestResult<uint8_t, 4> SimpleConvolution2d3x3Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout)
+{
+ return SimpleConvolution2d3x3TestCommon<uint8_t>(workloadFactory, 0.5f, 50, biasEnabled, layout);
+}
+
+template<typename T>
+LayerTestResult<T, 4> Convolution2dAsymmetricPaddingLargerThanHalfKernelSizeTestCommon(
+ armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& layout,
+ float qScale,
+ int32_t qOffset)
+{
+ // Use a single-batch 1-channel 3x3 image as input.
+ armnn::TensorInfo inputDesc({1, 1, 3, 3}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> input = MakeTensor<T, 4>(inputDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 11,21,31,
+ 12,22,32,
+ 13,23,33
+ })));
+
+ // Use 1 batch of a 1-channel 2x2 kernel.
+ armnn::TensorInfo kernelDesc({1, 1, 2, 2}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> kernel = MakeTensor<T, 4>(kernelDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ -11,-21,
+ -12,-22,
+ })));
+
+// Expected output is 1 batch of a 1-channel 6x8 image.
+// Manually calculated like this:
+//[-11*0 -21*0 -12*0 -22*0 ; -11*0 -21*0 -12*0 -22*0 ; -11*0 -21*0 -12*0 -22*0 ; -11*0 -21*0 -12*0 -22*0 ..]
+//[-11*0 -21*0 -12*0 -22*11 ; -11*0 -21*0 -12*11 -22*21 ; -11*0 -21*0 -12*21 -22*31 ; -11*0 -21*0 -12*31 -22*0 ..]
+//[-11*0 -21*11 -12*0 -22*12 ; -11*11 -21*21 -12*12 -22*22 ; -11*21 -21*31 -12*22 -22*32 ; -11*31 -21*0 -12*32 -22*0 ..]
+//[-11*0 -21*12 -12*0 -22*13 ; -11*12 -21*22 -12*13 -22*23 ; -11*22 -21*32 -12*23 -22*33 ; -11*32 -21*0 -12*33 -22*0 ..]
+//[-11*0 -21*13 -12*0 -22*0 ; -11*13 -21*23 -12*0 -22*0 ; -11*23 -21*33 -12*0 -22*0 ; -11*33 -21*0 -12*0 -22*0 ..]
+//[-11*0 -21*0 -12*0 -22*0 ; -11*0 -21*0 -12*0 -22*0 ; -11*0 -21*0 -12*0 -22*0 ; -11*0 -21*0 -12*0 -22*0 ..]
+//[..... ..... ..... ..... ; ..... ..... ..... ..... ; ..... ..... ..... ..... ; ..... ..... ..... ..... ..]
+ armnn::TensorInfo outputDesc({1, 1, 8, 6}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> expectedOutput = MakeTensor<T, 4>(outputDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 0, 0, 0, 0, 0, 0,
+ -242, -594, -934, -372, 0, 0,
+ -495, -1190, -1850, -725, 0, 0,
+ -538, -1256, -1916, -748, 0, 0,
+ -273, -626, -946, -363, 0, 0,
+ 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0
+ })));
+
+ return SimpleConvolution2dTestImpl<T>(workloadFactory,
+ input,
+ kernel,
+ GetBias2<typename FullyConnectedBiasTypeForInputType<T>::Type>(false, qScale, qOffset),
+ expectedOutput,
+ qScale,
+ qOffset,
+ layout,
+ 1, // Padding left.
+ 2, // Padding top.
+ 3, // Padding right.
+ 4); // Padding bottom.
+}
+
+template<typename T>
+LayerTestResult<T, 4> SimpleConvolution2dAsymmetricPaddingTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& layout,
+ float qScale,
+ int32_t qOffset)
+{
+ // Use a single-batch 1-channel 5x5 image as input.
+ armnn::TensorInfo inputDesc({ 1, 1, 5, 5 }, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> input = MakeTensor<T, 4>(inputDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 11,21,31,41,51,
+ 12,22,32,42,52,
+ 13,23,33,43,53,
+ 14,24,34,44,54,
+ 15,25,35,45,55,
+ })));
+
+ // Use 1 batch of a 1-channel 4x4 kernel.
+ armnn::TensorInfo kernelDesc({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> kernel = MakeTensor<T, 4>(kernelDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ -11,-21,-31,-41,
+ -12,-22,-32,-42,
+ -13,-23,-33,-43,
+ -14,-24,-34,-44,
+ })));
+
+ // Expected output is 1 batch of a 1-channel 5x5 image.
+ armnn::TensorInfo outputDesc({ 1, 1, 5, 5 }, armnn::GetDataType<T>());
+ std::vector<T> myVec(outputDesc.GetNumElements(), 0);
+ boost::multi_array<T, 4> expectedOutput = MakeTensor<T, 4>(outputDesc, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ -7140, -10580, -13940, -9300, -5230,
+ -9590, -14120, -18520, -12290, -6860,
+ -9980, -14560, -18960, -12560, -7000,
+ -7518, -10904, -14144, -9318, -5152,
+ -5032, -7256, -9376, -6142, -3368,
+ })));
+
+ return SimpleConvolution2dTestImpl<T>(workloadFactory,
+ input,
+ kernel,
+ GetBias2<typename FullyConnectedBiasTypeForInputType<T>::Type>(false, qScale, qOffset),
+ expectedOutput,
+ qScale,
+ qOffset,
+ layout,
+ 1, // Padding left.
+ 1, // Padding top.
+ 2, // Padding right.
+ 2); // Padding bottom.
+}
+
+template<typename T>
+LayerTestResult<T, 4> DepthwiseConvolution2dAsymmetricTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout)
+{
+ // Use a single-batch 2-channel 5x5 image as input.
+ armnn::TensorInfo inputTensorInfo({ 1, 2, 5, 5 }, armnn::GetDataType<T>());
+ auto input = MakeTensor<T, 4>(inputTensorInfo, std::vector<T>(
+ QuantizedVector<T>(inputTensorInfo.GetQuantizationScale(), inputTensorInfo.GetQuantizationOffset(), {
+ 0, 1, 2, 3, 4,
+ 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14,
+ 15, 16, 17, 18, 19,
+ 20, 21, 22, 23, 24,
+
+ 25, 26, 27, 28, 29,
+ 30, 31, 32, 33, 34,
+ 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44,
+ 45, 46, 47, 48, 49
+ })));
+
+ // Use a depth multiplier of 1 on a 2-channel 4x4 kernel.
+ armnn::TensorInfo kernelTensorInfo({ 1, 2, 4, 4 }, armnn::GetDataType<T>());
+ auto kernel = MakeTensor<T, 4>(kernelTensorInfo, std::vector<T>(
+ QuantizedVector<T>(kernelTensorInfo.GetQuantizationScale(), kernelTensorInfo.GetQuantizationOffset(), {
+ 32, 31, 30, 29,
+ 28, 27, 26, 25,
+ 24, 23, 22, 21,
+ 20, 19, 18, 17,
+
+ 16, 15, 14, 13,
+ 12, 11, 10, 9,
+ 8, 7, 6, 5,
+ 4, 3, 2, 1
+ })));
+
+ // Expected output is 1 batch of a 2-channel 5x5 image.
+ // Calculated using the python tensorflow library with strideX=1, strideY=1.
+ armnn::TensorInfo outputTensorInfo({ 1, 2, 5, 5 }, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> expectedOutput = MakeTensor<T, 4>(outputTensorInfo, std::vector<T>(
+ QuantizedVector<T>(outputTensorInfo.GetQuantizationScale(), outputTensorInfo.GetQuantizationOffset(), {
+ 1062, 1580, 1850, 1530, 1117,
+ 2140, 3108, 3500, 2842, 2042,
+ 3580, 5068, 5460, 4342, 3062,
+ 3618, 5072, 5390, 4248, 2971,
+ 3074, 4282, 4510, 3533, 2457,
+ 1550, 2284, 2362, 1955, 1428,
+ 2910, 4206, 4342, 3528, 2536,
+ 3390, 4886, 5022, 4068, 2916,
+ 3566, 5056, 5182, 4133, 2922,
+ 3100, 4352, 4452, 3517, 2465
+ })));
+
+ return DepthwiseConvolution2dAsymmetricTestImpl<T>(workloadFactory,
+ input,
+ kernel,
+ GetBias2<typename FullyConnectedBiasTypeForInputType<T>::Type>(biasEnabled, qScale, qOffset),
+ expectedOutput,
+ qScale,
+ qOffset,
+ layout,
+ 1, // Padding left.
+ 1, // Padding top.
+ 2, // Padding right.
+ 2, // Padding bottom.
+ 1, // strideX
+ 1); // strideY
+}
+
+template<typename T>
+LayerTestResult<T, 4> DepthwiseConvolution2dNhwcTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset,
+ bool biasEnabled)
+{
+ armnn::TensorInfo inputTensorInfo({ 1, 5, 5, 2}, armnn::GetDataType<T>());
+ auto input = MakeTensor<T, 4>(inputTensorInfo, std::vector<T>(
+ QuantizedVector<T>(inputTensorInfo.GetQuantizationScale(), inputTensorInfo.GetQuantizationOffset(), {
+ 0, 25,
+ 1, 26,
+ 2, 27,
+ 3, 28,
+ 4, 29,
+
+ 5, 30,
+ 6, 31,
+ 7, 32,
+ 8, 33,
+ 9, 34,
+
+ 10, 35,
+ 11, 36,
+ 12, 37,
+ 13, 38,
+ 14, 39,
+
+ 15, 40,
+ 16, 41,
+ 17, 42,
+ 18, 43,
+ 19, 44,
+
+ 20, 45,
+ 21, 46,
+ 22, 47,
+ 23, 48,
+ 24, 49
+ })));
+
+ armnn::TensorInfo kernelTensorInfo({ 1, 4, 4, 2}, armnn::GetDataType<T>());
+ auto kernel = MakeTensor<T, 4>(kernelTensorInfo, std::vector<T>(
+ QuantizedVector<T>(kernelTensorInfo.GetQuantizationScale(), kernelTensorInfo.GetQuantizationOffset(), {
+ 32, 16,
+ 31, 15,
+ 30, 14,
+ 29, 13,
+
+ 28, 12,
+ 27, 11,
+ 26, 10,
+ 25, 9,
+
+ 24, 8,
+ 23, 7,
+ 22, 6,
+ 21, 5,
+
+ 20, 4,
+ 19, 3,
+ 18, 2,
+ 17, 1
+ })));
+
+ armnn::TensorInfo outputTensorInfo({ 1, 5, 5, 2}, armnn::GetDataType<T>());
+ boost::multi_array<T, 4> expectedOutput = MakeTensor<T, 4>(outputTensorInfo, std::vector<T>(
+ QuantizedVector<T>(outputTensorInfo.GetQuantizationScale(), outputTensorInfo.GetQuantizationOffset(), {
+ 1062, 1550,
+ 1580, 2284,
+ 1850, 2362,
+ 1530, 1955,
+ 1117, 1428,
+
+ 2140, 2910,
+ 3108, 4206,
+ 3500, 4342,
+ 2842, 3528,
+ 2042, 2536,
+
+ 3580, 3390,
+ 5068, 4886,
+ 5460, 5022,
+ 4342, 4068,
+ 3062, 2916,
+
+ 3618, 3566,
+ 5072, 5056,
+ 5390, 5182,
+ 4248, 4133,
+ 2971, 2922,
+
+ 3074, 3100,
+ 4282, 4352,
+ 4510, 4452,
+ 3533, 3517,
+ 2457, 2465
+ })));
+
+ return DepthwiseConvolution2dNhwcTestImpl<T>(workloadFactory,
+ input,
+ kernel,
+ GetBias2<typename FullyConnectedBiasTypeForInputType<T>::Type>(biasEnabled, qScale, qOffset),
+ expectedOutput,
+ qScale,
+ qOffset,
+ 1, // Padding left.
+ 1, // Padding top.
+ 2, // Padding right.
+ 2, // Padding bottom.
+ 1, // strideX
+ 1); // strideY
+}
+
+LayerTestResult<float, 4>
+Convolution2dAsymmetricPaddingLargerThanHalfKernelSizeTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& layout)
+{
+ return Convolution2dAsymmetricPaddingLargerThanHalfKernelSizeTestCommon<float>(workloadFactory, layout, 0.0f, 0);
+}
+
+LayerTestResult<float, 4> Convolution2dAsymmetricPaddingTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& layout)
+{
+ return SimpleConvolution2dAsymmetricPaddingTestCommon<float>(workloadFactory, layout, 0.0f, 0);
+}
+
+LayerTestResult<float, 4> DepthwiseConvolution2dTest(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout)
+{
+ return DepthwiseConvolution2dTestImpl<float, float>(workloadFactory, 0.0f, 0, biasEnabled, layout);
+}
+
+LayerTestResult<float, 4> DepthwiseConvolution2dDepthNhwcTest(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled)
+{
+ return DepthwiseConvolution2dNhwcTestCommon<float>(workloadFactory, 0.0f, 0, biasEnabled);
+}
+
+LayerTestResult<float, 4> DepthwiseConvolution2dDepthMul1Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout)
+{
+ return DepthwiseConvolution2dDepthMul1TestImpl<float, float>(workloadFactory, 0.0f, 0, biasEnabled, layout);
+}
+
+LayerTestResult<float, 4> DepthwiseConvolution2dAsymmetricTest(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout)
+{
+ return DepthwiseConvolution2dAsymmetricTestCommon<float>(workloadFactory, 0.0f, 0, biasEnabled, layout);
+}
+
+LayerTestResult<uint8_t, 4> DepthwiseConvolution2dUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout)
+{
+ return DepthwiseConvolution2dTestImpl<uint8_t, int32_t>(workloadFactory, 0.5f, 50, biasEnabled, layout);
+}
+
+LayerTestResult<uint8_t, 4> DepthwiseConvolution2dDepthMul1Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout)
+{
+ return DepthwiseConvolution2dDepthMul1TestImpl<uint8_t, int32_t>(workloadFactory, 0.5f, 50, biasEnabled, layout);
+}
+
+LayerTestResult<float, 4> Convolution1dTest(armnn::IWorkloadFactory& workloadFactory, bool biasEnabled)
+{
+ return Convolution1dTestImpl<float>(workloadFactory, 0.0f, 0, biasEnabled);
+}
+
+LayerTestResult<uint8_t, 4> Convolution1dUint8Test(armnn::IWorkloadFactory& workloadFactory, bool biasEnabled)
+{
+ return Convolution1dTestImpl<uint8_t>(workloadFactory, 0.1f, 128, biasEnabled);
+}
+
+LayerTestResult<float,4> CompareConvolution2dTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory)
+{
+ return CompareConvolution2dTestImpl<float>(workloadFactory, refWorkloadFactory);
+}
+
+template<typename T>
+LayerTestResult<T,4> CompareDepthwiseConvolution2dTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ const armnn::DataLayoutIndexed& layout)
+{
+ return CompareDepthwiseConvolution2dTestImpl<T>(workloadFactory, refWorkloadFactory, layout);
+}
+
+template LayerTestResult<float, 4> CompareDepthwiseConvolution2dTest<float>(
+ armnn::IWorkloadFactory&, armnn::IWorkloadFactory&, const armnn::DataLayoutIndexed&);
+template LayerTestResult<uint8_t, 4> CompareDepthwiseConvolution2dTest<uint8_t>(
+ armnn::IWorkloadFactory&, armnn::IWorkloadFactory&, const armnn::DataLayoutIndexed&);
+
+LayerTestResult<float,4> SimpleNormalizationAcrossTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ auto normMethod = armnn::NormalizationAlgorithmMethod::LocalBrightness;
+ auto normChannel = armnn::NormalizationAlgorithmChannel::Across;
+ return SimpleNormalizationTestImpl(workloadFactory, normChannel, normMethod);
+}
+
+LayerTestResult<float,4> SimpleNormalizationWithinTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ auto normMethod = armnn::NormalizationAlgorithmMethod::LocalBrightness;
+ auto normChannel = armnn::NormalizationAlgorithmChannel::Within;
+ return SimpleNormalizationTestImpl(workloadFactory, normChannel, normMethod);
+}
+
+LayerTestResult<float,4> SimpleNormalizationAcrossNhwcTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ auto normMethod = armnn::NormalizationAlgorithmMethod::LocalBrightness;
+ auto normChannel = armnn::NormalizationAlgorithmChannel::Across;
+ return SimpleNormalizationNhwcTestImpl(workloadFactory, normChannel, normMethod);
+}
+
+LayerTestResult<float,2> SimpleSoftmaxTest(armnn::IWorkloadFactory& workloadFactory, float beta)
+{
+ return SimpleSoftmaxTestImpl<float>(workloadFactory, beta);
+}
+
+LayerTestResult<uint8_t,2> SimpleSoftmaxUint8Test(armnn::IWorkloadFactory& workloadFactory, float beta)
+{
+ return SimpleSoftmaxTestImpl<uint8_t>(workloadFactory, beta);
+}
+
+LayerTestResult<float,4> CompareNormalizationTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::NormalizationAlgorithmChannel normChannel,
+ armnn::NormalizationAlgorithmMethod normMethod)
+{
+ return CompareNormalizationTestImpl(workloadFactory, refWorkloadFactory, normChannel, normMethod);
+}
+
+LayerTestResult<float,2> CompareSoftmaxTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ float beta)
+{
+ return CompareSoftmaxTestImpl<float>(workloadFactory, refWorkloadFactory, beta);
+}
+
+LayerTestResult<uint8_t,2> CompareSoftmaxUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ float beta)
+{
+ return CompareSoftmaxTestImpl<uint8_t>(workloadFactory, refWorkloadFactory, beta);
+}
+
+std::vector<LayerTestResult<float,3>> SplitterTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return SplitterTestCommon<float>(workloadFactory);
+}
+
+std::vector<LayerTestResult<uint8_t,3>> SplitterUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return SplitterTestCommon<uint8_t>(workloadFactory, 1.0f, 0);
+}
+
+LayerTestResult<float, 3> CopyViaSplitterTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return CopyViaSplitterTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+LayerTestResult<uint8_t, 3> CopyViaSplitterUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return CopyViaSplitterTestImpl<uint8_t>(workloadFactory, 1.0f, 0);
+}
+
+LayerTestResult<float, 2> LstmLayerFloat32WithCifgWithPeepholeNoProjectionTest(
+ armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputDesc({ 2, 2 }, armnn::GetDataType<float>());
+ boost::multi_array<float, 2> input = MakeTensor<float, 2>(inputDesc, std::vector<float>(
+ { 2., 3., 3., 4. }));
+
+ armnn::TensorInfo outputDesc({ 2, 4 }, armnn::GetDataType<float>());
+ boost::multi_array<float, 2> expectedOutput = MakeTensor<float, 2>(outputDesc, std::vector<float>(
+ {-0.36444446f, -0.00352185f, 0.12886585f, -0.05163646f,
+ -0.42734814f, -0.00478661f, 0.13455015f, -0.03560682f}));
+ return LstmLayerWithCifgWithPeepholeNoProjectionTestImpl(workloadFactory, input, expectedOutput);
+}
+
+LayerTestResult<float, 2> LstmLayerFloat32NoCifgWithPeepholeWithProjectionTest(
+ armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputDesc({ 2, 5 }, armnn::GetDataType<float>());
+ boost::multi_array<float, 2> input = MakeTensor<float, 2>(inputDesc, std::vector<float>(
+ {0.787926f, 0.151646f, 0.071352f, 0.118426f, 0.458058f,
+ 0.295743f, 0.544053f, 0.690064f, 0.858138f, 0.497181f}));
+
+ armnn::TensorInfo outputDesc({ 2, 16 }, armnn::GetDataType<float>());
+ boost::multi_array<float, 2> expectedOutput = MakeTensor<float, 2>(outputDesc, std::vector<float>(
+ {-0.00396806f, 0.029352f, -0.00279226f, 0.0159977f, -0.00835576f,
+ -0.0211779f, 0.0283512f, -0.0114597f, 0.00907307f, -0.0244004f,
+ -0.0152191f, -0.0259063f, 0.00914318f, 0.00415118f, 0.017147f,
+ 0.0134203f, -0.013869f, 0.0287268f, -0.00334693f, 0.00733398f, -0.0287926f,
+ -0.0186926f, 0.0193662f, -0.0115437f, 0.00422612f, -0.0345232f,
+ 0.00223253f, -0.00957321f, 0.0210624f, 0.013331f, 0.0150954f,
+ 0.02168f}));
+ return LstmLayerFloat32NoCifgWithPeepholeWithProjectionTestImpl(workloadFactory, input, expectedOutput);
+}
+
+LayerTestResult<float, 2> LstmLayerFloat32NoCifgNoPeepholeNoProjectionTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputDesc({2, 2}, armnn::GetDataType<float>());
+ boost::multi_array<float, 2> input = MakeTensor<float, 2>(inputDesc, std::vector<float>(
+ {2., 3., 3., 4.}));
+
+
+ armnn::TensorInfo outputDesc({2, 4}, armnn::GetDataType<float>());
+ boost::multi_array<float, 2> expectedOutput = MakeTensor<float, 2>(outputDesc, std::vector<float>(
+ {{-0.02973187f, 0.1229473f, 0.20885126f, -0.15358765f,
+ -0.0185422f, 0.11281417f, 0.24466537f, -0.1826292f}}));
+
+ return LstmNoCifgNoPeepholeNoProjectionTestImpl(workloadFactory, input, expectedOutput);
+}
+
+LayerTestResult<float,3> MergerTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int outputWidth = 3;
+ unsigned int outputHeight = 6;
+ unsigned int outputChannels = 3;
+
+ unsigned int inputWidth1 = 3;
+ unsigned int inputHeight1 = 6;
+ unsigned int inputChannels1 = 2;
+
+ unsigned int inputWidth2 = 3;
+ unsigned int inputHeight2 = 6;
+ unsigned int inputChannels2 = 1;
+
+ // Define the tensor descriptors.
+ armnn::TensorInfo outputTensorInfo({ outputChannels, outputHeight, outputWidth }, armnn::DataType::Float32);
+ armnn::TensorInfo inputTensorInfo1({ inputChannels1, inputHeight1, inputWidth1 }, armnn::DataType::Float32);
+ armnn::TensorInfo inputTensorInfo2({ inputChannels2, inputHeight2, inputWidth2 }, armnn::DataType::Float32);
+
+ LayerTestResult<float,3> ret(outputTensorInfo);
+
+ ret.outputExpected = MakeTensor<float, 3>(outputTensorInfo, std::vector<float>(
+ {
+ 1.0f, 2.0f, 3.0f,
+ 4.0f, 5.0f, 6.0f,
+ 7.0f, 8.0f, 9.0f,
+ 10.0f, 11.0f, 12.0f,
+ 13.0f, 14.0f, 15.0f,
+ 16.0f, 17.0f, 18.0f,
+
+ 19.0f, 20.0f, 21.0f,
+ 22.0f, 23.0f, 24.0f,
+ 25.0f, 26.0f, 27.0f,
+ 28.0f, 29.0f, 30.0f,
+ 31.0f, 32.0f, 33.0f,
+ 34.0f, 35.0f, 36.0f,
+
+ 37.0f, 38.0f, 39.0f,
+ 40.0f, 41.0f, 42.0f,
+ 43.0f, 44.0f, 45.0f,
+ 46.0f, 47.0f, 48.0f,
+ 49.0f, 50.0f, 51.0f,
+ 52.0f, 53.0f, 54.0f,
+ })
+ );
+
+ auto input1 = MakeTensor<float, 3>(inputTensorInfo1, std::vector<float>(
+ {
+ 1.0f, 2.0f, 3.0f,
+ 4.0f, 5.0f, 6.0f,
+ 7.0f, 8.0f, 9.0f,
+ 10.0f, 11.0f, 12.0f,
+ 13.0f, 14.0f, 15.0f,
+ 16.0f, 17.0f, 18.0f,
+
+ 19.0f, 20.0f, 21.0f,
+ 22.0f, 23.0f, 24.0f,
+ 25.0f, 26.0f, 27.0f,
+ 28.0f, 29.0f, 30.0f,
+ 31.0f, 32.0f, 33.0f,
+ 34.0f, 35.0f, 36.0f,
+ })
+ );
+
+ auto input2 = MakeTensor<float, 3>(inputTensorInfo2, std::vector<float>(
+ {
+ 37.0f, 38.0f, 39.0f,
+ 40.0f, 41.0f, 42.0f,
+ 43.0f, 44.0f, 45.0f,
+ 46.0f, 47.0f, 48.0f,
+ 49.0f, 50.0f, 51.0f,
+ 52.0f, 53.0f, 54.0f,
+ })
+ );
+
+ std::vector<unsigned int> wOrigin1 = {0, 0, 0}; //Extent of the window is defined by size of input[0].
+ armnn::MergerQueueDescriptor::ViewOrigin window1(wOrigin1);
+
+ std::vector<unsigned int> wOrigin2 = {2, 0, 0}; //Extent of the window is defined by size of input[1].
+ armnn::MergerQueueDescriptor::ViewOrigin window2(wOrigin2);
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ bool subTensorsSupported = workloadFactory.SupportsSubTensors();
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 =
+ subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*outputHandle, inputTensorInfo1.GetShape(), wOrigin1.data()) :
+ workloadFactory.CreateTensorHandle(inputTensorInfo1);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle2 =
+ subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*outputHandle, inputTensorInfo2.GetShape(), wOrigin2.data()) :
+ workloadFactory.CreateTensorHandle(inputTensorInfo2);
+
+ armnn::MergerQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddInputToWorkload(data, info, inputTensorInfo2, inputHandle2.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ data.m_ViewOrigins.push_back(window1);
+ data.m_ViewOrigins.push_back(window2);
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateMerger(data, info);
+
+ inputHandle1->Allocate();
+ inputHandle2->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0]);
+ CopyDataToITensorHandle(inputHandle2.get(), &input2[0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+LayerTestResult<float,4> AdditionTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int batchSize = 2;
+ unsigned int channels = 2;
+ unsigned int height = 2;
+ unsigned int width = 3;
+
+ armnn::TensorInfo inputTensorInfo1, inputTensorInfo2;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int shape[] = {batchSize, channels, height, width};
+
+ inputTensorInfo1 = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ inputTensorInfo2 = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+
+
+ auto input1 = MakeTensor<float, 4>(inputTensorInfo1, std::vector<float>(
+ {
+ 0.0f, 2.0f, 1.0f,
+ 0.2f, 1.0f, 2.0f,
+
+ 1.0f, 2.0f, 1.0f,
+ 0.2f, 1.0f, 2.0f,
+
+ 0.0f, 2.0f, 1.0f,
+ 4.2f, 1.0f, 2.0f,
+
+ 0.0f, 0.0f, 1.0f,
+ 0.2f, 1.0f, 2.0f,
+ }));
+
+ auto input2 = MakeTensor<float, 4>(inputTensorInfo2, std::vector<float>(
+ {
+ 1.0f, 2.0f, 1.0f,
+ 0.0f, 1.0f, 2.0f,
+
+ 1.0f, 2.0f, -2.0f,
+ 0.2f, 1.0f, 2.0f,
+
+ 0.0f, 2.0f, 1.0f,
+ 4.2f, 0.0f, -3.0f,
+
+ 0.0f, 0.0f, 1.0f,
+ 0.7f, 1.0f, 5.0f,
+ }));
+
+ LayerTestResult<float,4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<float, 4>(outputTensorInfo, std::vector<float>(
+ {
+ 1.0f, 4.0f, 2.0f,
+ 0.2f, 2.0f, 4.0f,
+
+ 2.0f, 4.0f, -1.0f,
+ 0.4f, 2.0f, 4.0f,
+
+ 0.0f, 4.0f, 2.0f,
+ 8.4f, 1.0f, -1.0f,
+
+ 0.0f, 0.0f, 2.0f,
+ 0.9f, 2.0f, 7.0f,
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle2 = workloadFactory.CreateTensorHandle(inputTensorInfo2);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::AdditionQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddInputToWorkload(data, info, inputTensorInfo2, inputHandle2.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateAddition(data, info);
+
+ inputHandle1->Allocate();
+ inputHandle2->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle2.get(), &input2[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+template <typename T>
+LayerTestResult<T, 4> AdditionBroadcastTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset)
+{
+ armnn::TensorInfo inputTensorInfo1 = armnn::TensorInfo({1, 3, 2, 1}, armnn::GetDataType<T>());
+ armnn::TensorInfo inputTensorInfo2 = armnn::TensorInfo({1, 1, 2, 3}, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo = armnn::TensorInfo({1, 3, 2, 3}, armnn::GetDataType<T>());
+
+ if (armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo1.SetQuantizationScale(qScale);
+ inputTensorInfo1.SetQuantizationOffset(qOffset);
+ inputTensorInfo2.SetQuantizationScale(qScale);
+ inputTensorInfo2.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input1 = MakeTensor<T, 4>(inputTensorInfo1, QuantizedVector<T>(qScale, qOffset,
+ {
+ 0.0f,
+ 1.0f,
+
+ 2.0f,
+ 3.0f,
+
+ 4.0f,
+ 5.0f,
+ }));
+
+ auto input2 = MakeTensor<T, 4>(inputTensorInfo2, QuantizedVector<T>(qScale, qOffset,
+ {
+ 0.5f, 1.5f, 2.5f,
+ 3.5f, 4.5f, 5.5f,
+ }));
+
+ LayerTestResult<T,4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset,
+ {
+ 0.5f, 1.5f, 2.5f,
+ 4.5f, 5.5f, 6.5f,
+
+ 2.5f, 3.5f, 4.5f,
+ 6.5f, 7.5f, 8.5f,
+
+ 4.5f, 5.5f, 6.5f,
+ 8.5f, 9.5f, 10.5f,
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle2 = workloadFactory.CreateTensorHandle(inputTensorInfo2);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::AdditionQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddInputToWorkload(data, info, inputTensorInfo2, inputHandle2.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateAddition(data, info);
+
+ inputHandle1->Allocate();
+ inputHandle2->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle2.get(), &input2[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+template <typename T>
+LayerTestResult<T, 4> AdditionBroadcast1ElementTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset)
+{
+ armnn::TensorInfo inputTensorInfo1 = armnn::TensorInfo({1, 3, 2, 3}, armnn::GetDataType<T>());
+ armnn::TensorInfo inputTensorInfo2 = armnn::TensorInfo({1, 1, 1, 1}, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo = armnn::TensorInfo({1, 3, 2, 3}, armnn::GetDataType<T>());
+
+ if (armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo1.SetQuantizationScale(qScale);
+ inputTensorInfo1.SetQuantizationOffset(qOffset);
+ inputTensorInfo2.SetQuantizationScale(qScale);
+ inputTensorInfo2.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input1 = MakeTensor<T, 4>(inputTensorInfo1, QuantizedVector<T>(qScale, qOffset,
+ {
+ 0.0f, 1.0f, 2.0f,
+ 3.0f, 4.0f, 5.0f,
+ 6.0f, 7.0f, 8.0f,
+ 9.0f, 10.0f, 11.0f,
+ 12.0f, 13.0f, 14.0f,
+ 15.0f, 16.0f, 17.0f,
+ }));
+
+ auto input2 = MakeTensor<T, 4>(inputTensorInfo2, QuantizedVector<T>(qScale, qOffset,
+ {
+ 0.5f,
+ }));
+
+ LayerTestResult<T,4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset,
+ {
+ 0.5f, 1.5f, 2.5f,
+ 3.5f, 4.5f, 5.5f,
+ 6.5f, 7.5f, 8.5f,
+ 9.5f, 10.5f, 11.5f,
+ 12.5f, 13.5f, 14.5f,
+ 15.5f, 16.5f, 17.5f,
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle2 = workloadFactory.CreateTensorHandle(inputTensorInfo2);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::AdditionQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddInputToWorkload(data, info, inputTensorInfo2, inputHandle2.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateAddition(data, info);
+
+ inputHandle1->Allocate();
+ inputHandle2->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle2.get(), &input2[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+LayerTestResult<float, 4> AdditionBroadcastTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return AdditionBroadcastTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+LayerTestResult<uint8_t, 4> AdditionBroadcastUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return AdditionBroadcastTestImpl<uint8_t>(workloadFactory, 2.f, 0);
+}
+
+LayerTestResult<float, 4> AdditionBroadcast1ElementTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return AdditionBroadcast1ElementTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+LayerTestResult<uint8_t, 4> AdditionBroadcast1ElementUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return AdditionBroadcast1ElementTestImpl<uint8_t>(workloadFactory, 0.1333333f, 128);
+}
+
+LayerTestResult<float,4> CompareAdditionTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory)
+{
+ unsigned int batchSize = 4;
+ unsigned int channels = 1;
+ unsigned int height = 2;
+ unsigned int width = 3;
+
+ armnn::TensorInfo inputTensorInfo1, inputTensorInfo2;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int shape[] = {batchSize, channels, height, width};
+
+ inputTensorInfo1 = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ inputTensorInfo2 = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+
+ auto input1 = MakeRandomTensor<float, 4>(inputTensorInfo1, 1232);
+ auto input2 = MakeRandomTensor<float, 4>(inputTensorInfo2, 456);
+
+ LayerTestResult<float,4> ret(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle2 = workloadFactory.CreateTensorHandle(inputTensorInfo2);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1Ref = refWorkloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle2Ref = refWorkloadFactory.CreateTensorHandle(inputTensorInfo2);
+ std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::AdditionQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddInputToWorkload(data, info, inputTensorInfo2, inputHandle2.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ armnn::AdditionQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadInput(refData, refInfo, 0, inputTensorInfo1, inputHandle1Ref.get());
+ SetWorkloadInput(refData, refInfo, 1, inputTensorInfo2, inputHandle2Ref.get());
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateAddition(data, info);
+ std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreateAddition(refData, refInfo);
+
+ inputHandle1->Allocate();
+ inputHandle2->Allocate();
+ outputHandle->Allocate();
+ inputHandle1Ref->Allocate();
+ inputHandle2Ref->Allocate();
+ outputHandleRef->Allocate();
+
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle2.get(), &input2[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle1Ref.get(), &input1[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle2Ref.get(), &input2[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+ refWorkloadFactory.Finalize();
+ workloadRef->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+ CopyDataFromITensorHandle(&ret.outputExpected[0][0][0][0], outputHandleRef.get());
+
+ return ret;
+}
+
+namespace {
+template <typename T>
+LayerTestResult<T, 4> DivisionTestHelper(armnn::IWorkloadFactory& workloadFactory,
+ const unsigned int shape0[4],
+ const std::vector<T>& values0,
+ float scale0,
+ int32_t offset0,
+ const unsigned int shape1[4],
+ const std::vector<T> & values1,
+ float scale1,
+ int32_t offset1,
+ const unsigned int outShape[4],
+ const std::vector<T> & outValues,
+ float outScale,
+ int32_t outOffset)
+{
+ auto dataType = (std::is_same<T, uint8_t>::value ?
+ armnn::DataType::QuantisedAsymm8 :
+ armnn::DataType::Float32);
+
+ armnn::TensorInfo inputTensorInfo0(4, shape0, dataType);
+ armnn::TensorInfo inputTensorInfo1(4, shape1, dataType);
+ armnn::TensorInfo outputTensorInfo(4, outShape, dataType);
+
+ inputTensorInfo0.SetQuantizationScale(scale0);
+ inputTensorInfo0.SetQuantizationOffset(offset0);
+
+ inputTensorInfo1.SetQuantizationScale(scale1);
+ inputTensorInfo1.SetQuantizationOffset(offset1);
+
+ outputTensorInfo.SetQuantizationScale(outScale);
+ outputTensorInfo.SetQuantizationOffset(outOffset);
+
+ auto input0 = MakeTensor<T, 4>(inputTensorInfo0, values0);
+ auto input1 = MakeTensor<T, 4>(inputTensorInfo1, values1);
+
+ LayerTestResult<T, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outValues);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle0 = workloadFactory.CreateTensorHandle(inputTensorInfo0);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::DivisionQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo0, inputHandle0.get());
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateDivision(data, info);
+
+ inputHandle0->Allocate();
+ inputHandle1->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle0.get(), &input0[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+
+ return result;
+}
+} // anonymous namespace
+
+LayerTestResult<float,4> DivisionByZeroTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int width = 2;
+ const unsigned int height = 2;
+ const unsigned int channelCount = 2;
+ const unsigned int batchSize = 2;
+
+ unsigned int shape[] = { batchSize, channelCount, height, width };
+
+ std::vector<float> input0({
+ 1.f, 1.f, 1.f, 1.f, 0.f, 0.f, 0.f, 0.f,
+ -1.f, -1.f, -1.f, -1.f, 5.f, 5.f, 5.f, 5.f });
+
+ std::vector<float> input1({
+ 0.f, 0.f, -0.f, -0.f, 0.f, 0.f, -0.f, -0.f,
+ 0.f, 0.f, -0.f, -0.f, 5.f, 5.f, 5.f, 5.f });
+
+ std::vector<float> output({
+ INFINITY, INFINITY, -INFINITY, -INFINITY, NAN, NAN, -NAN, -NAN,
+ -INFINITY, -INFINITY, INFINITY, INFINITY, 1, 1, 1, 1 });
+
+ return DivisionTestHelper<float>(workloadFactory,
+ shape, input0, 1.0f, 0,
+ shape, input1, 1.0f, 0,
+ shape, output, 1.0f, 0);
+}
+
+LayerTestResult<float,4> DivisionTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int width = 2;
+ const unsigned int height = 2;
+ const unsigned int channelCount = 2;
+ const unsigned int batchSize = 2;
+
+ unsigned int shape[] = { batchSize, channelCount, height, width };
+
+ std::vector<float> input0({
+ 2, 2, 2, 2, 3, 3, 3, 3,
+ 4, 4, 4, 4, 5, 5, 5, 5 });
+
+ std::vector<float> input1({
+ 1, 1, 1, 1, 2, 2, 2, 2,
+ 4, 4, 4, 4, 4, 4, 4, 4 });
+
+ std::vector<float> output({
+ 2, 2, 2, 2, 1.5, 1.5, 1.5, 1.5,
+ 1, 1, 1, 1, 1.25, 1.25, 1.25, 1.25 });
+
+
+ return DivisionTestHelper<float>(workloadFactory,
+ shape, input0, 1.0f, 0,
+ shape, input1, 1.0f, 0,
+ shape, output, 1.0f, 0);
+}
+
+LayerTestResult<float, 4> DivisionBroadcast1ElementTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int shape0[] = { 1, 2, 2, 2 };
+ std::vector<float> input0({ 2, 4, 6, 8, 10, 12, 14, 16});
+
+ unsigned int shape1[] = { 1, 1, 1, 1 };
+ std::vector<float> input1({ 2 });
+
+ std::vector<float> output({ 1, 2, 3, 4, 5, 6, 7, 8});
+
+
+ return DivisionTestHelper<float>(workloadFactory,
+ shape0, input0, 1.0f, 0,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 0);
+}
+
+LayerTestResult<float, 4> DivisionBroadcast1DVectorTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int shape0[] = { 1, 3, 3, 2 };
+ std::vector<float> input0({
+ 1, 4, 3, 8, 5, 12,
+ 7, 16, 9, 20, 11, 24,
+ 13, 28, 15, 32, 17, 36});
+
+ unsigned int shape1[] = { 1, 1, 1, 2 };
+ std::vector<float> input1({ 1, 2 });
+
+ std::vector<float> output({
+ 1, 2, 3, 4, 5, 6,
+ 7, 8, 9, 10, 11, 12,
+ 13, 14, 15, 16, 17, 18});
+
+ return DivisionTestHelper<float>(workloadFactory,
+ shape0, input0, 1.0f, 0,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 0);
+}
+
+
+LayerTestResult<uint8_t,4> DivisionUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int width = 2;
+ const unsigned int height = 2;
+ const unsigned int channelCount = 2;
+ const unsigned int batchSize = 2;
+
+ unsigned int shape[] = { batchSize, channelCount, height, width };
+
+ std::vector<uint8_t> input0({2, 2, 2, 2, 3, 3, 3, 3,
+ 4, 4, 4, 4, 5, 5, 5, 5 });
+
+ std::vector<uint8_t> input1({1, 1, 1, 1, 2, 2, 2, 2,
+ 4, 4, 4, 4, 4, 4, 4, 4 });
+
+ std::vector<uint8_t> output({8, 8, 8, 8, 6, 6, 6, 6,
+ 4, 4, 4, 4, 5, 5, 5, 5});
+
+
+ return DivisionTestHelper<uint8_t>(workloadFactory,
+ shape, input0, 1.0f, 0,
+ shape, input1, 1.0f, 0,
+ shape, output, 0.25f, 0);
+}
+
+LayerTestResult<uint8_t, 4> DivisionBroadcast1ElementUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int shape0[] = { 1, 2, 2, 2 };
+ std::vector<uint8_t> input0({ 2, 4, 6, 8, 10, 12, 14, 16});
+
+ unsigned int shape1[] = { 1, 1, 1, 1 };
+ std::vector<uint8_t> input1({ 2 });
+
+ std::vector<uint8_t> output({ 1, 2, 3, 4, 5, 6, 7, 8});
+
+ return DivisionTestHelper<uint8_t>(workloadFactory,
+ shape0, input0, 1.0f, 0,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 0);
+}
+
+LayerTestResult<uint8_t, 4> DivisionBroadcast1DVectorUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int shape0[] = { 1, 3, 3, 2 };
+ std::vector<uint8_t> input0({1, 4, 3, 8, 5, 12,
+ 7, 16, 9, 20, 11, 24,
+ 13, 28, 15, 32, 17, 36});
+
+ unsigned int shape1[] = { 1, 1, 1, 2 };
+ std::vector<uint8_t> input1({ 1, 2 });
+
+ std::vector<uint8_t> output({1, 2, 3, 4, 5, 6,
+ 7, 8, 9, 10, 11, 12,
+ 13, 14, 15, 16, 17, 18});
+
+ return DivisionTestHelper<uint8_t>(workloadFactory,
+ shape0, input0, 1.0f, 0,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 0);
+}
+
+namespace {
+LayerTestResult<float,4> MultiplicationTestHelper(armnn::IWorkloadFactory& workloadFactory,
+ const unsigned int shape0[4],
+ const std::vector<float> & values0,
+ const unsigned int shape1[4],
+ const std::vector<float> & values1,
+ const unsigned int outShape[4],
+ const std::vector<float> & outValues)
+{
+ const size_t dimensionCount = 4;
+ armnn::TensorInfo inputTensorInfo0{dimensionCount, shape0, armnn::DataType::Float32};
+ armnn::TensorInfo inputTensorInfo1{dimensionCount, shape1, armnn::DataType::Float32};
+ armnn::TensorInfo outputTensorInfo{dimensionCount, outShape, armnn::DataType::Float32};
+
+ auto input0 = MakeTensor<float, 4>(inputTensorInfo0, values0);
+ auto input1 = MakeTensor<float, 4>(inputTensorInfo1, values1);
+
+ LayerTestResult<float,4> ret(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle0 = workloadFactory.CreateTensorHandle(inputTensorInfo0);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::MultiplicationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo0, inputHandle0.get());
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateMultiplication(data, info);
+
+ inputHandle0->Allocate();
+ inputHandle1->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle0.get(), &input0[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ ret.outputExpected = MakeTensor<float, 4>(outputTensorInfo, outValues);
+ return ret;
+}
+} // anonymous namespace
+
+
+LayerTestResult<float,4> MultiplicationTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int width = 2;
+ const unsigned int height = 2;
+ const unsigned int channelCount = 2;
+ const unsigned int batchSize = 2;
+
+ unsigned int shape[] = { batchSize, channelCount, height, width };
+
+ std::vector<float> input0({
+ 1, 1, 1, 1, 2, 2, 2, 2,
+ 3, 3, 3, 3, 4, 4, 4, 4 });
+
+ std::vector<float> input1({
+ 2, 2, 2, 2, 3, 3, 3, 3,
+ 4, 4, 4, 4, 5, 5, 5, 5 });
+
+ std::vector<float> output({
+ 2, 2, 2, 2, 6, 6, 6, 6,
+ 12, 12, 12, 12, 20, 20, 20, 20 });
+
+ return MultiplicationTestHelper(workloadFactory,
+ shape,
+ input0,
+ shape,
+ input1,
+ shape,
+ output);
+}
+
+LayerTestResult<float, 4> MultiplicationBroadcast1ElementTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int shape0[] = { 1, 2, 2, 2 };
+ std::vector<float> input0({ 1, 2, 3, 4, 5, 6, 7, 8});
+
+ unsigned int shape1[] = { 1, 1, 1, 1 };
+ std::vector<float> input1({ 2 });
+
+ std::vector<float> output({ 2, 4, 6, 8, 10, 12, 14, 16});
+
+ return MultiplicationTestHelper(workloadFactory,
+ shape0,
+ input0,
+ shape1,
+ input1,
+ shape0,
+ output);
+}
+
+LayerTestResult<float, 4> MultiplicationBroadcast1DVectorTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int shape0[] = { 1, 3, 3, 2 };
+ std::vector<float> input0({
+ 1, 2, 3, 4, 5, 6,
+ 7, 8, 9, 10, 11, 12,
+ 13, 14, 15, 16, 17, 18});
+
+ unsigned int shape1[] = { 1, 1, 1, 2 };
+ std::vector<float> input1({ 1, 2 });
+
+ std::vector<float> output({
+ 1, 4, 3, 8, 5, 12,
+ 7, 16, 9, 20, 11, 24,
+ 13, 28, 15, 32, 17, 36});
+
+ return MultiplicationTestHelper(workloadFactory,
+ shape0,
+ input0,
+ shape1,
+ input1,
+ shape0,
+ output);
+}
+
+LayerTestResult<float,4> CompareMultiplicationTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory)
+{
+ const unsigned int width = 16;
+ const unsigned int height = 32;
+ const unsigned int channelCount = 2;
+ const unsigned int batchSize = 5;
+
+ armnn::TensorInfo inputTensorInfo0;
+ armnn::TensorInfo inputTensorInfo1;
+ armnn::TensorInfo outputTensorInfo;
+
+ constexpr unsigned int shape[] = { batchSize, channelCount, height, width };
+
+ inputTensorInfo0 = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ inputTensorInfo1 = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+
+ LayerTestResult<float,4> comparisonResult(outputTensorInfo);
+
+ auto input0 = MakeRandomTensor<float, 4>(inputTensorInfo0, 803506992);
+ auto input1 = MakeRandomTensor<float, 4>(inputTensorInfo1, 54902257);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle0 = workloadFactory.CreateTensorHandle(inputTensorInfo0);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle0Ref = refWorkloadFactory.CreateTensorHandle(inputTensorInfo0);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1Ref = refWorkloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::MultiplicationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo0, inputHandle0.get());
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ armnn::MultiplicationQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadInput(refData, refInfo, 0, inputTensorInfo0, inputHandle0Ref.get());
+ SetWorkloadInput(refData, refInfo, 1, inputTensorInfo1, inputHandle1Ref.get());
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateMultiplication(data, info);
+ std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreateMultiplication(refData, refInfo);
+
+ inputHandle0->Allocate();
+ inputHandle1->Allocate();
+ outputHandle->Allocate();
+ inputHandle0Ref->Allocate();
+ inputHandle1Ref->Allocate();
+ outputHandleRef->Allocate();
+
+ CopyDataToITensorHandle(inputHandle0.get(), &input0[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle0Ref.get(), &input0[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle1Ref.get(), &input1[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+ refWorkloadFactory.Finalize();
+ workloadRef->Execute();
+
+ CopyDataFromITensorHandle(&comparisonResult.output[0][0][0][0], outputHandle.get());
+ CopyDataFromITensorHandle(&comparisonResult.outputExpected[0][0][0][0], outputHandleRef.get());
+
+ return comparisonResult;
+}
+
+LayerTestResult<float,4> CompareBatchNormTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory)
+{
+ const unsigned int width = 2;
+ const unsigned int height = 3;
+ const unsigned int channels = 5;
+ const unsigned int batchSize = 3;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+ armnn::TensorInfo tensorInfo;
+
+ constexpr unsigned int shape[] = {batchSize, channels, height, width};
+ constexpr unsigned int tensorShape[] = {channels};
+
+ inputTensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ tensorInfo = armnn::TensorInfo(1, tensorShape, armnn::DataType::Float32);
+
+ auto input = MakeRandomTensor<float, 4>(inputTensorInfo, 21312);
+
+ auto mean = MakeRandomTensor<float, 1>(tensorInfo, 123);
+ auto variance = MakeRandomTensor<float, 1>(tensorInfo, 234, 0.0f);
+ auto beta = MakeRandomTensor<float, 1>(tensorInfo, 123);
+ auto gamma = MakeRandomTensor<float, 1>(tensorInfo, 345);
+
+ LayerTestResult<float,4> ret(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandleRef = refWorkloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::BatchNormalizationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ armnn::ScopedCpuTensorHandle meanTensor(tensorInfo);
+ armnn::ScopedCpuTensorHandle varianceTensor(tensorInfo);
+ armnn::ScopedCpuTensorHandle betaTensor(tensorInfo);
+ armnn::ScopedCpuTensorHandle gammaTensor(tensorInfo);
+
+ AllocateAndCopyDataToITensorHandle(&meanTensor, &mean[0]);
+ AllocateAndCopyDataToITensorHandle(&varianceTensor, &variance[0]);
+ AllocateAndCopyDataToITensorHandle(&betaTensor, &beta[0]);
+ AllocateAndCopyDataToITensorHandle(&gammaTensor, &gamma[0]);
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Mean = &meanTensor;
+ data.m_Variance = &varianceTensor;
+ data.m_Beta = &betaTensor;
+ data.m_Gamma = &gammaTensor;
+ data.m_Parameters.m_Eps = 0.01f;
+
+ armnn::BatchNormalizationQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadInput(refData, refInfo, 0, inputTensorInfo, inputHandleRef.get());
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateBatchNormalization(data, info);
+ std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreateBatchNormalization(refData, refInfo);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ inputHandleRef->Allocate();
+ outputHandleRef->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandleRef.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+ refWorkloadFactory.Finalize();
+ workloadRef->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+ CopyDataFromITensorHandle(&ret.outputExpected[0][0][0][0], outputHandleRef.get());
+
+ return ret;
+}
+
+template<typename T>
+void PermuteTensorData(
+ armnn::IWorkloadFactory& workloadFactory,
+ const armnn::PermutationVector& mappings,
+ armnn::TensorInfo & inputTensorInfo,
+ const T * inputData,
+ std::vector<T>& outputData)
+{
+ BOOST_ASSERT_MSG(inputData != nullptr, "inputData must not be null");
+ if (inputData == nullptr)
+ {
+ // Nullptr is an error in the test. By returning without doing the concatenation
+ // I expect the caller to fail the test. It still makes sense to report this as
+ // an assert for Debug builds.
+ return;
+ }
+
+ armnn::TensorInfo outputTensorInfo = armnnUtils::Permuted(inputTensorInfo, mappings);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::PermuteQueueDescriptor queueDescriptor;
+ queueDescriptor.m_Parameters = armnn::PermuteDescriptor{mappings};
+ armnn::WorkloadInfo workloadInfo;
+ AddInputToWorkload(queueDescriptor, workloadInfo, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(queueDescriptor, workloadInfo, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreatePermute(queueDescriptor, workloadInfo);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), inputData);
+
+ workload->Execute();
+
+ outputData.resize(outputTensorInfo.GetNumElements());
+ CopyDataFromITensorHandle(&outputData[0], outputHandle.get());
+ inputTensorInfo = outputTensorInfo;
+}
+
+armnn::OriginsDescriptor CreateMergerDescriptorForConcatenation(
+ const std::vector<armnn::TensorInfo> & inputTensorInfos,
+ unsigned int concatDim)
+{
+ std::vector<armnn::TensorShape> shapes;
+ shapes.reserve(inputTensorInfos.size());
+ for (const armnn::TensorInfo& it: inputTensorInfos)
+ {
+ shapes.push_back(it.GetShape());
+ }
+
+ return armnn::CreateMergerDescriptorForConcatenation(shapes.begin(),
+ shapes.end(),
+ concatDim);
+}
+
+//
+// Concatenation is only supported for N and C dimensions for NCHW. In case of
+// <4 dimensions we need to make sure that the concat dimensions are at least
+// the 3rd slowest iterating one.
+//
+
+bool NeedPermuteForConcat(
+ const std::vector<armnn::TensorInfo> & inputTensorInfos,
+ unsigned int concatDim)
+{
+ // See note above. Additionally we expect the input shapes to have the
+ // same number of dimensions.
+ unsigned int nDimensions = 0;
+
+ // Determine the number of dimensions as well as sanity check them
+ // agains test implementation issues.
+ for (auto && tensorInfo : inputTensorInfos)
+ {
+ if (!nDimensions)
+ {
+ nDimensions = tensorInfo.GetShape().GetNumDimensions();
+ }
+ else
+ {
+ BOOST_ASSERT_MSG(nDimensions == tensorInfo.GetShape().GetNumDimensions(),
+ "Input shapes must have the same number of dimensions");
+ }
+ }
+
+ return (nDimensions-concatDim) < 3;
+}
+
+armnn::TensorShape ExpandTensorShapeTo3dForPermute(const armnn::TensorShape & inputShape)
+{
+ unsigned int numDims = inputShape.GetNumDimensions();
+ if (numDims >= 3)
+ {
+ // Nothing to do if the inputShape has at least 3 dimensions.
+ return inputShape;
+ }
+
+ std::vector<unsigned int> newDims(size_t(3), 1u);
+ unsigned int expandedBy = 3 - numDims;
+ for (unsigned int i=0; i<numDims; ++i)
+ {
+ newDims[expandedBy+i] = inputShape[i];
+ }
+ return armnn::TensorShape(3u, &newDims[0]);
+}
+
+void Generate3dPermuteVectorForConcat(
+ unsigned int numDimensions,
+ unsigned int & concatDim,
+ std::pair<armnn::PermutationVector, armnn::PermutationVector> & permutations)
+{
+ BOOST_ASSERT_MSG(numDimensions <= 3,
+ "Only dimensions 1,2 and 3 are supported by this helper");
+
+ unsigned int expandedBy = 3 - numDimensions;
+ unsigned int expandedConcatAxis = concatDim + expandedBy;
+
+ if (expandedConcatAxis == 2)
+ {
+ concatDim = 0;
+ armnn::PermutationVector forwardPermutation({1, 2, 0});
+ armnn::PermutationVector reversePermutation({2, 0, 1});
+ permutations = std::make_pair(forwardPermutation, reversePermutation);
+ }
+ else if (expandedConcatAxis == 1)
+ {
+ concatDim = 0;
+ armnn::PermutationVector forwardPermutation({2, 0, 1});
+ armnn::PermutationVector reversePermutation({1, 2, 0});
+ permutations = std::make_pair(forwardPermutation, reversePermutation);
+ }
+ else
+ {
+ BOOST_ASSERT(expandedConcatAxis == 0);
+ concatDim = 0;
+ }
+}
+
+//
+// Permute the input tensors so we can do a supported concatenation.
+// Also treat lower than 3d tensors as 3d by adding dummy 1 dimensions
+// at the front. Finally this function tells what the output shape
+// of the permuted concatenated tensor is going to be.
+//
+template <typename T>
+void PermuteInputsForConcat(
+ armnn::IWorkloadFactory& workloadFactory,
+ std::vector<armnn::TensorInfo> & inputTensorInfos,
+ std::vector<T *> & inputData,
+ std::vector<std::vector<T>> & inputDataStorage,
+ armnn::PermutationVector & permuteVector,
+ unsigned int & concatDim,
+ armnn::TensorInfo & outputTensorInfo)
+{
+ BOOST_ASSERT_MSG(inputTensorInfos.size() > 1,
+ "Expecting more than one tensor to be concatenated here");
+
+ unsigned int numDims = 0;
+ unsigned int nthInput = 0;
+ const armnn::PermutationVector identity({0, 1, 2});
+
+ std::pair<armnn::PermutationVector, armnn::PermutationVector> permutations =
+ std::make_pair(identity, identity);
+
+ inputDataStorage.resize(inputData.size());
+
+ for (auto && tensorInfo : inputTensorInfos)
+ {
+ if (numDims == 0)
+ {
+ numDims = tensorInfo.GetShape().GetNumDimensions();
+ Generate3dPermuteVectorForConcat(numDims, concatDim, permutations);
+ // Store the reverese permutation.
+ permuteVector = permutations.second;
+ BOOST_ASSERT_MSG(!permuteVector.IsEqual(identity),
+ "Test logic error, we don't need permutation, so we shouldn't arrive here");
+ }
+ else
+ {
+ BOOST_ASSERT_MSG(numDims == tensorInfo.GetShape().GetNumDimensions(),
+ "All inputs must have the same number of dimensions");
+ }
+
+ armnn::TensorInfo newTensorInfo = tensorInfo;
+ newTensorInfo.SetShape(ExpandTensorShapeTo3dForPermute(tensorInfo.GetShape()));
+
+ PermuteTensorData<T>(workloadFactory,
+ permutations.first,
+ newTensorInfo,
+ inputData[nthInput],
+ inputDataStorage[nthInput]);
+
+ inputData[nthInput] = inputDataStorage[nthInput].data();
+ inputTensorInfos[nthInput] = newTensorInfo;
+
+ ++nthInput;
+ }
+
+ outputTensorInfo.SetShape(
+ armnnUtils::Permuted(
+ ExpandTensorShapeTo3dForPermute(outputTensorInfo.GetShape()),
+ permutations.first));
+}
+
+
+//
+// This is the pair of PermuteInputsForConcat(...) which permutes back
+// the output of the concatenation so we can check it against an expected
+// output.
+//
+template <typename T>
+void PermuteOutputForConcat(
+ armnn::IWorkloadFactory& workloadFactory,
+ const armnn::TensorInfo & tensorInfo,
+ const armnn::PermutationVector & permuteVector,
+ std::unique_ptr<armnn::ITensorHandle> && inputDataHandle,
+ T * data)
+{
+ BOOST_ASSERT_MSG(data != nullptr, "data must not be null");
+ if (data == nullptr)
+ {
+ // Nullptr is an error in the test. By returning without doing the permutation
+ // I expect the caller to fail the test. It still makes sense to report this as
+ // an assert for Debug builds.
+ return;
+ }
+
+ armnn::TensorInfo resultTensorInfo = tensorInfo;
+ std::vector<T> inputData(tensorInfo.GetNumElements());
+ std::vector<T> outputData;
+
+ CopyDataFromITensorHandle(&inputData[0], inputDataHandle.get());
+
+ PermuteTensorData<T>(workloadFactory,
+ permuteVector,
+ resultTensorInfo,
+ &inputData[0],
+ outputData);
+
+ ::memcpy(data, &outputData[0], sizeof(T)*outputData.size());
+}
+
+template <typename T>
+void Concatenate(armnn::IWorkloadFactory& workloadFactory,
+ std::initializer_list<const armnn::TensorInfo> inputTensorInfosOrig,
+ std::initializer_list<T *> inputsOrig,
+ const armnn::TensorInfo& outputTensorInfoOrig,
+ T * output,
+ unsigned int concatDim)
+{
+ BOOST_ASSERT_MSG(output != nullptr, "output must not be null");
+ if (output == nullptr)
+ {
+ // Nullptr is an error in the test. By returning without doing the permutation
+ // I expect the caller to fail the test. It still makes sense to report this as
+ // an assert for Debug builds.
+ return;
+ }
+
+ armnn::MergerQueueDescriptor queueDescriptor;
+
+ // Saves a copy of the parameters which we might need to change.
+ std::vector<armnn::TensorInfo> inputTensorInfos(inputTensorInfosOrig.begin(), inputTensorInfosOrig.end());
+ std::vector<T *> inputs = inputsOrig;
+ armnn::TensorInfo outputTensorInfo = outputTensorInfoOrig;
+
+ armnn::PermutationVector permuteVector{0, 1, 2};
+
+ // Holds and automatically releases memory for the reshaped input data.
+ std::vector<std::vector<T>> tmpInputDataStorage;
+
+ const size_t inputCount = inputTensorInfos.size();
+
+ bool needPermuteForConcat = NeedPermuteForConcat(inputTensorInfos, concatDim);
+
+ if (needPermuteForConcat)
+ {
+ //
+ // We need to permute the inputs, because concatenation along
+ // the requested axis is not supported.
+ //
+ PermuteInputsForConcat<T>(workloadFactory,
+ inputTensorInfos,
+ inputs,
+ tmpInputDataStorage,
+ permuteVector,
+ concatDim,
+ outputTensorInfo);
+ }
+
+ armnn::OriginsDescriptor viewsDescriptor = CreateMergerDescriptorForConcatenation(inputTensorInfos, concatDim);
+
+ queueDescriptor.m_ViewOrigins.reserve(viewsDescriptor.GetNumViews());
+ for (unsigned int i = 0; i < viewsDescriptor.GetNumViews(); ++i)
+ {
+ queueDescriptor.m_ViewOrigins.emplace_back(std::vector<unsigned int>(viewsDescriptor.GetViewOrigin(i),
+ viewsDescriptor.GetViewOrigin(i) + viewsDescriptor.GetNumDimensions()));
+ }
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ std::vector<std::unique_ptr<armnn::ITensorHandle>> inputHandles;
+ inputHandles.reserve(inputCount);
+
+ const bool subTensorsSupported = workloadFactory.SupportsSubTensors();
+ for (unsigned int i = 0; i < inputCount; ++i)
+ {
+ const armnn::TensorInfo& inputTensorInfo = inputTensorInfos[i];
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*outputHandle, inputTensorInfo.GetShape(),
+ queueDescriptor.m_ViewOrigins[i].m_Origin.data())
+ : workloadFactory.CreateTensorHandle(inputTensorInfo);
+
+ inputHandles.emplace_back(std::move(inputHandle));
+ }
+
+ armnn::WorkloadInfo workloadInfo;
+
+ for (unsigned int i = 0; i < inputCount; ++i)
+ {
+ AddInputToWorkload(queueDescriptor, workloadInfo, inputTensorInfos[i], inputHandles[i].get());
+ }
+
+ AddOutputToWorkload(queueDescriptor, workloadInfo, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateMerger(queueDescriptor, workloadInfo);
+
+ for (auto& inputHandle : inputHandles)
+ {
+ inputHandle->Allocate();
+ }
+
+ outputHandle->Allocate();
+
+ unsigned int nextInputId = 0;
+ for (auto& inputHandle : inputHandles)
+ {
+ CopyDataToITensorHandle(inputHandle.get(), inputs[nextInputId]);
+ ++nextInputId;
+ }
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ if (needPermuteForConcat)
+ {
+ PermuteOutputForConcat<T>(workloadFactory,
+ outputTensorInfo,
+ permuteVector,
+ std::move(outputHandle),
+ output);
+ }
+ else
+ {
+ CopyDataFromITensorHandle(output, outputHandle.get());
+ }
+}
+
+template <typename T>
+LayerTestResult<T, 1> Concatenation1dTestImpl(armnn::IWorkloadFactory& workloadFactory, float qScale, int32_t qOffset)
+{
+ armnn::TensorInfo inputTensorInfo({ 3 }, armnn::GetDataType<T>());
+
+ auto input0 = MakeTensor<T, 1>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, { 1.0f, 2.0f, 3.0f }));
+ auto input1 = MakeTensor<T, 1>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, { 4.0f, 5.0f, 6.0f }));
+ auto input2 = MakeTensor<T, 1>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, { 7.0f, 8.0f, 9.0f }));
+
+ armnn::TensorInfo outputTensorInfo({ 9 }, armnn::GetDataType<T>());
+
+ LayerTestResult<T, 1> result(outputTensorInfo);
+
+ std::vector<T> output;
+ output.resize(outputTensorInfo.GetNumElements());
+ Concatenate<T>(workloadFactory,
+ { inputTensorInfo, inputTensorInfo, inputTensorInfo },
+ { input0.data(), input1.data(), input2.data() },
+ outputTensorInfo,
+ output.data(),
+ 0);
+
+ result.output = MakeTensor<T, 1>(outputTensorInfo, output);
+ result.outputExpected = MakeTensor<T, 1>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 1> Concatenation1dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation1dTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 2> Concatenation2dTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::TensorInfo& outputTensorInfo,
+ unsigned int dimension,
+ const float qScale,
+ const int32_t qOffset)
+{
+ armnn::TensorInfo inputTensorInfo({ 2, 3 }, armnn::GetDataType<T>());
+
+ auto input0 = MakeTensor<T, 2>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 1.0f, 2.0f, 3.0f,
+
+ // Batch 1
+ 10.0f, 11.0f, 12.0f,
+ }));
+
+ auto input1 = MakeTensor<T, 2>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 4.0f, 5.0f, 6.0f,
+
+ // Batch 1
+ 13.0f, 14.0f, 15.0f,
+ }));
+
+ auto input2 = MakeTensor<T, 2>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 7.0f, 8.0f, 9.0f,
+
+ // Batch 1
+ 16.0f, 17.0f, 18.0f,
+ }));
+
+ LayerTestResult<T, 2> result(outputTensorInfo);
+
+ std::vector<T> output;
+ output.resize(outputTensorInfo.GetNumElements());
+ Concatenate<T>(workloadFactory,
+ { inputTensorInfo, inputTensorInfo, inputTensorInfo },
+ { input0.data(), input1.data(), input2.data() },
+ outputTensorInfo,
+ output.data(),
+ dimension);
+
+ result.output = MakeTensor<T, 2>(outputTensorInfo, output);
+ return result;
+}
+
+template <typename T>
+LayerTestResult<T, 2> Concatenation2dDim0TestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale, int32_t qOffset)
+{
+ armnn::TensorInfo outputTensorInfo({ 6, 3 }, armnn::GetDataType<T>());
+
+ LayerTestResult<T, 2> result = Concatenation2dTestImpl<T>(workloadFactory, outputTensorInfo, 0, qScale, qOffset);
+ result.outputExpected = MakeTensor<T, 2>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 1.0f, 2.0f, 3.0f,
+
+ // Batch 1
+ 10.0f, 11.0f, 12.0f,
+
+ // Batch 2
+ 4.0f, 5.0f, 6.0f,
+
+ // Batch 3
+ 13.0f, 14.0f, 15.0f,
+
+ // Batch 4
+ 7.0f, 8.0f, 9.0f,
+
+ // Batch 5
+ 16.0f, 17.0f, 18.0f,
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 2> Concatenation2dDim0Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation2dDim0TestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 2> Concatenation2dDim1TestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale, int32_t qOffset)
+{
+ armnn::TensorInfo outputTensorInfo({ 2, 9 }, armnn::GetDataType<T>());
+
+ LayerTestResult<T, 2> result = Concatenation2dTestImpl<T>(workloadFactory, outputTensorInfo, 1, qScale, qOffset);
+ result.outputExpected = MakeTensor<T, 2>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f,
+
+ // Batch 1
+ 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 2> Concatenation2dDim1Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation2dDim1TestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 2> Concatenation2dDim0DiffInputDimsTestImpl(armnn::IWorkloadFactory& workloadFactory, float qScale,
+ int32_t qOffset)
+{
+ armnn::TensorInfo input0TensorInfo({ 2, 3 }, armnn::GetDataType<T>());
+ auto input0 = MakeTensor<T, 2>(input0TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 1.0f, 2.0f, 3.0f,
+
+ // Batch 1
+ 10.0f, 11.0f, 12.0f,
+ }));
+
+ armnn::TensorInfo input1TensorInfo({ 3, 3 }, armnn::GetDataType<T>());
+ auto input1 = MakeTensor<T, 2>(input1TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 4.0f, 5.0f, 6.0f,
+
+ // Batch 1
+ 13.0f, 14.0f, 15.0f,
+
+ // Batch 0
+ 7.0f, 8.0f, 9.0f,
+ }));
+
+ armnn::TensorInfo input2TensorInfo({ 1, 3 }, armnn::GetDataType<T>());
+ auto input2 = MakeTensor<T, 2>(input2TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 1
+ 16.0f, 17.0f, 18.0f,
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 6, 3 }, armnn::GetDataType<T>());
+ LayerTestResult<T, 2> result(outputTensorInfo);
+
+ std::vector<T> output;
+ output.resize(outputTensorInfo.GetNumElements());
+ Concatenate<T>(workloadFactory,
+ { input0TensorInfo, input1TensorInfo, input2TensorInfo },
+ { input0.data(), input1.data(), input2.data() },
+ outputTensorInfo,
+ output.data(),
+ 0);
+
+ result.output = MakeTensor<T, 2>(outputTensorInfo, output);
+ result.outputExpected = MakeTensor<T, 2>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 1.0f, 2.0f, 3.0f,
+
+ // Batch 1
+ 10.0f, 11.0f, 12.0f,
+
+ // Batch 2
+ 4.0f, 5.0f, 6.0f,
+
+ // Batch 3
+ 13.0f, 14.0f, 15.0f,
+
+ // Batch 4
+ 7.0f, 8.0f, 9.0f,
+
+ // Batch 5
+ 16.0f, 17.0f, 18.0f,
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 2> Concatenation2dDim0DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation2dDim0DiffInputDimsTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 2> Concatenation2dDim1DiffInputDimsTestImpl(armnn::IWorkloadFactory& workloadFactory, float qScale,
+ int32_t qOffset)
+{
+ armnn::TensorInfo input0TensorInfo({ 2, 3 }, armnn::GetDataType<T>());
+ auto input0 = MakeTensor<T, 2>(input0TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 1.0f, 2.0f, 3.0f,
+
+ // Batch 1
+ 10.0f, 11.0f, 12.0f,
+ }));
+
+ armnn::TensorInfo input1TensorInfo({ 2, 5 }, armnn::GetDataType<T>());
+ auto input1 = MakeTensor<T, 2>(input1TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 4.0f, 5.0f, 6.0f, 7.0f, 8.0f,
+
+ // Batch 1
+ 13.0f, 14.0f, 15.0f, 16.0f, 17.0f,
+ }));
+
+ armnn::TensorInfo input2TensorInfo({ 2, 1 }, armnn::GetDataType<T>());
+ auto input2 = MakeTensor<T, 2>(input2TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 9.0f,
+
+ // Batch 1
+ 18.0f
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 2, 9 }, armnn::GetDataType<T>());
+ LayerTestResult<T, 2> result(outputTensorInfo);
+
+ std::vector<T> output;
+ output.resize(outputTensorInfo.GetNumElements());
+ Concatenate<T>(workloadFactory,
+ { input0TensorInfo, input1TensorInfo, input2TensorInfo },
+ { input0.data(), input1.data(), input2.data() },
+ outputTensorInfo,
+ output.data(),
+ 1);
+
+ result.output = MakeTensor<T, 2>(outputTensorInfo, output);
+ result.outputExpected = MakeTensor<T, 2>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0
+ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f,
+
+ // Batch 1
+ 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f,
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 2> Concatenation2dDim1DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation2dDim1DiffInputDimsTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 3> Concatenation3dTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::TensorInfo& outputTensorInfo,
+ unsigned int dimension,
+ float qScale,
+ int32_t qOffset)
+{
+ armnn::TensorInfo inputTensorInfo({ 2, 3, 2 }, armnn::GetDataType<T>());
+
+ auto input0 = MakeTensor<T, 3>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f
+ }));
+
+ auto input1 = MakeTensor<T, 3>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 7.0f, 8.0f,
+
+ // Batch 0, Channel 1
+ 9.0f, 10.0f,
+
+ // Batch 0, Channel 2
+ 11.0f, 12.0f,
+
+ // Batch 1, Channel 0
+ 25.0f, 26.0f,
+
+ // Batch 1, Channel 1
+ 27.0f, 28.0f,
+
+ // Batch 1, Channel 2
+ 29.0f, 30.0f
+ }));
+
+ auto input2 = MakeTensor<T, 3>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 13.0f, 14.0f,
+
+ // Batch 0, Channel 1
+ 15.0f, 16.0f,
+
+ // Batch 0, Channel 2
+ 17.0f, 18.0f,
+
+ // Batch 1, Channel 0
+ 31.0f, 32.0f,
+
+ // Batch 1, Channel 1
+ 33.0f, 34.0f,
+
+ // Batch 1, Channel 2
+ 35.0f, 36.0f
+ }));
+
+ LayerTestResult<T, 3> result(outputTensorInfo);
+
+ std::vector<T> output;
+ output.resize(outputTensorInfo.GetNumElements());
+ Concatenate<T>(workloadFactory,
+ { inputTensorInfo, inputTensorInfo, inputTensorInfo },
+ { input0.data(), input1.data(), input2.data() },
+ outputTensorInfo,
+ output.data(),
+ dimension);
+
+ result.output = MakeTensor<T, 3>(outputTensorInfo, output);
+ return result;
+}
+
+template <typename T>
+LayerTestResult<T, 3> Concatenation3dDim0TestImpl(armnn::IWorkloadFactory& workloadFactory, float qScale,
+ int32_t qOffset)
+{
+ armnn::TensorInfo outputTensorInfo({ 6, 3, 2 }, armnn::GetDataType<T>());
+
+ LayerTestResult<T, 3> result = Concatenation3dTestImpl<T>(workloadFactory, outputTensorInfo, 0,
+ qScale, qOffset);
+ result.outputExpected = MakeTensor<T, 3>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f,
+
+ // Batch 2, Channel 0
+ 7.0f, 8.0f,
+
+ // Batch 2, Channel 1
+ 9.0f, 10.0f,
+
+ // Batch 2, Channel 2
+ 11.0f, 12.0f,
+
+ // Batch 3, Channel 0
+ 25.0f, 26.0f,
+
+ // Batch 3, Channel 1
+ 27.0f, 28.0f,
+
+ // Batch 3, Channel 2
+ 29.0f, 30.0f,
+
+ // Batch 4, Channel 0
+ 13.0f, 14.0f,
+
+ // Batch 4, Channel 1
+ 15.0f, 16.0f,
+
+ // Batch 4, Channel 2
+ 17.0f, 18.0f,
+
+ // Batch 5, Channel 0
+ 31.0f, 32.0f,
+
+ // Batch 5, Channel 1
+ 33.0f, 34.0f,
+
+ // Batch 5, Channel 2
+ 35.0f, 36.0f
+ }));
+ return result;
+}
+
+LayerTestResult<float, 3> Concatenation3dDim0Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim0TestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 3> Concatenation3dDim1TestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale, int32_t qOffset)
+{
+ armnn::TensorInfo outputTensorInfo({ 2, 9, 2 }, armnn::GetDataType<T>());
+
+ LayerTestResult<T, 3> result = Concatenation3dTestImpl<T>(workloadFactory, outputTensorInfo, 1, qScale, qOffset);
+ result.outputExpected = MakeTensor<T, 3>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f,
+
+ // Batch 0, Channel 3
+ 7.0f, 8.0f,
+
+ // Batch 0, Channel 4
+ 9.0f, 10.0f,
+
+ // Batch 0, Channel 5
+ 11.0f, 12.0f,
+
+ // Batch 0, Channel 6
+ 13.0f, 14.0f,
+
+ // Batch 0, Channel 7
+ 15.0f, 16.0f,
+
+ // Batch 0, Channel 8
+ 17.0f, 18.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f,
+
+ // Batch 1, Channel 3
+ 25.0f, 26.0f,
+
+ // Batch 1, Channel 4
+ 27.0f, 28.0f,
+
+ // Batch 1, Channel 5
+ 29.0f, 30.0f,
+
+ // Batch 1, Channel 6
+ 31.0f, 32.0f,
+
+ // Batch 1, Channel 7
+ 33.0f, 34.0f,
+
+ // Batch 1, Channel 8
+ 35.0f, 36.0f
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 3> Concatenation3dDim1Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim1TestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 3> Concatenation3dDim2TestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale, int32_t qOffset)
+{
+ armnn::TensorInfo outputTensorInfo({ 2, 3, 6 }, armnn::GetDataType<T>());
+
+ LayerTestResult<T, 3> result = Concatenation3dTestImpl<T>(workloadFactory, outputTensorInfo, 2, qScale, qOffset);
+ result.outputExpected = MakeTensor<T, 3>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f, 7.0f, 8.0f, 13.0f, 14.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f, 9.0f, 10.0f, 15.0f, 16.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f, 11.0f, 12.0f, 17.0f, 18.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f, 25.0f, 26.0f, 31.0f, 32.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f, 27.0f, 28.0f, 33.0f, 34.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f, 29.0f, 30.0f, 35.0f, 36.0f,
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 3> Concatenation3dDim2Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim2TestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 3> Concatenation3dDim0DiffInputDimsTestImpl(armnn::IWorkloadFactory& workloadFactory, float qScale,
+ int32_t qOffset)
+{
+ armnn::TensorInfo input0TensorInfo({ 2, 3, 2 }, armnn::GetDataType<T>());
+ auto input0 = MakeTensor<T, 3>(input0TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f
+ }));
+
+ armnn::TensorInfo input1TensorInfo({ 1, 3, 2 }, armnn::GetDataType<T>());
+ auto input1 = MakeTensor<T, 3>(input1TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 7.0f, 8.0f,
+
+ // Batch 0, Channel 1
+ 9.0f, 10.0f,
+
+ // Batch 0, Channel 2
+ 11.0f, 12.0f,
+ }));
+
+ armnn::TensorInfo input2TensorInfo({ 3, 3, 2 }, armnn::GetDataType<T>());
+ auto input2 = MakeTensor<T, 3>(input2TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 25.0f, 26.0f,
+
+ // Batch 0, Channel 1
+ 27.0f, 28.0f,
+
+ // Batch 0, Channel 2
+ 29.0f, 30.0f,
+
+ // Batch 1, Channel 0
+ 13.0f, 14.0f,
+
+ // Batch 1, Channel 1
+ 15.0f, 16.0f,
+
+ // Batch 1, Channel 2
+ 17.0f, 18.0f,
+
+ // Batch 2, Channel 0
+ 31.0f, 32.0f,
+
+ // Batch 2, Channel 1
+ 33.0f, 34.0f,
+
+ // Batch 2, Channel 2
+ 35.0f, 36.0f
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 6, 3, 2 }, armnn::GetDataType<T>());
+ LayerTestResult<T, 3> result(outputTensorInfo);
+
+ std::vector<T> output;
+ output.resize(outputTensorInfo.GetNumElements());
+ Concatenate<T>(workloadFactory,
+ { input0TensorInfo, input1TensorInfo, input2TensorInfo },
+ { input0.data(), input1.data(), input2.data() },
+ outputTensorInfo,
+ output.data(),
+ 0);
+
+ result.output = MakeTensor<T, 3>(outputTensorInfo, output);
+ result.outputExpected = MakeTensor<T, 3>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f,
+
+ // Batch 2, Channel 0
+ 7.0f, 8.0f,
+
+ // Batch 2, Channel 1
+ 9.0f, 10.0f,
+
+ // Batch 2, Channel 2
+ 11.0f, 12.0f,
+
+ // Batch 3, Channel 0
+ 25.0f, 26.0f,
+
+ // Batch 3, Channel 1
+ 27.0f, 28.0f,
+
+ // Batch 3, Channel 2
+ 29.0f, 30.0f,
+
+ // Batch 4, Channel 0
+ 13.0f, 14.0f,
+
+ // Batch 4, Channel 1
+ 15.0f, 16.0f,
+
+ // Batch 4, Channel 2
+ 17.0f, 18.0f,
+
+ // Batch 5, Channel 0
+ 31.0f, 32.0f,
+
+ // Batch 5, Channel 1
+ 33.0f, 34.0f,
+
+ // Batch 5, Channel 2
+ 35.0f, 36.0f
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 3> Concatenation3dDim0DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim0DiffInputDimsTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 3> Concatenation3dDim1DiffInputDimsTestImpl(armnn::IWorkloadFactory& workloadFactory, float qScale,
+ int32_t qOffset)
+{
+ armnn::TensorInfo input0TensorInfo({ 2, 3, 2 }, armnn::GetDataType<T>());
+ auto input0 = MakeTensor<T, 3>(input0TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f
+ }));
+
+ armnn::TensorInfo input1TensorInfo({ 2, 4, 2 }, armnn::GetDataType<T>());
+ auto input1 = MakeTensor<T, 3>(input1TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 7.0f, 8.0f,
+
+ // Batch 0, Channel 1
+ 9.0f, 10.0f,
+
+ // Batch 0, Channel 2
+ 11.0f, 12.0f,
+
+ // Batch 0, Channel 3
+ 25.0f, 26.0f,
+
+ // Batch 1, Channel 0
+ 27.0f, 28.0f,
+
+ // Batch 1, Channel 1
+ 29.0f, 30.0f,
+
+ // Batch 1, Channel 2
+ 13.0f, 14.0f,
+
+ // Batch 1, Channel 3
+ 15.0f, 16.0f,
+ }));
+
+ armnn::TensorInfo input2TensorInfo({ 2, 1, 2 }, armnn::GetDataType<T>());
+ auto input2 = MakeTensor<T, 3>(input2TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 17.0f, 18.0f,
+
+ // Batch 1, Channel 0
+ 31.0f, 32.0f,
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 2, 8, 2 }, armnn::GetDataType<T>());
+ LayerTestResult<T, 3> result(outputTensorInfo);
+
+ std::vector<T> output;
+ output.resize(outputTensorInfo.GetNumElements());
+ Concatenate<T>(workloadFactory,
+ { input0TensorInfo, input1TensorInfo, input2TensorInfo },
+ { input0.data(), input1.data(), input2.data() },
+ outputTensorInfo,
+ output.data(),
+ 1);
+
+ result.output = MakeTensor<T, 3>(outputTensorInfo, output);
+ result.outputExpected = MakeTensor<T, 3>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f,
+
+ // Batch 0, Channel 3
+ 7.0f, 8.0f,
+
+ // Batch 0, Channel 4
+ 9.0f, 10.0f,
+
+ // Batch 0, Channel 5
+ 11.0f, 12.0f,
+
+ // Batch 0, Channel 6
+ 25.0f, 26.0f,
+
+ // Batch 0, Channel 7
+ 17.0f, 18.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f,
+
+ // Batch 1, Channel 3
+ 27.0f, 28.0f,
+
+ // Batch 1, Channel 4
+ 29.0f, 30.0f,
+
+ // Batch 1, Channel 5
+ 13.0f, 14.0f,
+
+ // Batch 1, Channel 6
+ 15.0f, 16.0f,
+
+ // Batch 1, Channel 7
+ 31.0f, 32.0f,
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 3> Concatenation3dDim1DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim1DiffInputDimsTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+template <typename T>
+LayerTestResult<T, 3> Concatenation3dDim2DiffInputDimsTestImpl(armnn::IWorkloadFactory& workloadFactory, float qScale,
+ int32_t qOffset)
+{
+ armnn::TensorInfo input0TensorInfo({ 2, 3, 2 }, armnn::GetDataType<T>());
+ auto input0 = MakeTensor<T, 3>(input0TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f
+ }));
+
+ armnn::TensorInfo input1TensorInfo({ 2, 3, 1 }, armnn::GetDataType<T>());
+ auto input1 = MakeTensor<T, 3>(input1TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 7.0f,
+
+ // Batch 0, Channel 1
+ 9.0f,
+
+ // Batch 0, Channel 2
+ 11.0f,
+
+ // Batch 1, Channel 0
+ 25.0f,
+
+ // Batch 1, Channel 1
+ 27.0f,
+
+ // Batch 1, Channel 2
+ 29.0f
+ }));
+
+ armnn::TensorInfo input2TensorInfo({ 2, 3, 3 }, armnn::GetDataType<T>());
+ auto input2 = MakeTensor<T, 3>(input2TensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 13.0f, 14.0f, 50.0f,
+
+ // Batch 0, Channel 1
+ 15.0f, 16.0f, 51.0f,
+
+ // Batch 0, Channel 2
+ 17.0f, 18.0f, 52.0f,
+
+ // Batch 1, Channel 0
+ 31.0f, 32.0f, 53.0f,
+
+ // Batch 1, Channel 1
+ 33.0f, 34.0f, 54.0f,
+
+ // Batch 1, Channel 2
+ 35.0f, 36.0f, 55.0f,
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 2, 3, 6 }, armnn::GetDataType<T>());
+ LayerTestResult<T, 3> result(outputTensorInfo);
+
+ std::vector<T> output;
+ output.resize(outputTensorInfo.GetNumElements());
+ Concatenate<T>(workloadFactory,
+ { input0TensorInfo, input1TensorInfo, input2TensorInfo },
+ { input0.data(), input1.data(), input2.data() },
+ outputTensorInfo,
+ output.data(),
+ 2);
+
+ result.output = MakeTensor<T, 3>(outputTensorInfo, output);
+ result.outputExpected = MakeTensor<T, 3>(outputTensorInfo, QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 1.0f, 2.0f, 7.0f, 13.0f, 14.0f, 50.0f,
+
+ // Batch 0, Channel 1
+ 3.0f, 4.0f, 9.0f, 15.0f, 16.0f, 51.0f,
+
+ // Batch 0, Channel 2
+ 5.0f, 6.0f, 11.0f, 17.0f, 18.0f, 52.0f,
+
+ // Batch 1, Channel 0
+ 19.0f, 20.0f, 25.0f, 31.0f, 32.0f, 53.0f,
+
+ // Batch 1, Channel 1
+ 21.0f, 22.0f, 27.0f, 33.0f, 34.0f, 54.0f,
+
+ // Batch 1, Channel 2
+ 23.0f, 24.0f, 29.0f, 35.0f, 36.0f, 55.0f,
+ }));
+
+ return result;
+}
+
+LayerTestResult<float, 3> Concatenation3dDim2DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim2DiffInputDimsTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+LayerTestResult<float, 4> ResizeBilinearNopTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout)
+{
+ const armnn::TensorInfo inputTensorInfo = GetTensorInfo<float>(1, 2, 4, 4, dataLayout);
+ const armnn::TensorInfo outputTensorInfo = GetTensorInfo<float>(1, 2, 4, 4, dataLayout);
+
+ std::vector<float> inputData({
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 2.0f, 3.0f, 4.0f, 5.0f,
+ 3.0f, 4.0f, 5.0f, 6.0f,
+ 4.0f, 5.0f, 6.0f, 7.0f,
+
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 2.0f, 3.0f, 4.0f, 5.0f,
+ 3.0f, 4.0f, 5.0f, 6.0f,
+ 4.0f, 5.0f, 6.0f, 7.0f
+ });
+
+ const armnn::PermutationVector NCHWToNHWC = { 0, 3, 1, 2 };
+ if (dataLayout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ std::vector<float> tmp(inputData.size());
+ armnnUtils::Permute(inputTensorInfo.GetShape(), NCHWToNHWC, inputData.data(), tmp.data());
+ inputData = tmp;
+ }
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo, inputData);
+
+ LayerTestResult<float, 4> result(outputTensorInfo);
+ result.outputExpected = input;
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ descriptor.m_Parameters.m_DataLayout = dataLayout;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<float, 4> SimpleResizeBilinearTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout)
+{
+ const armnn::TensorInfo inputTensorInfo = GetTensorInfo<float>(1, 2, 2, 2, dataLayout);
+ const armnn::TensorInfo outputTensorInfo = GetTensorInfo<float>(1, 2, 1, 1, dataLayout);
+
+ std::vector<float> inputData({
+ 1.0f, 255.0f,
+ 200.0f, 250.0f,
+
+ 250.0f, 200.0f,
+ 250.0f, 1.0f
+ });
+
+ // The 'resize bilinear' operation projects the top-left corner of output texels into the input image,
+ // then figures out the interpolants and weights. Note this is different to projecting the centre of the
+ // output texel. Thus, for a input matrix of 2x2, we'll expect the output 1x1 matrix to contain, as
+ // its single element, the value that was at position (0,0) of the input matrix (rather than an average,
+ // which we would expect if projecting the centre).
+
+ std::vector<float> outputData({
+ 1.0f,
+
+ 250.0f
+ });
+
+ const armnn::PermutationVector NCHWToNHWC = { 0, 3, 1, 2 };
+ if (dataLayout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ std::vector<float> tmp(inputData.size());
+ armnnUtils::Permute(inputTensorInfo.GetShape(), NCHWToNHWC, inputData.data(), tmp.data());
+ inputData = tmp;
+
+ std::vector<float> tmp1(outputData.size());
+ armnnUtils::Permute(outputTensorInfo.GetShape(), NCHWToNHWC, outputData.data(), tmp1.data());
+ outputData = tmp1;
+ }
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo, inputData);
+
+ LayerTestResult<float, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<float, 4>(outputTensorInfo, outputData);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ descriptor.m_Parameters.m_DataLayout = dataLayout;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<float, 4> ResizeBilinearSqMinTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout)
+{
+ const armnn::TensorInfo inputTensorInfo = GetTensorInfo<float>(1, 2, 4, 4, dataLayout);
+ const armnn::TensorInfo outputTensorInfo = GetTensorInfo<float>(1, 2, 2, 2, dataLayout);
+
+ std::vector<float> inputData({
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 2.0f, 3.0f, 4.0f, 5.0f,
+ 3.0f, 4.0f, 5.0f, 6.0f,
+ 4.0f, 5.0f, 6.0f, 7.0f,
+
+ 7.0f, 6.0f, 5.0f, 4.0f,
+ 6.0f, 5.0f, 4.0f, 3.0f,
+ 5.0f, 4.0f, 3.0f, 2.0f,
+ 4.0f, 3.0f, 2.0f, 1.0f
+ });
+
+ std::vector<float> outputData({
+ 1.0f, 3.0f,
+ 3.0f, 5.0f,
+
+ 7.0f, 5.0f,
+ 5.0f, 3.0f
+ });
+
+ const armnn::PermutationVector NCHWToNHWC = { 0, 3, 1, 2 };
+ if (dataLayout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ std::vector<float> tmp(inputData.size());
+ armnnUtils::Permute(inputTensorInfo.GetShape(), NCHWToNHWC, inputData.data(), tmp.data());
+ inputData = tmp;
+
+ std::vector<float> tmp1(outputData.size());
+ armnnUtils::Permute(outputTensorInfo.GetShape(), NCHWToNHWC, outputData.data(), tmp1.data());
+ outputData = tmp1;
+ }
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo, inputData);
+
+ LayerTestResult<float, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<float, 4>(outputTensorInfo, outputData);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ descriptor.m_Parameters.m_DataLayout = dataLayout;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<float, 4> ResizeBilinearMinTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout)
+{
+ const armnn::TensorInfo inputTensorInfo = GetTensorInfo<float>(1, 2, 3, 5, dataLayout);
+ const armnn::TensorInfo outputTensorInfo = GetTensorInfo<float>(1, 2, 2, 3, dataLayout);
+
+ std::vector<float> inputData({
+ 1.0f, 2.0f, 3.0f, 5.0f, 8.0f,
+ 13.0f, 21.0f, 34.0f, 55.0f, 89.0f,
+ 144.0f, 233.0f, 377.0f, 610.0f, 987.0f,
+
+ 987.0f, 610.0f, 377.0f, 233.0f, 144.0f,
+ 89.0f, 55.0f, 34.0f, 21.0f, 13.0f,
+ 8.0f, 5.0f, 3.0f, 2.0f, 1.0f
+ });
+
+ std::vector<float> outputData({
+ 1.0f, 2.6666f, 6.00f,
+ 78.5f, 179.3333f, 401.00f,
+
+ 987.0f, 454.6670f, 203.33f,
+ 48.5f, 22.3333f, 10.00f
+ });
+
+ const armnn::PermutationVector NCHWToNHWC = { 0, 3, 1, 2 };
+ if (dataLayout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ std::vector<float> tmp(inputData.size());
+ armnnUtils::Permute(inputTensorInfo.GetShape(), NCHWToNHWC, inputData.data(), tmp.data());
+ inputData = tmp;
+
+ std::vector<float> tmp1(outputData.size());
+ armnnUtils::Permute(outputTensorInfo.GetShape(), NCHWToNHWC, outputData.data(), tmp1.data());
+ outputData = tmp1;
+ }
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo, inputData);
+
+ LayerTestResult<float, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<float, 4>(outputTensorInfo, outputData);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ descriptor.m_Parameters.m_DataLayout = dataLayout;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<float, 4> ResizeBilinearMagTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout)
+{
+ const armnn::TensorInfo inputTensorInfo = GetTensorInfo<float>(1, 2, 3, 2, dataLayout);
+ const armnn::TensorInfo outputTensorInfo = GetTensorInfo<float>(1, 2, 3, 5, dataLayout);
+
+ std::vector<float> inputData({
+ 1.0f, 2.0f,
+ 13.0f, 21.0f,
+ 144.0f, 233.0f,
+
+ 233.0f, 144.0f,
+ 21.0f, 13.0f,
+ 2.0f, 1.0f
+ });
+
+ std::vector<float> outputData({
+ 1.0f, 1.4f, 1.8f, 2.0f, 2.0f,
+ 13.0f, 16.2f, 19.4f, 21.0f, 21.0f,
+ 144.0f, 179.6f, 215.2f, 233.0f, 233.0f,
+
+ 233.0f, 197.4f, 161.8f, 144.0f, 144.0f,
+ 21.0f, 17.8f, 14.6f, 13.0f, 13.0f,
+ 2.0f, 1.6f, 1.2f, 1.0f, 1.0f
+ });
+
+ const armnn::PermutationVector NCHWToNHWC = { 0, 3, 1, 2 };
+ if (dataLayout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ std::vector<float> tmp(inputData.size());
+ armnnUtils::Permute(inputTensorInfo.GetShape(), NCHWToNHWC, inputData.data(), tmp.data());
+ inputData = tmp;
+
+ std::vector<float> tmp1(outputData.size());
+ armnnUtils::Permute(outputTensorInfo.GetShape(), NCHWToNHWC, outputData.data(), tmp1.data());
+ outputData = tmp1;
+ }
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo, inputData);
+
+ LayerTestResult<float, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<float, 4>(outputTensorInfo, outputData);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ descriptor.m_Parameters.m_DataLayout = dataLayout;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<float, 2> FakeQuantizationTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int width = 2;
+ constexpr unsigned int height = 3;
+
+ const armnn::TensorInfo tensorInfo({height, width },
+ armnn::DataType::Float32);
+ auto input = MakeTensor<float, 2>(tensorInfo, std::vector<float>({
+ -10.0f, -5.0f,
+ 0.0f, 5.0f,
+ 10.0f, 10.0f
+ }));
+
+ LayerTestResult<float, 2> ret(tensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(tensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(tensorInfo);
+
+ armnn::FakeQuantizationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+
+ AddInputToWorkload(data, info, tensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, tensorInfo, outputHandle.get());
+ float min = -10.f;
+ float max = 10.f;
+
+ data.m_Parameters.m_Min = min;
+ data.m_Parameters.m_Max = max;
+
+ armnn::PassthroughCpuTensorHandle refHandle(tensorInfo, &ret.outputExpected[0][0]);
+ armnn::FakeQuantizationQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadOutput(refData, refInfo, 0, tensorInfo, &refHandle);
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateFakeQuantization(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0], outputHandle.get());
+
+ ret.outputExpected = MakeTensor<float, 2>(tensorInfo, std::vector<float>({
+ 0.0f, 63.0f,
+ 128.0f, 191.0f,
+ 255.0f, 255.0f
+ }));
+ return ret;
+}
+
+namespace
+{
+
+LayerTestResult<float, 4> L2NormalizationTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::TensorShape& inputOutputTensorShape,
+ const std::vector<float>& inputValues,
+ const std::vector<float>& expectedOutputValues,
+ armnn::DataLayout dataLayout)
+{
+ const armnn::TensorInfo inputTensorInfo(inputOutputTensorShape, armnn::DataType::Float32);
+ const armnn::TensorInfo outputTensorInfo(inputOutputTensorShape, armnn::DataType::Float32);
+
+ auto inputTensor = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>(inputValues));
+
+ LayerTestResult<float, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>(expectedOutputValues));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::L2NormalizationQueueDescriptor descriptor;
+ descriptor.m_Parameters.m_DataLayout = dataLayout;
+ armnn::WorkloadInfo info;
+
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateL2Normalization(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &inputTensor[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+
+ return result;
+}
+
+float CalcInvL2Norm(std::initializer_list<float> elements)
+{
+ const float reduction = std::accumulate(elements.begin(), elements.end(), 0.0f,
+ [](float acc, float element) { return acc + element * element; });
+ return 1.0f / sqrtf(reduction);
+}
+
+} // anonymous namespace
+
+template<typename T>
+LayerTestResult<T, 2> Pad2dTestCommon(armnn::IWorkloadFactory& workloadFactory, float qScale, int32_t qOffset)
+{
+ const armnn::TensorShape inputShape{ 3, 3 };
+ const armnn::TensorShape outputShape{ 7, 7 };
+
+ const armnn::TensorInfo inputTensorInfo(inputShape, armnn::GetDataType<T>());
+ const armnn::TensorInfo outputTensorInfo(outputShape, armnn::GetDataType<T>());
+
+ std::vector<T> inputValues(
+ QuantizedVector<T>(qScale, qOffset,
+ {
+ // Height (3) x Width (3)
+ 4, 8, 6,
+ 7, 4, 4,
+ 3, 2, 4
+ }));
+
+ std::vector<T> expectedOutputValues(
+ QuantizedVector<T>(qScale, qOffset,
+ {
+ 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 4, 8, 6, 0, 0,
+ 0, 0, 7, 4, 4, 0, 0,
+ 0, 0, 3, 2, 4, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0
+ }));
+
+ auto inputTensor = MakeTensor<T, 2>(inputTensorInfo, std::vector<T>(inputValues));
+
+ LayerTestResult<T, 2> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<T, 2>(outputTensorInfo, std::vector<T>(expectedOutputValues));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::PadQueueDescriptor descriptor;
+
+ std::vector<std::pair<unsigned int, unsigned int>> PadList;
+ PadList.push_back(std::pair<unsigned int, unsigned int>(2,2));
+ PadList.push_back(std::pair<unsigned int, unsigned int>(2,2));
+
+ descriptor.m_Parameters.m_PadList = PadList;
+ armnn::WorkloadInfo info;
+
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreatePad(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &inputTensor[0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0], outputHandle.get());
+
+ return result;
+}
+
+template <typename T>
+LayerTestResult<T, 3> Pad3dTestCommon(armnn::IWorkloadFactory& workloadFactory, float qScale, int32_t qOffset)
+{
+ const armnn::TensorShape inputShape{ 2, 2, 2 };
+ const armnn::TensorShape outputShape{ 3, 5, 6 };
+
+ const armnn::TensorInfo inputTensorInfo(inputShape, armnn::GetDataType<T>());
+ const armnn::TensorInfo outputTensorInfo(outputShape, armnn::GetDataType<T>());
+
+ std::vector<T> inputValues(
+ QuantizedVector<T>(qScale,qOffset,
+ {
+ // Channel 0, Height (2) x Width (2)
+ 0, 4,
+ 2, 5,
+
+ // Channel 1, Height (2) x Width (2)
+ 6, 1,
+ 5, 2
+ }));
+
+ std::vector<T> expectedOutputValues(
+ QuantizedVector<T>(qScale,qOffset,
+ {
+
+ 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 4, 0, 0,
+ 0, 0, 2, 5, 0, 0,
+ 0, 0, 0, 0, 0, 0,
+
+ 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0,
+ 0, 0, 6, 1, 0, 0,
+ 0, 0, 5, 2, 0, 0,
+ 0, 0, 0, 0, 0, 0,
+
+ 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0
+
+ }));
+
+ auto inputTensor = MakeTensor<T, 3>(inputTensorInfo, std::vector<T>(inputValues));
+
+ LayerTestResult<T, 3> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<T, 3>(outputTensorInfo, std::vector<T>(expectedOutputValues));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::PadQueueDescriptor descriptor;
+
+ std::vector<std::pair<unsigned int, unsigned int>> PadList;
+ PadList.push_back(std::pair<unsigned int, unsigned int>(0,1));
+ PadList.push_back(std::pair<unsigned int, unsigned int>(2,1));
+ PadList.push_back(std::pair<unsigned int, unsigned int>(2,2));
+
+ descriptor.m_Parameters.m_PadList = PadList;
+ armnn::WorkloadInfo info;
+
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreatePad(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &inputTensor[0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0], outputHandle.get());
+
+ return result;
+}
+
+template <typename T>
+LayerTestResult<T, 4> Pad4dTestCommon(armnn::IWorkloadFactory& workloadFactory, float qScale, int32_t qOffset)
+{
+ const armnn::TensorShape inputShape{ 2, 2, 3, 2 };
+ const armnn::TensorShape outputShape{ 4, 5, 7, 4 };
+
+ const armnn::TensorInfo inputTensorInfo(inputShape, armnn::GetDataType<T>());
+ const armnn::TensorInfo outputTensorInfo(outputShape, armnn::GetDataType<T>());
+
+ std::vector<T> inputValues(
+ QuantizedVector<T>(qScale,qOffset,
+ {
+ // Batch 0, Channel 0, Height (3) x Width (2)
+ 0, 1,
+ 2, 3,
+ 4, 5,
+
+ // Batch 0, Channel 1, Height (3) x Width (2)
+ 6, 7,
+ 8, 9,
+ 10, 11,
+
+ // Batch 1, Channel 0, Height (3) x Width (2)
+ 12, 13,
+ 14, 15,
+ 16, 17,
+
+ // Batch 1, Channel 1, Height (3) x Width (2)
+ 18, 19,
+ 20, 21,
+ 22, 23
+ }));
+
+ std::vector<T> expectedOutputValues(
+ QuantizedVector<T>(qScale,qOffset,
+ {
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 1, 0,
+ 0, 2, 3, 0,
+ 0, 4, 5, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 6, 7, 0,
+ 0, 8, 9, 0,
+ 0, 10, 11, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 12, 13, 0,
+ 0, 14, 15, 0,
+ 0, 16, 17, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 18, 19, 0,
+ 0, 20, 21, 0,
+ 0, 22, 23, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0
+ }));
+
+ auto inputTensor = MakeTensor<T, 4>(inputTensorInfo, std::vector<T>(inputValues));
+
+ LayerTestResult<T, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<T, 4>(outputTensorInfo, std::vector<T>(expectedOutputValues));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::PadQueueDescriptor descriptor;
+
+ std::vector<std::pair<unsigned int, unsigned int>> PadList;
+ PadList.push_back(std::pair<unsigned int, unsigned int>(1,1));
+ PadList.push_back(std::pair<unsigned int, unsigned int>(2,1));
+ PadList.push_back(std::pair<unsigned int, unsigned int>(3,1));
+ PadList.push_back(std::pair<unsigned int, unsigned int>(1,1));
+
+ descriptor.m_Parameters.m_PadList = PadList;
+ armnn::WorkloadInfo info;
+
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreatePad(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &inputTensor[0][0][0][0]);
+
+ workloadFactory.Finalize();
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+
+ return result;
+}
+
+LayerTestResult<uint8_t, 2> PadUint82dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Pad2dTestCommon<uint8_t>(workloadFactory, 1.0f, 0);
+}
+
+LayerTestResult<uint8_t, 3> PadUint83dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Pad3dTestCommon<uint8_t>(workloadFactory, 1.0f, 0);
+}
+
+LayerTestResult<uint8_t, 4> PadUint84dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Pad4dTestCommon<uint8_t>(workloadFactory, 1.0f, 0);
+}
+
+LayerTestResult<float, 2> PadFloat322dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Pad2dTestCommon<float>(workloadFactory, 0.0f, 0);
+}
+
+LayerTestResult<float, 3> PadFloat323dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Pad3dTestCommon<float>(workloadFactory, 0.0f, 0);
+}
+
+LayerTestResult<float, 4> PadFloat324dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Pad4dTestCommon<float>(workloadFactory, 0.0f, 0);
+}
+
+LayerTestResult<float, 4> L2Normalization1dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ // Width: 1
+ // Height: 1
+ // Channels: 10
+ // BatchSize: 1
+
+ const armnn::TensorShape inputOutputShape{ 1, 10, 1, 1 };
+ std::vector<float> inputValues
+ {
+ // Batch 0, Channel 0, Height (1) x Width (1)
+ 1.0f,
+
+ // Batch 0, Channel 1, Height (1) x Width (1)
+ 2.0f,
+
+ // Batch 0, Channel 2, Height (1) x Width (1)
+ 3.0f,
+
+ // Batch 0, Channel 3, Height (1) x Width (1)
+ 4.0f,
+
+ // Batch 0, Channel 4, Height (1) x Width (1)
+ 5.0f,
+
+ // Batch 0, Channel 5, Height (1) x Width (1)
+ 6.0f,
+
+ // Batch 0, Channel 6, Height (1) x Width (1)
+ 7.0f,
+
+ // Batch 0, Channel 7, Height (1) x Width (1)
+ 8.0f,
+
+ // Batch 0, Channel 8, Height (1) x Width (1)
+ 9.0f,
+
+ // Batch 0, Channel 9, Height (1) x Width (1)
+ 10.0f
+ };
+ const float approxInvL2Norm = 0.050964719f;
+ std::vector<float> expectedOutputValues
+ {
+ // Batch 0, Channel 0, Height (1) x Width (1)
+ 1.0f * approxInvL2Norm,
+ 2.0f * approxInvL2Norm,
+ 3.0f * approxInvL2Norm,
+ 4.0f * approxInvL2Norm,
+ 5.0f * approxInvL2Norm,
+ 6.0f * approxInvL2Norm,
+ 7.0f * approxInvL2Norm,
+ 8.0f * approxInvL2Norm,
+ 9.0f * approxInvL2Norm,
+ 10.0f * approxInvL2Norm
+ };
+
+ return L2NormalizationTestImpl(workloadFactory, inputOutputShape,
+ inputValues, expectedOutputValues, armnn::DataLayout::NCHW);
+}
+
+LayerTestResult<float, 4> L2Normalization1dNhwcTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ // Width: 1
+ // Height: 1
+ // Channels: 10
+ // BatchSize: 1
+
+ const armnn::TensorShape inputOutputShape{ 1, 1, 1, 10 };
+ std::vector<float> inputValues
+ {
+ // Batch 0, Height 0, Width (1) x Channel (10)
+ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f
+ };
+ const float approxInvL2Norm = 0.050964719f;
+ std::vector<float> expectedOutputValues
+ {
+ // Batch 0, Height 0, Width (1) x Channel (10)
+ 1.0f * approxInvL2Norm,
+ 2.0f * approxInvL2Norm,
+ 3.0f * approxInvL2Norm,
+ 4.0f * approxInvL2Norm,
+ 5.0f * approxInvL2Norm,
+ 6.0f * approxInvL2Norm,
+ 7.0f * approxInvL2Norm,
+ 8.0f * approxInvL2Norm,
+ 9.0f * approxInvL2Norm,
+ 10.0f * approxInvL2Norm
+ };
+
+ return L2NormalizationTestImpl(workloadFactory, inputOutputShape,
+ inputValues, expectedOutputValues, armnn::DataLayout::NHWC);
+}
+
+LayerTestResult<float, 4> L2Normalization2dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ // Width: 5
+ // Height: 1
+ // Channels: 2
+ // BatchSize: 1
+
+ const armnn::TensorShape inputOutputShape{ 1, 2, 1, 5 };
+ std::vector<float> inputValues
+ {
+ // Batch 0, Channel 0, Height (1) x Width (5)
+ 1.0f, 3.0f, 5.0f, 7.0f, 9.0f,
+
+ // Batch 0, Channel 1, Height (1) x Width (5)
+ 2.0f, 4.0f, 6.0f, 8.0f, 10.0f
+ };
+ std::vector<float> expectedOutputValues
+ {
+ // Batch 0, Channel 0, Height (1) x Width (5)
+ 1.0f * CalcInvL2Norm({ 1.0f, 2.0f }),
+ 3.0f * CalcInvL2Norm({ 3.0f, 4.0f }),
+ 5.0f * CalcInvL2Norm({ 5.0f, 6.0f }),
+ 7.0f * CalcInvL2Norm({ 7.0f, 8.0f }),
+ 9.0f * CalcInvL2Norm({ 9.0f, 10.0f }),
+
+ // Batch 0, Channel 1, Height (1) x Width (5)
+ 2.0f * CalcInvL2Norm({ 1.0f, 2.0f }),
+ 4.0f * CalcInvL2Norm({ 3.0f, 4.0f }),
+ 6.0f * CalcInvL2Norm({ 5.0f, 6.0f }),
+ 8.0f * CalcInvL2Norm({ 7.0f, 8.0f }),
+ 10.0f * CalcInvL2Norm({ 9.0f, 10.0f })
+ };
+
+ return L2NormalizationTestImpl(workloadFactory, inputOutputShape,
+ inputValues, expectedOutputValues, armnn::DataLayout::NCHW);
+}
+
+LayerTestResult<float, 4> L2Normalization2dNhwcTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ // Width: 5
+ // Height: 1
+ // Channels: 2
+ // BatchSize: 1
+
+ const armnn::TensorShape inputOutputShape{ 1, 1, 5, 2 };
+ std::vector<float> inputValues
+ {
+ // Batch 0, Height 0, Width (5) x Channel (2)
+ 1.0f, 2.0f,
+ 3.0f, 4.0f,
+ 5.0f, 6.0f,
+ 7.0f, 8.0f,
+ 9.0f, 10.0f
+ };
+ std::vector<float> expectedOutputValues
+ {
+ // Batch 0, Height 0, Width (5) x Channel (2)
+ 1.0f * CalcInvL2Norm({ 1.0f, 2.0f }),
+ 2.0f * CalcInvL2Norm({ 1.0f, 2.0f }),
+ 3.0f * CalcInvL2Norm({ 3.0f, 4.0f }),
+ 4.0f * CalcInvL2Norm({ 3.0f, 4.0f }),
+ 5.0f * CalcInvL2Norm({ 5.0f, 6.0f }),
+ 6.0f * CalcInvL2Norm({ 5.0f, 6.0f }),
+ 7.0f * CalcInvL2Norm({ 7.0f, 8.0f }),
+ 8.0f * CalcInvL2Norm({ 7.0f, 8.0f }),
+ 9.0f * CalcInvL2Norm({ 9.0f, 10.0f }),
+ 10.0f * CalcInvL2Norm({ 9.0f, 10.0f })
+ };
+
+ return L2NormalizationTestImpl(workloadFactory, inputOutputShape,
+ inputValues, expectedOutputValues, armnn::DataLayout::NHWC);
+}
+
+LayerTestResult<float, 4> L2Normalization3dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ // Width: 3
+ // Height: 4
+ // Channels: 2
+ // BatchSize: 1
+
+ const armnn::TensorShape inputOutputShape{ 1, 2, 4, 3 };
+ std::vector<float> inputValues
+ {
+ // Batch 0, Channel 0, Height (4) x Width (3)
+ 119.0f, 21.0f, 150.0f,
+ 149.0f, 32.0f, 179.0f,
+ 15.0f, 227.0f, 141.0f,
+ 147.0f, 199.0f, 220.0f,
+
+ // Batch 0, Channel 1, Height (4) x Width (3)
+ 110.0f, 140.0f, 73.0f,
+ 211.0f, 212.0f, 89.0f,
+ 24.0f, 138.0f, 188.0f,
+ 162.0f, 12.0f, 161.0f
+ };
+ std::vector<float> expectedOutputValues
+ {
+ // Batch 0, Channel 0, Height (4) x Width (3)
+ 119.0f * CalcInvL2Norm({ 119.0f, 110.0f }),
+ 21.0f * CalcInvL2Norm({ 21.0f, 140.0f }),
+ 150.0f * CalcInvL2Norm({ 150.0f, 73.0f }),
+ 149.0f * CalcInvL2Norm({ 149.0f, 211.0f }),
+ 32.0f * CalcInvL2Norm({ 32.0f, 212.0f }),
+ 179.0f * CalcInvL2Norm({ 179.0f, 89.0f }),
+ 15.0f * CalcInvL2Norm({ 15.0f, 24.0f }),
+ 227.0f * CalcInvL2Norm({ 227.0f, 138.0f }),
+ 141.0f * CalcInvL2Norm({ 141.0f, 188.0f }),
+ 147.0f * CalcInvL2Norm({ 147.0f, 162.0f }),
+ 199.0f * CalcInvL2Norm({ 199.0f, 12.0f }),
+ 220.0f * CalcInvL2Norm({ 220.0f, 161.0f }),
+
+ // Batch 0, Channel 1, Height (4) x Width (3)
+ 110.0f * CalcInvL2Norm({ 119.0f, 110.0f }),
+ 140.0f * CalcInvL2Norm({ 21.0f, 140.0f }),
+ 73.0f * CalcInvL2Norm({ 150.0f, 73.0f }),
+ 211.0f * CalcInvL2Norm({ 149.0f, 211.0f }),
+ 212.0f * CalcInvL2Norm({ 32.0f, 212.0f }),
+ 89.0f * CalcInvL2Norm({ 179.0f, 89.0f }),
+ 24.0f * CalcInvL2Norm({ 15.0f, 24.0f }),
+ 138.0f * CalcInvL2Norm({ 227.0f, 138.0f }),
+ 188.0f * CalcInvL2Norm({ 141.0f, 188.0f }),
+ 162.0f * CalcInvL2Norm({ 147.0f, 162.0f }),
+ 12.0f * CalcInvL2Norm({ 199.0f, 12.0f }),
+ 161.0f * CalcInvL2Norm({ 220.0f, 161.0f })
+ };
+
+ return L2NormalizationTestImpl(workloadFactory, inputOutputShape,
+ inputValues, expectedOutputValues, armnn::DataLayout::NCHW);
+}
+
+LayerTestResult<float, 4> L2Normalization3dNhwcTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ // Width: 3
+ // Height: 4
+ // Channels: 2
+ // BatchSize: 1
+
+ const armnn::TensorShape inputOutputShape{ 1, 4, 3, 2 };
+ std::vector<float> inputValues
+ {
+ // Batch 0, Height 0, Width (3) x Channel (2)
+ 119.0f, 110.0f,
+ 21.0f, 140.0f,
+ 150.0f, 73.0f,
+
+ // Batch 0, Height 1, Width (3) x Channel (2)
+ 149.0f, 211.0f,
+ 32.0f, 212.0f,
+ 179.0f, 89.0f,
+
+ // Batch 0, Height 2, Width (3) x Channel (2)
+ 15.0f, 24.0f,
+ 227.0f, 138.0f,
+ 141.0f, 188.0f,
+
+ // Batch 0, Height 3, Width (3) x Channel (2)
+ 147.0f, 162.0f,
+ 199.0f, 12.0f,
+ 220.0f, 161.0f
+ };
+ std::vector<float> expectedOutputValues
+ {
+ // Batch 0, Height 0, Width (3) x Channel (2)
+ 119.0f * CalcInvL2Norm({ 119.0f, 110.0f }),
+ 110.0f * CalcInvL2Norm({ 119.0f, 110.0f }),
+ 21.0f * CalcInvL2Norm({ 21.0f, 140.0f }),
+ 140.0f * CalcInvL2Norm({ 21.0f, 140.0f }),
+ 150.0f * CalcInvL2Norm({ 150.0f, 73.0f }),
+ 73.0f * CalcInvL2Norm({ 150.0f, 73.0f }),
+
+ // Batch 0, Height 1, Width (3) x Channel (2)
+ 149.0f * CalcInvL2Norm({ 149.0f, 211.0f }),
+ 211.0f * CalcInvL2Norm({ 149.0f, 211.0f }),
+ 32.0f * CalcInvL2Norm({ 32.0f, 212.0f }),
+ 212.0f * CalcInvL2Norm({ 32.0f, 212.0f }),
+ 179.0f * CalcInvL2Norm({ 179.0f, 89.0f }),
+ 89.0f * CalcInvL2Norm({ 179.0f, 89.0f }),
+
+ // Batch 0, Height 2, Width (3) x Channel (2)
+ 15.0f * CalcInvL2Norm({ 15.0f, 24.0f }),
+ 24.0f * CalcInvL2Norm({ 15.0f, 24.0f }),
+ 227.0f * CalcInvL2Norm({ 227.0f, 138.0f }),
+ 138.0f * CalcInvL2Norm({ 227.0f, 138.0f }),
+ 141.0f * CalcInvL2Norm({ 141.0f, 188.0f }),
+ 188.0f * CalcInvL2Norm({ 141.0f, 188.0f }),
+
+ // Batch 0, Height 3, Width (3) x Channel (2)
+ 147.0f * CalcInvL2Norm({ 147.0f, 162.0f }),
+ 162.0f * CalcInvL2Norm({ 147.0f, 162.0f }),
+ 199.0f * CalcInvL2Norm({ 199.0f, 12.0f }),
+ 12.0f * CalcInvL2Norm({ 199.0f, 12.0f }),
+ 220.0f * CalcInvL2Norm({ 220.0f, 161.0f }),
+ 161.0f * CalcInvL2Norm({ 220.0f, 161.0f })
+ };
+
+ return L2NormalizationTestImpl(workloadFactory, inputOutputShape,
+ inputValues, expectedOutputValues, armnn::DataLayout::NHWC);
+}
+
+LayerTestResult<float, 4> L2Normalization4dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ // Width: 3
+ // Height: 4
+ // Channels: 3
+ // BatchSize: 2
+
+ const armnn::TensorShape inputOutputShape{ 2, 3, 4, 3 };
+ std::vector<float> inputValues
+ {
+ // Batch 0, Channel 0, Height (4) x Width (3)
+ 235.0f, 46.0f, 178.0f,
+ 100.0f, 123.0f, 19.0f,
+ 172.0f, 74.0f, 250.0f,
+ 6.0f, 195.0f, 80.0f,
+
+ // Batch 0, Channel 1, Height (4) x Width (3)
+ 113.0f, 95.0f, 202.0f,
+ 77.0f, 114.0f, 71.0f,
+ 122.0f, 246.0f, 166.0f,
+ 82.0f, 28.0f, 37.0f,
+
+ // Batch 0, Channel 2, Height (4) x Width (3)
+ 56.0f, 170.0f, 162.0f,
+ 194.0f, 89.0f, 254.0f,
+ 12.0f, 209.0f, 200.0f,
+ 1.0f, 64.0f, 54.0f,
+
+ // Batch 1, Channel 0, Height (4) x Width (3)
+ 67.0f, 90.0f, 49.0f,
+ 7.0f, 163.0f, 18.0f,
+ 25.0f, 117.0f, 103.0f,
+ 247.0f, 59.0f, 189.0f,
+
+ // Batch 1, Channel 1, Height (4) x Width (3)
+ 239.0f, 104.0f, 199.0f,
+ 17.0f, 124.0f, 153.0f,
+ 222.0f, 217.0f, 75.0f,
+ 32.0f, 126.0f, 21.0f,
+
+ // Batch 1, Channel 2, Height (4) x Width (3)
+ 97.0f, 145.0f, 215.0f,
+ 115.0f, 116.0f, 238.0f,
+ 226.0f, 16.0f, 132.0f,
+ 92.0f, 125.0f, 88.0f
+ };
+ std::vector<float> expectedOutputValues
+ {
+ // Batch 0, Channel 0, Height (4) x Width (3)
+ 235.0f * CalcInvL2Norm({ 235.0f, 113.0f, 56.0f }),
+ 46.0f * CalcInvL2Norm({ 46.0f, 95.0f, 170.0f }),
+ 178.0f * CalcInvL2Norm({ 178.0f, 202.0F, 162.0f }),
+ 100.0f * CalcInvL2Norm({ 100.0f, 77.0f, 194.0f }),
+ 123.0f * CalcInvL2Norm({ 123.0f, 114.0f, 89.0f }),
+ 19.0f * CalcInvL2Norm({ 19.0f, 71.0f, 254.0f }),
+ 172.0f * CalcInvL2Norm({ 172.0f, 122.0f, 12.0f }),
+ 74.0f * CalcInvL2Norm({ 74.0f, 246.0f, 209.0f }),
+ 250.0f * CalcInvL2Norm({ 250.0f, 166.0f, 200.0f }),
+ 6.0f * CalcInvL2Norm({ 6.0f, 82.0f, 1.0f }),
+ 195.0f * CalcInvL2Norm({ 195.0f, 28.0f, 64.0f }),
+ 80.0f * CalcInvL2Norm({ 80.0f, 37.0f, 54.0f }),
+
+ // Batch 0, Channel 1, Height (4) x Width (3)
+ 113.0f * CalcInvL2Norm({ 235.0f, 113.0f, 56.0f }),
+ 95.0f * CalcInvL2Norm({ 46.0f, 95.0f, 170.0f }),
+ 202.0f * CalcInvL2Norm({ 178.0f, 202.0F, 162.0f }),
+ 77.0f * CalcInvL2Norm({ 100.0f, 77.0f, 194.0f }),
+ 114.0f * CalcInvL2Norm({ 123.0f, 114.0f, 89.0f }),
+ 71.0f * CalcInvL2Norm({ 19.0f, 71.0f, 254.0f }),
+ 122.0f * CalcInvL2Norm({ 172.0f, 122.0f, 12.0f }),
+ 246.0f * CalcInvL2Norm({ 74.0f, 246.0f, 209.0f }),
+ 166.0f * CalcInvL2Norm({ 250.0f, 166.0f, 200.0f }),
+ 82.0f * CalcInvL2Norm({ 6.0f, 82.0f, 1.0f }),
+ 28.0f * CalcInvL2Norm({ 195.0f, 28.0f, 64.0f }),
+ 37.0f * CalcInvL2Norm({ 80.0f, 37.0f, 54.0f }),
+
+ // Batch 0, Channel 2, Height (4) x Width (3)
+ 56.0f * CalcInvL2Norm({ 235.0f, 113.0f, 56.0f }),
+ 170.0f * CalcInvL2Norm({ 46.0f, 95.0f, 170.0f }),
+ 162.0f * CalcInvL2Norm({ 178.0f, 202.0F, 162.0f }),
+ 194.0f * CalcInvL2Norm({ 100.0f, 77.0f, 194.0f }),
+ 89.0f * CalcInvL2Norm({ 123.0f, 114.0f, 89.0f }),
+ 254.0f * CalcInvL2Norm({ 19.0f, 71.0f, 254.0f }),
+ 12.0f * CalcInvL2Norm({ 172.0f, 122.0f, 12.0f }),
+ 209.0f * CalcInvL2Norm({ 74.0f, 246.0f, 209.0f }),
+ 200.0f * CalcInvL2Norm({ 250.0f, 166.0f, 200.0f }),
+ 1.0f * CalcInvL2Norm({ 6.0f, 82.0f, 1.0f }),
+ 64.0f * CalcInvL2Norm({ 195.0f, 28.0f, 64.0f }),
+ 54.0f * CalcInvL2Norm({ 80.0f, 37.0f, 54.0f }),
+
+ // Batch 1, Channel 0, Height (4) x Width (3)
+ 67.0f * CalcInvL2Norm({ 67.0f, 239.0f, 97.0f }),
+ 90.0f * CalcInvL2Norm({ 90.0f, 104.0f, 145.0f }),
+ 49.0f * CalcInvL2Norm({ 49.0f, 199.0f, 215.0f }),
+ 7.0f * CalcInvL2Norm({ 7.0f, 17.0f, 115.0f }),
+ 163.0f * CalcInvL2Norm({ 163.0f, 124.0f, 116.0f }),
+ 18.0f * CalcInvL2Norm({ 18.0f, 153.0f, 238.0f }),
+ 25.0f * CalcInvL2Norm({ 25.0f, 222.0f, 226.0f }),
+ 117.0f * CalcInvL2Norm({ 117.0f, 217.0f, 16.0f }),
+ 103.0f * CalcInvL2Norm({ 103.0f, 75.0f, 132.0f }),
+ 247.0f * CalcInvL2Norm({ 247.0f, 32.0f, 92.0f }),
+ 59.0f * CalcInvL2Norm({ 59.0f, 126.0f, 125.0f }),
+ 189.0f * CalcInvL2Norm({ 189.0f, 21.0f, 88.0f }),
+
+ // Batch 1, Channel 1, Height (4) x Width (3)
+ 239.0f * CalcInvL2Norm({ 67.0f, 239.0f, 97.0f }),
+ 104.0f * CalcInvL2Norm({ 90.0f, 104.0f, 145.0f }),
+ 199.0f * CalcInvL2Norm({ 49.0f, 199.0f, 215.0f }),
+ 17.0f * CalcInvL2Norm({ 7.0f, 17.0f, 115.0f }),
+ 124.0f * CalcInvL2Norm({ 163.0f, 124.0f, 116.0f }),
+ 153.0f * CalcInvL2Norm({ 18.0f, 153.0f, 238.0f }),
+ 222.0f * CalcInvL2Norm({ 25.0f, 222.0f, 226.0f }),
+ 217.0f * CalcInvL2Norm({ 117.0f, 217.0f, 16.0f }),
+ 75.0f * CalcInvL2Norm({ 103.0f, 75.0f, 132.0f }),
+ 32.0f * CalcInvL2Norm({ 247.0f, 32.0f, 92.0f }),
+ 126.0f * CalcInvL2Norm({ 59.0f, 126.0f, 125.0f }),
+ 21.0f * CalcInvL2Norm({ 189.0f, 21.0f, 88.0f }),
+
+ // Batch 1, Channel 2, Height (4) x Width (3)
+ 97.0f * CalcInvL2Norm({ 67.0f, 239.0f, 97.0f }),
+ 145.0f * CalcInvL2Norm({ 90.0f, 104.0f, 145.0f }),
+ 215.0f * CalcInvL2Norm({ 49.0f, 199.0f, 215.0f }),
+ 115.0f * CalcInvL2Norm({ 7.0f, 17.0f, 115.0f }),
+ 116.0f * CalcInvL2Norm({ 163.0f, 124.0f, 116.0f }),
+ 238.0f * CalcInvL2Norm({ 18.0f, 153.0f, 238.0f }),
+ 226.0f * CalcInvL2Norm({ 25.0f, 222.0f, 226.0f }),
+ 16.0f * CalcInvL2Norm({ 117.0f, 217.0f, 16.0f }),
+ 132.0f * CalcInvL2Norm({ 103.0f, 75.0f, 132.0f }),
+ 92.0f * CalcInvL2Norm({ 247.0f, 32.0f, 92.0f }),
+ 125.0f * CalcInvL2Norm({ 59.0f, 126.0f, 125.0f }),
+ 88.0f * CalcInvL2Norm({ 189.0f, 21.0f, 88.0f })
+ };
+
+ return L2NormalizationTestImpl(workloadFactory, inputOutputShape,
+ inputValues, expectedOutputValues, armnn::DataLayout::NCHW);
+}
+
+LayerTestResult<float, 4> L2Normalization4dNhwcTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ // Width: 3
+ // Height: 4
+ // Channels: 3
+ // BatchSize: 2
+
+ const armnn::TensorShape inputOutputShape{ 2, 4, 3, 3 };
+ std::vector<float> inputValues
+ {
+ // Batch 0, Height 0, Width (3) x Channel (3)
+ 235.0f, 113.0f, 56.0f,
+ 46.0f, 95.0f, 170.0f,
+ 178.0f, 202.0f, 162.0f,
+
+ // Batch 0, Height 1, Width (3) x Channel (3)
+ 100.0f, 77.0f, 194.0f,
+ 123.0f, 114.0f, 89.0f,
+ 19.0f, 71.0f, 254.0f,
+
+ // Batch 0, Height 2, Width (3) x Channel (3)
+ 172.0f, 122.0f, 12.0f,
+ 74.0f, 246.0f, 209.0f,
+ 250.0f, 166.0f, 200.0f,
+
+ // Batch 0, Height 3, Width (3) x Channel (3)
+ 6.0f, 82.0f, 1.0f,
+ 195.0f, 28.0f, 64.0f,
+ 80.0f, 37.0f, 54.0f,
+
+ // Batch 1, Height 0, Width (3) x Channel (3)
+ 67.0f, 239.0f, 97.0f,
+ 90.0f, 104.0f, 145.0f,
+ 49.0f, 199.0f, 215.0f,
+
+ // Batch 1, Height 1, Width (3) x Channel (3)
+ 7.0f, 17.0f, 115.0f,
+ 163.0f, 124.0f, 116.0f,
+ 18.0f, 153.0f, 238.0f,
+
+ // Batch 1, Height 2, Width (3) x Channel (3)
+ 25.0f, 222.0f, 226.0f,
+ 117.0f, 217.0f, 16.0f,
+ 103.0f, 75.0f, 132.0f,
+
+ // Batch 1, Height 3, Width (3) x Channel (3)
+ 247.0f, 32.0f, 92.0f,
+ 59.0f, 126.0f, 125.0f,
+ 189.0f, 21.0f, 88.0f
+ };
+ std::vector<float> expectedOutputValues
+ {
+ // Batch 0, Height 0, Width (3) x Channel (3)
+ 235.0f * CalcInvL2Norm({ 235.0f, 113.0f, 56.0f }),
+ 113.0f * CalcInvL2Norm({ 235.0f, 113.0f, 56.0f }),
+ 56.0f * CalcInvL2Norm({ 235.0f, 113.0f, 56.0f }),
+ 46.0f * CalcInvL2Norm({ 46.0f, 95.0f, 170.0f }),
+ 95.0f * CalcInvL2Norm({ 46.0f, 95.0f, 170.0f }),
+ 170.0f * CalcInvL2Norm({ 46.0f, 95.0f, 170.0f }),
+ 178.0f * CalcInvL2Norm({ 178.0f, 202.0F, 162.0f }),
+ 202.0f * CalcInvL2Norm({ 178.0f, 202.0F, 162.0f }),
+ 162.0f * CalcInvL2Norm({ 178.0f, 202.0F, 162.0f }),
+
+ // Batch 0, Height 1, Width (3) x Channel (3)
+ 100.0f * CalcInvL2Norm({ 100.0f, 77.0f, 194.0f }),
+ 77.0f * CalcInvL2Norm({ 100.0f, 77.0f, 194.0f }),
+ 194.0f * CalcInvL2Norm({ 100.0f, 77.0f, 194.0f }),
+ 123.0f * CalcInvL2Norm({ 123.0f, 114.0f, 89.0f }),
+ 114.0f * CalcInvL2Norm({ 123.0f, 114.0f, 89.0f }),
+ 89.0f * CalcInvL2Norm({ 123.0f, 114.0f, 89.0f }),
+ 19.0f * CalcInvL2Norm({ 19.0f, 71.0f, 254.0f }),
+ 71.0f * CalcInvL2Norm({ 19.0f, 71.0f, 254.0f }),
+ 254.0f * CalcInvL2Norm({ 19.0f, 71.0f, 254.0f }),
+
+ // Batch 0, Height 2, Width (3) x Channel (3)
+ 172.0f * CalcInvL2Norm({ 172.0f, 122.0f, 12.0f }),
+ 122.0f * CalcInvL2Norm({ 172.0f, 122.0f, 12.0f }),
+ 12.0f * CalcInvL2Norm({ 172.0f, 122.0f, 12.0f }),
+ 74.0f * CalcInvL2Norm({ 74.0f, 246.0f, 209.0f }),
+ 246.0f * CalcInvL2Norm({ 74.0f, 246.0f, 209.0f }),
+ 209.0f * CalcInvL2Norm({ 74.0f, 246.0f, 209.0f }),
+ 250.0f * CalcInvL2Norm({ 250.0f, 166.0f, 200.0f }),
+ 166.0f * CalcInvL2Norm({ 250.0f, 166.0f, 200.0f }),
+ 200.0f * CalcInvL2Norm({ 250.0f, 166.0f, 200.0f }),
+
+ // Batch 0, Height 3, Width (3) x Channel (3)
+ 6.0f * CalcInvL2Norm({ 6.0f, 82.0f, 1.0f }),
+ 82.0f * CalcInvL2Norm({ 6.0f, 82.0f, 1.0f }),
+ 1.0f * CalcInvL2Norm({ 6.0f, 82.0f, 1.0f }),
+ 195.0f * CalcInvL2Norm({ 195.0f, 28.0f, 64.0f }),
+ 28.0f * CalcInvL2Norm({ 195.0f, 28.0f, 64.0f }),
+ 64.0f * CalcInvL2Norm({ 195.0f, 28.0f, 64.0f }),
+ 80.0f * CalcInvL2Norm({ 80.0f, 37.0f, 54.0f }),
+ 37.0f * CalcInvL2Norm({ 80.0f, 37.0f, 54.0f }),
+ 54.0f * CalcInvL2Norm({ 80.0f, 37.0f, 54.0f }),
+
+ // Batch 1, Height 0, Width (3) x Channel (3)
+ 67.0f * CalcInvL2Norm({ 67.0f, 239.0f, 97.0f }),
+ 239.0f * CalcInvL2Norm({ 67.0f, 239.0f, 97.0f }),
+ 97.0f * CalcInvL2Norm({ 67.0f, 239.0f, 97.0f }),
+ 90.0f * CalcInvL2Norm({ 90.0f, 104.0f, 145.0f }),
+ 104.0f * CalcInvL2Norm({ 90.0f, 104.0f, 145.0f }),
+ 145.0f * CalcInvL2Norm({ 90.0f, 104.0f, 145.0f }),
+ 49.0f * CalcInvL2Norm({ 49.0f, 199.0f, 215.0f }),
+ 199.0f * CalcInvL2Norm({ 49.0f, 199.0f, 215.0f }),
+ 215.0f * CalcInvL2Norm({ 49.0f, 199.0f, 215.0f }),
+
+ // Batch 1, Height 1, Width (3) x Channel (3)
+ 7.0f * CalcInvL2Norm({ 7.0f, 17.0f, 115.0f }),
+ 17.0f * CalcInvL2Norm({ 7.0f, 17.0f, 115.0f }),
+ 115.0f * CalcInvL2Norm({ 7.0f, 17.0f, 115.0f }),
+ 163.0f * CalcInvL2Norm({ 163.0f, 124.0f, 116.0f }),
+ 124.0f * CalcInvL2Norm({ 163.0f, 124.0f, 116.0f }),
+ 116.0f * CalcInvL2Norm({ 163.0f, 124.0f, 116.0f }),
+ 18.0f * CalcInvL2Norm({ 18.0f, 153.0f, 238.0f }),
+ 153.0f * CalcInvL2Norm({ 18.0f, 153.0f, 238.0f }),
+ 238.0f * CalcInvL2Norm({ 18.0f, 153.0f, 238.0f }),
+
+ // Batch 1, Height 2, Width (3) x Channel (3)
+ 25.0f * CalcInvL2Norm({ 25.0f, 222.0f, 226.0f }),
+ 222.0f * CalcInvL2Norm({ 25.0f, 222.0f, 226.0f }),
+ 226.0f * CalcInvL2Norm({ 25.0f, 222.0f, 226.0f }),
+ 117.0f * CalcInvL2Norm({ 117.0f, 217.0f, 16.0f }),
+ 217.0f * CalcInvL2Norm({ 117.0f, 217.0f, 16.0f }),
+ 16.0f * CalcInvL2Norm({ 117.0f, 217.0f, 16.0f }),
+ 103.0f * CalcInvL2Norm({ 103.0f, 75.0f, 132.0f }),
+ 75.0f * CalcInvL2Norm({ 103.0f, 75.0f, 132.0f }),
+ 132.0f * CalcInvL2Norm({ 103.0f, 75.0f, 132.0f }),
+
+ // Batch 1, Height 3, Width (3) x Channel (3)
+ 247.0f * CalcInvL2Norm({ 247.0f, 32.0f, 92.0f }),
+ 32.0f * CalcInvL2Norm({ 247.0f, 32.0f, 92.0f }),
+ 92.0f * CalcInvL2Norm({ 247.0f, 32.0f, 92.0f }),
+ 59.0f * CalcInvL2Norm({ 59.0f, 126.0f, 125.0f }),
+ 126.0f * CalcInvL2Norm({ 59.0f, 126.0f, 125.0f }),
+ 125.0f * CalcInvL2Norm({ 59.0f, 126.0f, 125.0f }),
+ 189.0f * CalcInvL2Norm({ 189.0f, 21.0f, 88.0f }),
+ 21.0f * CalcInvL2Norm({ 189.0f, 21.0f, 88.0f }),
+ 88.0f * CalcInvL2Norm({ 189.0f, 21.0f, 88.0f })
+ };
+
+ return L2NormalizationTestImpl(workloadFactory, inputOutputShape,
+ inputValues, expectedOutputValues, armnn::DataLayout::NHWC);
+}
+
+template <typename T>
+LayerTestResult<T, 4> ConstantTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ float qScale,
+ int32_t qOffset)
+{
+ constexpr unsigned int inputWidth = 3;
+ constexpr unsigned int inputHeight = 4;
+ constexpr unsigned int inputChannels = 3;
+ constexpr unsigned int inputBatchSize = 2;
+
+ constexpr unsigned int outputWidth = inputWidth;
+ constexpr unsigned int outputHeight = inputHeight;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::GetDataType<T>());
+
+ armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ // Batch 0, Channel 0
+ 235.0f, 46.0f, 178.0f,
+ 100.0f, 123.0f, 19.0f,
+ 172.0f, 74.0f, 250.0f,
+ 6.0f, 195.0f, 80.0f,
+
+ // Batch 0, Channel 1
+ 113.0f, 95.0f, 202.0f,
+ 77.0f, 114.0f, 71.0f,
+ 122.0f, 246.0f, 166.0f,
+ 82.0f, 28.0f, 37.0f,
+
+ // Batch 0, Channel 2
+ 56.0f, 170.0f, 162.0f,
+ 194.0f, 89.0f, 254.0f,
+ 12.0f, 209.0f, 200.0f,
+ 1.0f, 64.0f, 54.0f,
+
+ // Batch 1, Channel 0
+ 67.0f, 90.0f, 49.0f,
+ 7.0f, 163.0f, 18.0f,
+ 25.0f, 117.0f, 103.0f,
+ 247.0f, 59.0f, 189.0f,
+
+ // Batch 1, Channel 1
+ 239.0f, 104.0f, 199.0f,
+ 17.0f, 124.0f, 153.0f,
+ 222.0f, 217.0f, 75.0f,
+ 32.0f, 126.0f, 21.0f,
+
+ // Batch 1, Channel 2
+ 97.0f, 145.0f, 215.0f,
+ 115.0f, 116.0f, 238.0f,
+ 226.0f, 16.0f, 132.0f,
+ 92.0f, 125.0f, 88.0f,
+ })));
+
+ LayerTestResult<T, 4> result(outputTensorInfo);
+ result.outputExpected = input;
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ScopedCpuTensorHandle constantTensor(inputTensorInfo);
+ AllocateAndCopyDataToITensorHandle(&constantTensor, &input[0][0][0][0]);
+
+ armnn::ConstantQueueDescriptor descriptor;
+ descriptor.m_LayerOutput = &constantTensor;
+
+ armnn::WorkloadInfo info;
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateConstant(descriptor, info);
+
+ outputHandle->Allocate();
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<float, 4> ConstantTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return ConstantTestImpl<float>(workloadFactory, 0.0f, 0);
+}
+
+LayerTestResult<uint8_t, 4> ConstantTestUint8(armnn::IWorkloadFactory& workloadFactory)
+{
+ return ConstantTestImpl<uint8_t>(workloadFactory, 1.0f, 0);
+}
+
+LayerTestResult<uint8_t, 3> MergerUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int outputWidth = 3;
+ unsigned int outputHeight = 6;
+ unsigned int outputChannels = 3;
+
+ unsigned int inputWidth1 = 3;
+ unsigned int inputHeight1 = 6;
+ unsigned int inputChannels1 = 2;
+
+ unsigned int inputWidth2 = 3;
+ unsigned int inputHeight2 = 6;
+ unsigned int inputChannels2 = 1;
+
+ // Defines the tensor descriptors.
+ armnn::TensorInfo outputTensorInfo({ outputChannels, outputHeight, outputWidth }, armnn::DataType::QuantisedAsymm8);
+ armnn::TensorInfo inputTensorInfo1({ inputChannels1, inputHeight1, inputWidth1 }, armnn::DataType::QuantisedAsymm8);
+ armnn::TensorInfo inputTensorInfo2({ inputChannels2, inputHeight2, inputWidth2 }, armnn::DataType::QuantisedAsymm8);
+
+ // Arbitrary scale and offsets. They don't really matter as the merger operator doesn't dequantize/quantize them.
+ const float scale = 0.13497836f;
+ const int32_t offset = -7;
+
+ outputTensorInfo.SetQuantizationScale(scale);
+ outputTensorInfo.SetQuantizationOffset(offset);
+ inputTensorInfo1.SetQuantizationScale(scale);
+ inputTensorInfo1.SetQuantizationOffset(offset);
+ inputTensorInfo2.SetQuantizationScale(scale);
+ inputTensorInfo2.SetQuantizationOffset(offset);
+
+ LayerTestResult<uint8_t, 3> ret(outputTensorInfo);
+
+ ret.outputExpected = MakeTensor<uint8_t, 3>(outputTensorInfo, std::vector<uint8_t>(
+ {
+ 1, 2, 3,
+ 4, 5, 6,
+ 7, 8, 9,
+ 10, 11, 12,
+ 13, 14, 15,
+ 16, 17, 18,
+
+ 19, 20, 21,
+ 22, 23, 24,
+ 25, 26, 27,
+ 28, 29, 30,
+ 31, 32, 33,
+ 34, 35, 36,
+
+ 37, 38, 39,
+ 40, 41, 42,
+ 43, 44, 45,
+ 46, 47, 48,
+ 49, 50, 51,
+ 52, 53, 54,
+ })
+ );
+
+ auto input1 = MakeTensor<uint8_t, 3>(inputTensorInfo1, std::vector<uint8_t>(
+ {
+ 1, 2, 3,
+ 4, 5, 6,
+ 7, 8, 9,
+ 10, 11, 12,
+ 13, 14, 15,
+ 16, 17, 18,
+
+ 19, 20, 21,
+ 22, 23, 24,
+ 25, 26, 27,
+ 28, 29, 30,
+ 31, 32, 33,
+ 34, 35, 36,
+ })
+ );
+
+ auto input2 = MakeTensor<uint8_t, 3>(inputTensorInfo2, std::vector<uint8_t>(
+ {
+ 37, 38, 39,
+ 40, 41, 42,
+ 43, 44, 45,
+ 46, 47, 48,
+ 49, 50, 51,
+ 52, 53, 54,
+ })
+ );
+
+ std::vector<unsigned int> wOrigin1 = { 0, 0, 0 }; //Extent of the window is defined by size of input[0].
+ armnn::MergerQueueDescriptor::ViewOrigin window1(wOrigin1);
+
+ std::vector<unsigned int> wOrigin2 = { 2, 0, 0 }; //Extent of the window is defined by size of input[1].
+ armnn::MergerQueueDescriptor::ViewOrigin window2(wOrigin2);
+
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ bool subTensorsSupported = workloadFactory.SupportsSubTensors();
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 =
+ subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*outputHandle, inputTensorInfo1.GetShape(), wOrigin1.data()) :
+ workloadFactory.CreateTensorHandle(inputTensorInfo1);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle2 =
+ subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*outputHandle, inputTensorInfo2.GetShape(), wOrigin2.data()) :
+ workloadFactory.CreateTensorHandle(inputTensorInfo2);
+
+
+ armnn::MergerQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddInputToWorkload(data, info, inputTensorInfo2, inputHandle2.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ data.m_ViewOrigins.push_back(window1);
+ data.m_ViewOrigins.push_back(window2);
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateMerger(data, info);
+
+ inputHandle1->Allocate();
+ inputHandle2->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0]);
+ CopyDataToITensorHandle(inputHandle2.get(), &input2[0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+LayerTestResult<uint8_t, 4> AdditionUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int batchSize = 1;
+ unsigned int channels = 2;
+ unsigned int height = 2;
+ unsigned int width = 3;
+
+ const float scale = 7.0f;
+ const int32_t offset = 3;
+
+ armnn::TensorInfo inputTensorInfo1, inputTensorInfo2;
+ armnn::TensorInfo outputTensorInfo;
+
+ const unsigned int shape[] = { batchSize, channels, height, width };
+ inputTensorInfo1 = armnn::TensorInfo(4, shape, armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo1.SetQuantizationScale(scale);
+ inputTensorInfo1.SetQuantizationOffset(offset);
+
+ inputTensorInfo2 = armnn::TensorInfo(4, shape, armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo2.SetQuantizationScale(scale);
+ inputTensorInfo2.SetQuantizationOffset(offset);
+
+ outputTensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationScale(scale);
+ outputTensorInfo.SetQuantizationOffset(offset);
+
+ // See dequantized values to the right.
+ auto input1 = MakeTensor<uint8_t, 4>(inputTensorInfo1, std::vector<uint8_t>(
+ {
+ 63, 35, 77, 70, 56, 112, // 420, 224, 518, 469, 371, 763
+ 203, 28, 252, 168, 245, 91 // 1400, 175, 1743, 1155, 1694, 616
+ }));
+
+ // See dequantized values to the right.
+ auto input2 = MakeTensor<uint8_t, 4>(inputTensorInfo1, std::vector<uint8_t>(
+ {
+ 21, 7, 175, 231, 175, 210, // 126, 28, 1204, 1596, 1204, 1449
+ 126, 161, 63, 21, 105, 126 // 861, 1106, 420, 126, 714, 861
+ }));
+
+ // See dequantized values to the right.
+ LayerTestResult<uint8_t, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<uint8_t, 4>(outputTensorInfo, std::vector<uint8_t>(
+ {
+ 81, 39, 249, 255, 228, 255, // 546, 252, 1722, 2065(clamped), 1575, 2212(clamped)
+ 255, 186, 255, 186, 255, 214, // 2261(clamped), 1281, 2163(clamped), 1281, 2408(clamped), 1477
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle2 = workloadFactory.CreateTensorHandle(inputTensorInfo2);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::AdditionQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddInputToWorkload(data, info, inputTensorInfo2, inputHandle2.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateAddition(data, info);
+
+ inputHandle1->Allocate();
+ inputHandle2->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle2.get(), &input2[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+
+ return result;
+}
+
+namespace
+{
+LayerTestResult<uint8_t, 4> MultiplicationUint8TestHelper(armnn::IWorkloadFactory& workloadFactory,
+ const unsigned int shape0[4],
+ const std::vector<uint8_t> & values0,
+ float scale0,
+ int32_t offset0,
+ const unsigned int shape1[4],
+ const std::vector<uint8_t> & values1,
+ float scale1,
+ int32_t offset1,
+ const unsigned int outShape[4],
+ const std::vector<uint8_t> & outValues,
+ float outScale,
+ int32_t outOffset)
+{
+ armnn::TensorInfo inputTensorInfo0(4, shape0, armnn::DataType::QuantisedAsymm8);
+ armnn::TensorInfo inputTensorInfo1(4, shape1, armnn::DataType::QuantisedAsymm8);
+ armnn::TensorInfo outputTensorInfo(4, outShape, armnn::DataType::QuantisedAsymm8);
+
+ inputTensorInfo0.SetQuantizationScale(scale0);
+ inputTensorInfo0.SetQuantizationOffset(offset0);
+
+ inputTensorInfo1.SetQuantizationScale(scale1);
+ inputTensorInfo1.SetQuantizationOffset(offset1);
+
+ outputTensorInfo.SetQuantizationScale(outScale);
+ outputTensorInfo.SetQuantizationOffset(outOffset);
+
+ auto input0 = MakeTensor<uint8_t, 4>(inputTensorInfo0, values0);
+ auto input1 = MakeTensor<uint8_t, 4>(inputTensorInfo1, values1);
+
+ LayerTestResult<uint8_t, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<uint8_t, 4>(outputTensorInfo, outValues);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle0 = workloadFactory.CreateTensorHandle(inputTensorInfo0);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::MultiplicationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo0, inputHandle0.get());
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateMultiplication(data, info);
+
+ inputHandle0->Allocate();
+ inputHandle1->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle0.get(), &input0[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+
+ return result;
+}
+} // anonymous namespace
+
+LayerTestResult<uint8_t, 4> MultiplicationUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ unsigned int batchSize = 1;
+ unsigned int channels = 2;
+ unsigned int height = 2;
+ unsigned int width = 3;
+ const unsigned int shape[] = { batchSize, channels, height, width };
+
+ // See dequantized values to the right.
+ std::vector<uint8_t> input0({
+ 62, 37, 3, 172, 13, 111, // 244, 144, 8, 684, 48, 440,
+ 188, 20, 73, 31, 23, 31 // 748, 76, 288, 120, 88, 120
+ });
+
+ // See dequantized values to the right.
+ std::vector<uint8_t> input1({
+ 126, 240, 252, 183, 121, 247, // 384, 726, 762, 555, 369, 747,
+ 48, 115, 151, 79, 78, 97 // 150, 351, 459, 243, 240, 297
+ });
+
+ // See dequantized values to the right.
+ std::vector<uint8_t> output(
+ {
+ 64, 72, 0, 255, 8, 236, // 93696, 104544, 6096(clamped), 379620(clamped), 17712, 328680,
+ 77, 15, 92, 16, 10, 21, // 112200, 26676, 132192, 29160, 21120, 35640
+ });
+
+ return MultiplicationUint8TestHelper(workloadFactory,
+ shape,
+ input0,
+ 4.0f,
+ 1,
+ shape,
+ input1,
+ 3.0f,
+ -2,
+ shape,
+ output,
+ 1366.255f, // Scale/offset chosen to have output values out of range.
+ -5);
+}
+
+LayerTestResult<uint8_t, 4> MultiplicationBroadcast1ElementUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int shape0[] = { 1, 2, 2, 3 };
+ const unsigned int shape1[] = { 1, 1, 1, 1 };
+
+ std::vector<uint8_t> input0({
+ 1, 2, 3, 4, 5, 6,
+ 7, 8, 9, 10, 11, 12
+ });
+
+ std::vector<uint8_t> input1({2});
+
+ std::vector<uint8_t> output({
+ 2, 4, 6, 8, 10, 12,
+ 14, 16, 18, 20, 22, 24
+ });
+
+ return MultiplicationUint8TestHelper(workloadFactory,
+ shape0,
+ input0,
+ 1.0f,
+ 0,
+ shape1,
+ input1,
+ 1.0f,
+ 0,
+ shape0,
+ output,
+ 1.0f,
+ 0);
+}
+
+LayerTestResult<uint8_t, 4> MultiplicationBroadcast1DVectorUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int shape0[] = { 1, 2, 2, 3 };
+ const unsigned int shape1[] = { 1, 1, 1, 3 };
+
+ std::vector<uint8_t> input0({
+ 1, 2, 3, 4, 5, 6,
+ 7, 8, 9, 10, 11, 12
+ });
+
+ std::vector<uint8_t> input1({1, 2, 3});
+
+ std::vector<uint8_t> output({
+ 1, 4, 9, 4, 10, 18,
+ 7, 16, 27, 10, 22, 36
+ });
+
+ return MultiplicationUint8TestHelper(workloadFactory,
+ shape0,
+ input0,
+ 1.0f,
+ 0,
+ shape1,
+ input1,
+ 1.0f,
+ 0,
+ shape0,
+ output,
+ 1.0f,
+ 0);
+}
+
+namespace
+{
+template <typename T>
+LayerTestResult<T, 4> SubtractionTestHelper(armnn::IWorkloadFactory& workloadFactory,
+ const unsigned int shape0[4],
+ const std::vector<T>& values0,
+ float scale0,
+ int32_t offset0,
+ const unsigned int shape1[4],
+ const std::vector<T> & values1,
+ float scale1,
+ int32_t offset1,
+ const unsigned int outShape[4],
+ const std::vector<T> & outValues,
+ float outScale,
+ int32_t outOffset)
+{
+ auto dataType = (std::is_same<T, uint8_t>::value ?
+ armnn::DataType::QuantisedAsymm8 :
+ armnn::DataType::Float32);
+
+ armnn::TensorInfo inputTensorInfo0(4, shape0, dataType);
+ armnn::TensorInfo inputTensorInfo1(4, shape1, dataType);
+ armnn::TensorInfo outputTensorInfo(4, outShape, dataType);
+
+ inputTensorInfo0.SetQuantizationScale(scale0);
+ inputTensorInfo0.SetQuantizationOffset(offset0);
+
+ inputTensorInfo1.SetQuantizationScale(scale1);
+ inputTensorInfo1.SetQuantizationOffset(offset1);
+
+ outputTensorInfo.SetQuantizationScale(outScale);
+ outputTensorInfo.SetQuantizationOffset(outOffset);
+
+ auto input0 = MakeTensor<T, 4>(inputTensorInfo0, values0);
+ auto input1 = MakeTensor<T, 4>(inputTensorInfo1, values1);
+
+ LayerTestResult<T, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outValues);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle0 = workloadFactory.CreateTensorHandle(inputTensorInfo0);
+ std::unique_ptr<armnn::ITensorHandle> inputHandle1 = workloadFactory.CreateTensorHandle(inputTensorInfo1);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::SubtractionQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo0, inputHandle0.get());
+ AddInputToWorkload(data, info, inputTensorInfo1, inputHandle1.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateSubtraction(data, info);
+
+ inputHandle0->Allocate();
+ inputHandle1->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle0.get(), &input0[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandle1.get(), &input1[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+
+ return result;
+}
+} // anonymous namespace
+
+LayerTestResult<uint8_t, 4> SubtractionUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int shape0[] = { 1, 1, 2, 2 };
+ const unsigned int shape1[] = { 1, 1, 2, 2 };
+
+ std::vector<uint8_t> input0({ 10, 12, 14, 16 });
+ std::vector<uint8_t> input1({ 1, 2, 1, 2 });
+ std::vector<uint8_t> output({ 3, 3, 5, 5 });
+
+ return SubtractionTestHelper(workloadFactory,
+ shape0, input0, 0.5f, 2,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 0);
+}
+
+LayerTestResult<uint8_t, 4> SubtractionBroadcast1ElementUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int shape0[] = { 1, 1, 2, 2 };
+ const unsigned int shape1[] = { 1, 1, 1, 1 };
+
+ std::vector<uint8_t> input0({ 10, 12, 14, 16 });
+ std::vector<uint8_t> input1({ 2 });
+ std::vector<uint8_t> output({ 5, 6, 7, 8 });
+
+ return SubtractionTestHelper(workloadFactory,
+ shape0, input0, 0.5f, 2,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 3);
+}
+
+LayerTestResult<uint8_t, 4> SubtractionBroadcastUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int shape0[] = { 1, 1, 2, 2 };
+ const unsigned int shape1[] = { 1, 1, 2, 1 };
+
+ std::vector<uint8_t> input0({ 10, 12, 14, 16 });
+ std::vector<uint8_t> input1({ 2, 1 });
+ std::vector<uint8_t> output({ 8, 11, 12, 15 });
+
+ return SubtractionTestHelper(workloadFactory,
+ shape0, input0, 1.0f, 0,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 0);
+}
+
+LayerTestResult<float, 4> SubtractionTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int shape0[] = { 1, 1, 2, 2 };
+ const unsigned int shape1[] = { 1, 1, 2, 2 };
+
+ std::vector<float> input0({ 1, 2, 3, 4 });
+ std::vector<float> input1({ 1, -1, 0, 2 });
+ std::vector<float> output({ 0, 3, 3, 2 });
+
+ return SubtractionTestHelper(workloadFactory,
+ shape0, input0, 1.0f, 0,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 0);
+}
+
+LayerTestResult<float, 4> SubtractionBroadcast1ElementTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int shape0[] = { 1, 1, 2, 2 };
+ const unsigned int shape1[] = { 1, 1, 1, 1 };
+
+ std::vector<float> input0({ 1, 2, 3, 4 });
+ std::vector<float> input1({ 10 });
+ std::vector<float> output({ -9, -8, -7, -6 });
+
+ return SubtractionTestHelper(workloadFactory,
+ shape0, input0, 1.0f, 0,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 0);
+}
+
+LayerTestResult<float, 4> SubtractionBroadcastTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int shape0[] = { 1, 1, 2, 2 };
+ const unsigned int shape1[] = { 1, 1, 1, 2 };
+
+ std::vector<float> input0({ 1, 2, 3, 4 });
+ std::vector<float> input1({ 10, -5 });
+ std::vector<float> output({ -9, 7, -7, 9 });
+
+ return SubtractionTestHelper(workloadFactory,
+ shape0, input0, 1.0f, 0,
+ shape1, input1, 1.0f, 0,
+ shape0, output, 1.0f, 0);
+}
+
+LayerTestResult<uint8_t, 4> ResizeBilinearNopUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 4;
+ constexpr unsigned int inputHeight = 4;
+ constexpr unsigned int inputChannels = 1;
+ constexpr unsigned int inputBatchSize = 1;
+
+ constexpr unsigned int outputWidth = inputWidth;
+ constexpr unsigned int outputHeight = inputHeight;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo.SetQuantizationScale(1.5f);
+ inputTensorInfo.SetQuantizationOffset(-3);
+
+ armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationScale(1.5f);
+ outputTensorInfo.SetQuantizationOffset(-3);
+
+ auto input = MakeTensor<uint8_t, 4>(inputTensorInfo, std::vector<uint8_t>({
+ 1, 2, 3, 4,
+ 2, 3, 4, 5,
+ 3, 4, 5, 6,
+ 4, 5, 6, 7
+ }));
+
+ LayerTestResult<uint8_t, 4> result(outputTensorInfo);
+ result.outputExpected = input;
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<uint8_t, 4> SimpleResizeBilinearUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 2;
+ constexpr unsigned int inputHeight = 2;
+ constexpr unsigned int inputChannels = 1;
+ constexpr unsigned int inputBatchSize = 1;
+
+ constexpr unsigned int outputWidth = inputWidth / 2;
+ constexpr unsigned int outputHeight = inputHeight / 2;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo.SetQuantizationScale(0.1567f);
+ inputTensorInfo.SetQuantizationOffset(1);
+
+ armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationScale(0.1567f);
+ outputTensorInfo.SetQuantizationOffset(1);
+
+ auto input = MakeTensor<uint8_t, 4>(inputTensorInfo, std::vector<uint8_t>({
+ 1, 255,
+ 200, 250
+ }));
+
+ // The 'resize bilinear' operation projects the top-left corner of output texels into the input image,
+ // then figures out the interpolants and weights. Note this is different to projecting the centre of the
+ // output texel - and thus we'll expect the output 1x1 matrix to contain, as its single element, the value
+ // that was at position (0,0) of the input matrix (rather than an average, which we would expect if projecting
+ // the centre).
+ LayerTestResult<uint8_t, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<uint8_t, 4>(outputTensorInfo, std::vector<uint8_t>({
+ 1
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<uint8_t, 4> ResizeBilinearSqMinUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 4;
+ constexpr unsigned int inputHeight = 4;
+ constexpr unsigned int inputChannels = 1;
+ constexpr unsigned int inputBatchSize = 1;
+
+ constexpr unsigned int outputWidth = inputWidth / 2;
+ constexpr unsigned int outputHeight = inputHeight / 2;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo.SetQuantizationScale(3.141592f);
+ inputTensorInfo.SetQuantizationOffset(3);
+
+ armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationScale(3.141592f);
+ outputTensorInfo.SetQuantizationOffset(3);
+
+ auto input = MakeTensor<uint8_t, 4>(inputTensorInfo, std::vector<uint8_t>({
+ 1, 2, 3, 4,
+ 2, 3, 4, 5,
+ 3, 4, 5, 6,
+ 4, 5, 6, 7
+ }));
+
+ LayerTestResult<uint8_t, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<uint8_t, 4>(outputTensorInfo, std::vector<uint8_t>({
+ 1, 3,
+ 3, 5
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<uint8_t, 4> ResizeBilinearMinUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 3;
+ constexpr unsigned int inputHeight = 2;
+ constexpr unsigned int inputChannels = 1;
+ constexpr unsigned int inputBatchSize = 1;
+
+ constexpr unsigned int outputWidth = 2;
+ constexpr unsigned int outputHeight = 1;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo.SetQuantizationScale(1.5f);
+ inputTensorInfo.SetQuantizationOffset(-1);
+
+ armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationScale(1.5f);
+ outputTensorInfo.SetQuantizationOffset(-1);
+
+ auto input = MakeTensor<uint8_t, 4>(inputTensorInfo, std::vector<uint8_t>({
+ 1, 2, 3, // 3.0, 4.5, 6.0
+ 5, 8, 13 // 9.0, 13.5, 21.0
+ }));
+
+ LayerTestResult<uint8_t, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<uint8_t, 4>(outputTensorInfo, std::vector<uint8_t>({
+ 1, 3 // 3.0, 5.25
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<uint8_t, 4> ResizeBilinearMagUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ constexpr unsigned int inputWidth = 2;
+ constexpr unsigned int inputHeight = 3;
+ constexpr unsigned int inputChannels = 1;
+ constexpr unsigned int inputBatchSize = 1;
+
+ constexpr unsigned int outputWidth = 5;
+ constexpr unsigned int outputHeight = 3;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputBatchSize = inputBatchSize;
+
+ armnn::TensorInfo inputTensorInfo({ inputBatchSize, inputChannels, inputHeight, inputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo.SetQuantizationScale(0.010765f);
+ inputTensorInfo.SetQuantizationOffset(7);
+
+ armnn::TensorInfo outputTensorInfo({ outputBatchSize, outputChannels, outputHeight, outputWidth },
+ armnn::DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationScale(0.010132f);
+ outputTensorInfo.SetQuantizationOffset(-18);
+
+ auto input = MakeTensor<uint8_t, 4>(inputTensorInfo, std::vector<uint8_t>({
+ 24, 228, // 0.183005, 2.379065,
+ 105, 128, // 1.05497, 1.302565
+ 230, 71 // 2.400595, 0.68896
+ }));
+
+ LayerTestResult<uint8_t, 4> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<uint8_t, 4>(outputTensorInfo, std::vector<uint8_t>({
+ 0, 87, 173, 217, 217, // 0.18300501, 1.06142902, 1.93985295, 2.37906504, 2.37906504
+ 86, 96, 106, 111, 111, // 1.05497003, 1.15400803, 1.25304604, 1.30256498, 1.30256498
+ 219, 151, 84, 50, 50 // 2.40059495, 1.71594095, 1.03128707, 0.68896002, 0.68896002
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ResizeBilinearQueueDescriptor descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(descriptor, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateResizeBilinear(descriptor, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+ return result;
+}
+
+LayerTestResult<float, 4> BatchNormTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ // BatchSize: 1
+ // Channels: 2
+ // Height: 3
+ // Width: 2
+
+ const armnn::TensorShape inputOutputShape{ 1, 2, 3, 2 };
+ std::vector<float> inputValues
+ {
+ // Batch 0, Channel 0, Height (3) x Width (2)
+ 1.f, 4.f,
+ 4.f, 2.f,
+ 1.f, 6.f,
+
+ // Batch 0, Channel 1, Height (3) x Width (2)
+ 1.f, 1.f,
+ 4.f, 1.f,
+ -2.f, 4.f
+ };
+ std::vector<float> expectedOutputValues
+ {
+ // Batch 0, Channel 0, Height (3) x Width (2)
+ 1.f, 4.f,
+ 4.f, 2.f,
+ 1.f, 6.f,
+
+ // Batch 0, Channel 1, Height (3) x Width (2)
+ 3.f, 3.f,
+ 4.f, 3.f,
+ 2.f, 4.f
+ };
+
+ return BatchNormTestImpl<float>(workloadFactory, inputOutputShape, inputValues, expectedOutputValues,
+ 0.f, 0, armnn::DataLayout::NCHW);
+}
+
+LayerTestResult<float, 4> BatchNormNhwcTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ // BatchSize: 1
+ // Height: 3
+ // Width: 2
+ // Channels: 2
+
+ const armnn::TensorShape inputOutputShape{ 1, 3, 2, 2 };
+ std::vector<float> inputValues
+ {
+ // Batch 0, Height 0, Width (2) x Channel (2)
+ 1.f, 1.f,
+ 4.f, 1.f,
+
+ // Batch 0, Height 1, Width (2) x Channel (2)
+ 4.f, 4.f,
+ 2.f, 1.f,
+
+ // Batch 0, Height 2, Width (2) x Channel (2)
+ 1.f, -2.f,
+ 6.f, 4.f
+ };
+ std::vector<float> expectedOutputValues
+ {
+ // Batch 0, Height 0, Width (2) x Channel (2)
+ 1.f, 3.f,
+ 4.f, 3.f,
+
+ // Batch 0, Height 1, Width (2) x Channel (2)
+ 4.f, 4.f,
+ 2.f, 3.f,
+
+ // Batch 0, Height 2, Width (2) x Channel (2)
+ 1.f, 2.f,
+ 6.f, 4.f
+ };
+
+ return BatchNormTestImpl<float>(workloadFactory, inputOutputShape, inputValues, expectedOutputValues,
+ 0.f, 0, armnn::DataLayout::NHWC);
+}
+
+LayerTestResult<uint8_t, 4> BatchNormUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ // BatchSize: 1
+ // Channels: 2
+ // Height: 3
+ // Width: 2
+
+ const armnn::TensorShape inputOutputShape{ 1, 2, 3, 2 };
+ std::vector<float> inputValues
+ {
+ // Batch 0, Channel 0, Height (3) x Width (2)
+ 1.f, 4.f,
+ 4.f, 2.f,
+ 1.f, 6.f,
+
+ // Batch 0, Channel 1, Height (3) x Width (2)
+ 1.f, 1.f,
+ 4.f, 1.f,
+ -2.f, 4.f
+ };
+ std::vector<float> expectedOutputValues
+ {
+ // Batch 0, Channel 0, Height (3) x Width (2)
+ 1.f, 4.f,
+ 4.f, 2.f,
+ 1.f, 6.f,
+
+ // Batch 0, Channel 1, Height (3) x Width (2)
+ 3.f, 3.f,
+ 4.f, 3.f,
+ 2.f, 4.f
+ };
+
+ return BatchNormTestImpl<uint8_t>(workloadFactory, inputOutputShape, inputValues, expectedOutputValues,
+ 1.f/20.f, 50, armnn::DataLayout::NCHW);
+}
+
+LayerTestResult<uint8_t, 4> BatchNormUint8NhwcTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ // BatchSize: 1
+ // Height: 3
+ // Width: 2
+ // Channels: 2
+
+ const armnn::TensorShape inputOutputShape{ 1, 3, 2, 2 };
+ std::vector<float> inputValues
+ {
+ // Batch 0, Height 0, Width (2) x Channel (2)
+ 1.f, 1.f,
+ 4.f, 1.f,
+
+ // Batch 0, Height 1, Width (2) x Channel (2)
+ 4.f, 4.f,
+ 2.f, 1.f,
+
+ // Batch 0, Height 2, Width (2) x Channel (2)
+ 1.f, -2.f,
+ 6.f, 4.f
+ };
+ std::vector<float> expectedOutputValues
+ {
+ // Batch 0, Height 0, Width (2) x Channel (2)
+ 1.f, 3.f,
+ 4.f, 3.f,
+
+ // Batch 0, Height 1, Width (2) x Channel (2)
+ 4.f, 4.f,
+ 2.f, 3.f,
+
+ // Batch 0, Height 2, Width (2) x Channel (2)
+ 1.f, 2.f,
+ 6.f, 4.f
+ };
+
+ return BatchNormTestImpl<uint8_t>(workloadFactory, inputOutputShape, inputValues, expectedOutputValues,
+ 1.f/20.f, 50, armnn::DataLayout::NHWC);
+}
+
+LayerTestResult<uint8_t, 4> ConstantUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return ConstantTestImpl<uint8_t>(workloadFactory, 2e-6f, 1);
+}
+
+LayerTestResult<uint8_t, 1> Concatenation1dUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation1dTestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 2> Concatenation2dDim0Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation2dDim0TestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 2> Concatenation2dDim1Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation2dDim1TestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 2> Concatenation2dDim0DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation2dDim0DiffInputDimsTestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 2> Concatenation2dDim1DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation2dDim1DiffInputDimsTestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 3> Concatenation3dDim0Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim0TestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 3> Concatenation3dDim1Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim1TestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 3> Concatenation3dDim2Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim2TestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 3> Concatenation3dDim0DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim0TestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 3> Concatenation3dDim1DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim1DiffInputDimsTestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<uint8_t, 3> Concatenation3dDim2DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return Concatenation3dDim2DiffInputDimsTestImpl<uint8_t>(workloadFactory, 0.5f, -1);
+}
+
+LayerTestResult<float, 4> SimpleMaxPooling2dSize2x2Stride2x2Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding)
+{
+ return SimpleMaxPooling2dSize2x2Stride2x2TestCommon<float>(workloadFactory, forceNoPadding);
+}
+
+LayerTestResult<uint8_t, 4> SimpleMaxPooling2dSize2x2Stride2x2Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding)
+{
+ return SimpleMaxPooling2dSize2x2Stride2x2TestCommon<uint8_t>(workloadFactory, forceNoPadding, 3.0f, -5);
+}
+
+LayerTestResult<float, 4> SimpleMaxPooling2dSize3x3Stride2x4Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding)
+{
+ return SimpleMaxPooling2dSize3x3Stride2x4TestCommon<float>(workloadFactory, forceNoPadding);
+}
+
+LayerTestResult<uint8_t, 4> SimpleMaxPooling2dSize3x3Stride2x4Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding)
+{
+ return SimpleMaxPooling2dSize3x3Stride2x4TestCommon<uint8_t>(workloadFactory, forceNoPadding, 0.1f, 128);
+}
+
+LayerTestResult<float, 4> SimpleMaxPooling2dTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout)
+{
+ return SimpleMaxPooling2dTestCommon<float>(workloadFactory, dataLayout);
+}
+
+LayerTestResult<uint8_t, 4> SimpleMaxPooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout)
+{
+ return SimpleMaxPooling2dTestCommon<uint8_t>(workloadFactory, dataLayout);
+}
+
+LayerTestResult<float, 4> SimpleAveragePooling2dTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout)
+{
+ return SimpleAveragePooling2dTestCommon<float>(workloadFactory, dataLayout);
+}
+
+LayerTestResult<uint8_t, 4> SimpleAveragePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout)
+{
+ return SimpleAveragePooling2dTestCommon<uint8_t>(workloadFactory, dataLayout, 0.5, -1);
+}
+
+LayerTestResult<float, 4> IgnorePaddingAveragePooling2dSize3x2Stride2x2Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding)
+{
+ return IgnorePaddingAveragePooling2dSize3x2Stride2x2TestCommon<float>(workloadFactory, forceNoPadding);
+}
+
+LayerTestResult<float, 4> LargeTensorsAveragePooling2dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return LargeTensorsAveragePooling2dTestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> LargeTensorsAveragePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return LargeTensorsAveragePooling2dTestCommon<uint8_t>(workloadFactory, 0.5, -1);
+}
+
+LayerTestResult<float, 4> SimpleL2Pooling2dTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout)
+{
+ return SimpleL2Pooling2dTestCommon<float>(workloadFactory, dataLayout);
+}
+
+LayerTestResult<uint8_t, 4> SimpleL2Pooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout)
+{
+ return SimpleL2Pooling2dTestCommon<uint8_t>(workloadFactory, dataLayout);
+}
+
+LayerTestResult<float, 4> L2Pooling2dSize3Stride1Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize3Stride1TestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> L2Pooling2dSize3Stride1Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize3Stride1TestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> L2Pooling2dSize3Stride3Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize3Stride3TestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> L2Pooling2dSize3Stride3Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize3Stride3TestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> L2Pooling2dSize3Stride4Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize3Stride4TestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> L2Pooling2dSize3Stride4Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize3Stride4TestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> L2Pooling2dSize7Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize7TestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> L2Pooling2dSize7Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize7TestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> L2Pooling2dSize9Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize9TestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> L2Pooling2dSize9Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return L2Pooling2dSize9TestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> AsymmetricNonSquarePooling2dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return AsymmetricNonSquarePooling2dTestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> AsymmetricNonSquarePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return AsymmetricNonSquarePooling2dTestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> ComparePooling2dTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::PoolingAlgorithm poolingType)
+{
+ return ComparePooling2dTestCommon<float>(workloadFactory, refWorkloadFactory, poolingType);
+}
+
+LayerTestResult<uint8_t, 4> ComparePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::PoolingAlgorithm poolingType)
+{
+ return ComparePooling2dTestCommon<uint8_t>(workloadFactory, refWorkloadFactory, poolingType, 0.1f, 128);
+}
+
+LayerTestResult<float, 2> FullyConnectedLargeTest(armnn::IWorkloadFactory& workloadFactory,
+ bool transposeWeights)
+{
+ return FullyConnectedLargeTestCommon<float>(workloadFactory, transposeWeights);
+}
+
+LayerTestResult<float, 4> IgnorePaddingSimpleMaxPooling2dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingSimpleMaxPooling2dTestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> IgnorePaddingSimpleMaxPooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingSimpleMaxPooling2dTestCommon<uint8_t>(workloadFactory, 1.0f, -5);
+}
+
+LayerTestResult<float, 4> IgnorePaddingMaxPooling2dSize3Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingMaxPooling2dSize3TestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> IgnorePaddingMaxPooling2dSize3Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingMaxPooling2dSize3TestCommon<uint8_t>(workloadFactory, 1.0f, -5);
+}
+
+LayerTestResult<float, 4> IgnorePaddingSimpleAveragePooling2dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingSimpleAveragePooling2dTestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> IgnorePaddingSimpleAveragePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingSimpleAveragePooling2dTestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> IgnorePaddingSimpleAveragePooling2dNoPaddingTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingSimpleAveragePooling2dNoPaddingTestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> IgnorePaddingSimpleAveragePooling2dNoPaddingUint8Test(
+ armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingSimpleAveragePooling2dNoPaddingTestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> IgnorePaddingAveragePooling2dSize3Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingAveragePooling2dSize3TestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> IgnorePaddingAveragePooling2dSize3Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingAveragePooling2dSize3TestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> IgnorePaddingSimpleL2Pooling2dTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingSimpleL2Pooling2dTestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> IgnorePaddingSimpleL2Pooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingSimpleL2Pooling2dTestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> IgnorePaddingL2Pooling2dSize3Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingL2Pooling2dSize3TestCommon<float>(workloadFactory);
+}
+
+LayerTestResult<uint8_t, 4> IgnorePaddingL2Pooling2dSize3Uint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return IgnorePaddingL2Pooling2dSize3TestCommon<uint8_t>(workloadFactory);
+}
+
+LayerTestResult<float, 4> SimplePermuteFloat32Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return SimplePermuteFloat32TestCommon(workloadFactory);
+};
+
+LayerTestResult<uint8_t, 4> SimplePermuteUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return SimplePermuteUint8TestCommon(workloadFactory);
+};
+
+LayerTestResult<float, 4> PermuteFloat32ValueSet1Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return PermuteFloat32ValueSet1TestCommon(workloadFactory);
+};
+
+LayerTestResult<float, 4> PermuteFloat32ValueSet2Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return PermuteFloat32ValueSet2TestCommon(workloadFactory);
+};
+
+LayerTestResult<float, 4> PermuteFloat32ValueSet3Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ return PermuteFloat32ValueSet3TestCommon(workloadFactory);
+};
+
+namespace
+{
+
+template <typename T, std::size_t InputDim, std::size_t OutputDim>
+LayerTestResult<T, OutputDim> MeanTestHelper(armnn::IWorkloadFactory& workloadFactory,
+ const unsigned int* inputShape,
+ const std::vector<T>& inputData,
+ const std::vector<unsigned int>& axis,
+ bool keepDims,
+ const unsigned int* outputShape,
+ const std::vector<T>& outputData,
+ float scale = 1.0f,
+ int32_t offset = 0)
+{
+ auto dataType = (std::is_same<T, uint8_t>::value ? armnn::DataType::QuantisedAsymm8 : armnn::DataType::Float32);
+
+ armnn::TensorInfo inputTensorInfo(InputDim, inputShape, dataType);
+ armnn::TensorInfo outputTensorInfo(OutputDim, outputShape, dataType);
+
+ inputTensorInfo.SetQuantizationScale(scale);
+ inputTensorInfo.SetQuantizationOffset(offset);
+
+ outputTensorInfo.SetQuantizationScale(scale);
+ outputTensorInfo.SetQuantizationOffset(offset);
+
+ auto input = MakeTensor<T, InputDim>(inputTensorInfo, inputData);
+
+ LayerTestResult<T, OutputDim> result(outputTensorInfo);
+ result.outputExpected = MakeTensor<T, OutputDim>(outputTensorInfo, outputData);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::MeanQueueDescriptor data;
+ data.m_Parameters.m_Axis = axis;
+ data.m_Parameters.m_KeepDims = keepDims;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateMean(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), input.origin());
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(result.output.origin(), outputHandle.get());
+
+ return result;
+}
+
+} // anonymous namespace
+
+LayerTestResult<uint8_t, 1> MeanUint8SimpleTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int inputShape[] = { 3, 2 };
+ const unsigned int outputShape[] = { 1 };
+
+ std::vector<uint8_t> input({ 1, 1, 2, 2, 3, 3 });
+ std::vector<uint8_t> output({ 2 });
+
+ return MeanTestHelper<uint8_t, 2, 1>(workloadFactory, inputShape, input, {}, false, outputShape, output);
+}
+
+LayerTestResult<uint8_t, 3> MeanUint8SimpleAxisTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int inputShape[] = { 1, 1, 3, 2 };
+ const unsigned int outputShape[] = { 1, 1, 2 };
+
+ std::vector<uint8_t> input({ 1, 1, 2, 2, 3, 3 });
+ std::vector<uint8_t> output({ 2, 2 });
+
+ return MeanTestHelper<uint8_t, 4, 3>(workloadFactory, inputShape, input, { 2 }, false, outputShape, output);
+}
+
+LayerTestResult<uint8_t, 4> MeanUint8KeepDimsTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int inputShape[] = { 1, 1, 3, 2 };
+ const unsigned int outputShape[] = { 1, 1, 1, 2 };
+
+ std::vector<uint8_t> input({ 1, 1, 2, 2, 3, 3 });
+ std::vector<uint8_t> output({ 2, 2 });
+
+ return MeanTestHelper<uint8_t, 4, 4>(workloadFactory, inputShape, input, { 2 }, true, outputShape, output);
+}
+
+LayerTestResult<uint8_t, 4> MeanUint8MultipleDimsTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int inputShape[] = { 2, 3, 1, 2 };
+ const unsigned int outputShape[] = { 1, 3, 1, 1 };
+
+ std::vector<uint8_t> input({ 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6 });
+ std::vector<uint8_t> output({ 1, 3, 5 });
+
+ return MeanTestHelper<uint8_t, 4, 4>(workloadFactory, inputShape, input, { 0, 3 }, true, outputShape, output);
+}
+
+LayerTestResult<uint8_t, 1> MeanVtsUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int inputShape[] = { 4, 3, 2 };
+ const unsigned int outputShape[] = { 2 };
+
+ std::vector<uint8_t> input({ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
+ 24 });
+ std::vector<uint8_t> output({ 12, 13 });
+
+ return MeanTestHelper<uint8_t, 3, 1>(workloadFactory, inputShape, input, { 0, 1 }, false, outputShape,
+ output, 0.8f, 5);
+}
+
+LayerTestResult<float, 1> MeanFloatSimpleTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int inputShape[] = { 3, 2 };
+ const unsigned int outputShape[] = { 1 };
+
+ std::vector<float> input({ 1.0f, 1.0f, 2.0f, 2.0f, 3.0f, 3.0f });
+ std::vector<float> output({ 2.0f });
+
+ return MeanTestHelper<float, 2, 1>(workloadFactory, inputShape, input, {}, false, outputShape, output);
+}
+
+LayerTestResult<float, 3> MeanFloatSimpleAxisTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int inputShape[] = { 2, 3, 1, 2 };
+ const unsigned int outputShape[] = { 3, 1, 2 };
+
+ std::vector<float> input({ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f });
+ std::vector<float> output({ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f });
+
+ return MeanTestHelper<float, 4, 3>(workloadFactory, inputShape, input, { 0 }, false, outputShape, output);
+}
+
+LayerTestResult<float, 4> MeanFloatKeepDimsTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int inputShape[] = { 1, 1, 3, 2 };
+ const unsigned int outputShape[] = { 1, 1, 1, 2 };
+
+ std::vector<float> input({ 1.0f, 1.0f, 2.0f, 2.0f, 3.0f, 3.0f });
+ std::vector<float> output({ 2.0f, 2.0f });
+
+ return MeanTestHelper<float, 4, 4>(workloadFactory, inputShape, input, { 2 }, true, outputShape, output);
+}
+
+LayerTestResult<float, 4> MeanFloatMultipleDimsTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int inputShape[] = { 2, 3, 1, 2 };
+ const unsigned int outputShape[] = { 1, 3, 1, 1 };
+
+ std::vector<float> input({ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f });
+ std::vector<float> output({ 1.5f, 3.5f, 5.5f });
+
+ return MeanTestHelper<float, 4, 4>(workloadFactory, inputShape, input, { 0, 3 }, true, outputShape, output);
+}
+
+LayerTestResult<float, 1> MeanVtsFloat1Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int inputShape[] = { 4, 3, 2 };
+ const unsigned int outputShape[] = { 2 };
+
+ std::vector<float> input({ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f,
+ 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f, 21.0f, 22.0f, 23.0f, 24.0f });
+ std::vector<float> output({ 12.0f, 13.0f });
+
+ return MeanTestHelper<float, 3, 1>(workloadFactory, inputShape, input, { 0, 1 }, false, outputShape, output);
+}
+
+LayerTestResult<float, 3> MeanVtsFloat2Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int inputShape[] = { 4, 3, 2 };
+ const unsigned int outputShape[] = { 1, 3, 1 };
+
+ std::vector<float> input({ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f,
+ 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f, 21.0f, 22.0f, 23.0f, 24.0f });
+ std::vector<float> output({ 10.5f, 12.5f, 14.5f });
+
+ return MeanTestHelper<float, 3, 3>(workloadFactory, inputShape, input, { 0, 2 }, true, outputShape, output);
+}
+
+LayerTestResult<float, 3> MeanVtsFloat3Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ const unsigned int inputShape[] = { 1, 2, 2, 1 };
+ const unsigned int outputShape[] = { 1, 2, 1 };
+
+ std::vector<float> input({ 1.0f, 2.0f, 3.0f, 4.0f });
+ std::vector<float> output({ 1.5f, 3.5f });
+
+ return MeanTestHelper<float, 4, 3>(workloadFactory, inputShape, input, { 2 }, false, outputShape, output);
+}
+
+LayerTestResult<float, 4> AdditionAfterMaxPoolTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ // Create Initial Tensor
+ // 1, 2, 3
+ // 4, 5, 6
+ // 7, 8, 9
+
+ armnn::TensorInfo poolingInputTensorInfo({ 1, 1, 3, 3}, armnn::GetDataType<float>());
+ armnn::TensorInfo poolingOutputTensorInfo({ 1, 1, 2, 2}, armnn::GetDataType<float>());
+
+ boost::multi_array<float, 4> poolingInput = MakeTensor<float,4>(poolingInputTensorInfo,
+ {1, 2, 3,
+ 4, 5, 6,
+ 7, 8, 9
+ });
+
+ std::unique_ptr<armnn::ITensorHandle> poolingInputHandle =
+ workloadFactory.CreateTensorHandle(poolingInputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> poolingOutputHandle =
+ workloadFactory.CreateTensorHandle(poolingOutputTensorInfo);
+
+ // Apply MaxPool poolSize = 1x1, stride=2x2
+ // Result =
+ // 1, 3
+ // 7, 9
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolHeight = 1;
+ descriptor.m_PoolWidth = 1;
+ descriptor.m_StrideX = 2;
+ descriptor.m_StrideY = 2;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Max;
+
+ armnn::Pooling2dQueueDescriptor queueDescriptor;
+ queueDescriptor.m_Parameters = descriptor;
+ armnn::WorkloadInfo workloadInfo;
+ AddInputToWorkload(queueDescriptor, workloadInfo, poolingInputTensorInfo, poolingInputHandle.get());
+ AddOutputToWorkload(queueDescriptor, workloadInfo, poolingOutputTensorInfo, poolingOutputHandle.get());
+
+ // Create the MaxPool
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreatePooling2d(queueDescriptor, workloadInfo);
+
+ //LayerTestResult<float, 4> result(poolingOutputTensorInfo);
+ auto shape( GetTensorShapeAsArray<4>(poolingOutputTensorInfo));
+ boost::multi_array<float, 4> resultMaxPool;
+ resultMaxPool.resize(shape);
+
+
+ // Create addition with another tensor the same size
+ // This would be the result to apply a Conv2d with kernel ones(2) and stride 1x1
+ // with the initial tensor.
+ // 12, 16
+ // 24, 28
+
+ armnn::TensorInfo addInputTensorInfo({ 1,1,2,2}, armnn::GetDataType<float>());
+ armnn::TensorInfo addOutputTensorInfo({ 1,1,2,2}, armnn::GetDataType<float>());
+
+ boost::multi_array<float, 4> addInput = MakeTensor<float,4>(addInputTensorInfo,
+ {12, 16,
+ 24, 28,
+ });
+
+ // Expected output tensor after MaxPool and Addition.
+ LayerTestResult<float,4> addRet(addOutputTensorInfo);
+ addRet.outputExpected = MakeTensor<float, 4>(addOutputTensorInfo, std::vector<float>(
+ {
+ 13, 19,
+ 31, 37
+ }));
+
+ std::unique_ptr<armnn::ITensorHandle> addInputHandle = workloadFactory.CreateTensorHandle(addInputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> addOutputHandle = workloadFactory.CreateTensorHandle(addOutputTensorInfo);
+
+ armnn::AdditionQueueDescriptor data;
+ armnn::WorkloadInfo info;
+
+ // Add the output of the MaxPool and the new tensor
+ AddInputToWorkload(data, info, poolingOutputTensorInfo, poolingOutputHandle.get());
+ AddInputToWorkload(data, info, addInputTensorInfo, addInputHandle.get());
+ AddOutputToWorkload(data, info, addOutputTensorInfo, addOutputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> addWorkload = workloadFactory.CreateAddition(data, info);
+
+ poolingInputHandle->Allocate();
+ poolingOutputHandle->Allocate();
+ addInputHandle->Allocate();
+ addOutputHandle->Allocate();
+
+ CopyDataToITensorHandle(poolingInputHandle.get(), &poolingInput[0][0][0][0]);
+ CopyDataFromITensorHandle(&resultMaxPool[0][0][0][0], poolingOutputHandle.get());
+
+ CopyDataToITensorHandle(poolingOutputHandle.get(), &resultMaxPool[0][0][0][0]);
+ CopyDataToITensorHandle(addInputHandle.get(), &addInput[0][0][0][0]);
+
+ workload->Execute();
+ addWorkload->Execute();
+
+ CopyDataFromITensorHandle(&addRet.output[0][0][0][0], addOutputHandle.get());
+
+ workloadFactory.Finalize();
+
+ return addRet;
+}
diff --git a/src/backends/backendsCommon/test/LayerTests.hpp b/src/backends/backendsCommon/test/LayerTests.hpp
new file mode 100644
index 0000000000..57383d3276
--- /dev/null
+++ b/src/backends/backendsCommon/test/LayerTests.hpp
@@ -0,0 +1,416 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+
+#include <Half.hpp>
+
+#include <boost/multi_array.hpp>
+#include <boost/assert.hpp>
+
+#include <array>
+
+// Layer callables.
+
+namespace armnn
+{
+class IWorkloadFactory;
+}
+
+template <std::size_t n>
+boost::array<unsigned int, n> GetTensorShapeAsArray(const armnn::TensorInfo& tensorInfo)
+{
+ BOOST_ASSERT_MSG(n == tensorInfo.GetNumDimensions(),
+ "Attempting to construct a shape array of mismatching size");
+
+ boost::array<unsigned int, n> shape;
+ for (unsigned int i = 0; i < n; i++)
+ {
+ shape[i] = tensorInfo.GetShape()[i];
+ }
+ return shape;
+}
+
+template <typename T, std::size_t n>
+struct LayerTestResult
+{
+ LayerTestResult(const armnn::TensorInfo& outputInfo)
+ {
+ auto shape( GetTensorShapeAsArray<n>(outputInfo) );
+ output.resize(shape);
+ outputExpected.resize(shape);
+ supported = true;
+ }
+
+ boost::multi_array<T, n> output;
+ boost::multi_array<T, n> outputExpected;
+ bool supported;
+};
+
+LayerTestResult<float, 4> SimpleConvolution2d3x5Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout);
+
+LayerTestResult<float, 4> SimpleConvolution2d3x3Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout);
+
+LayerTestResult<float, 4> SimpleConvolution2d3x3NhwcTest(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled);
+
+LayerTestResult<float, 4>
+Convolution2dAsymmetricPaddingLargerThanHalfKernelSizeTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& layout);
+LayerTestResult<float, 4> Convolution2dAsymmetricPaddingTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& layout);
+
+
+LayerTestResult<float, 4> Convolution1dTest(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled);
+LayerTestResult<uint8_t, 4> Convolution1dUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled);
+
+LayerTestResult<float, 4> DepthwiseConvolution2dTest(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout);
+
+LayerTestResult<float, 4> DepthwiseConvolution2dDepthNhwcTest(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled);
+
+LayerTestResult<float, 4> DepthwiseConvolution2dDepthMul1Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout);
+
+LayerTestResult<float, 4> DepthwiseConvolution2dAsymmetricTest(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout);
+
+LayerTestResult<float, 4> SimpleMaxPooling2dSize2x2Stride2x2Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding);
+LayerTestResult<uint8_t, 4> SimpleMaxPooling2dSize2x2Stride2x2Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding);
+LayerTestResult<float, 4> SimpleMaxPooling2dSize3x3Stride2x4Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding);
+LayerTestResult<uint8_t, 4> SimpleMaxPooling2dSize3x3Stride2x4Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding );
+LayerTestResult<float, 4> IgnorePaddingSimpleMaxPooling2dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> IgnorePaddingSimpleMaxPooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> IgnorePaddingMaxPooling2dSize3Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> IgnorePaddingMaxPooling2dSize3Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> SimpleMaxPooling2dTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout);
+LayerTestResult<uint8_t, 4> SimpleMaxPooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout);
+
+LayerTestResult<float, 4> SimpleAveragePooling2dTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout);
+LayerTestResult<uint8_t, 4> SimpleAveragePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout);
+
+LayerTestResult<float, 4> IgnorePaddingAveragePooling2dSize3x2Stride2x2Test(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding);
+LayerTestResult<float, 4> IgnorePaddingSimpleAveragePooling2dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> IgnorePaddingSimpleAveragePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> IgnorePaddingSimpleAveragePooling2dNoPaddingTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> IgnorePaddingSimpleAveragePooling2dNoPaddingUint8Test(
+ armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> IgnorePaddingAveragePooling2dSize3Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> IgnorePaddingAveragePooling2dSize3Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> SimpleL2Pooling2dTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout);
+LayerTestResult<uint8_t, 4> SimpleL2Pooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout);
+
+LayerTestResult<float, 4> L2Pooling2dSize3Stride1Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> L2Pooling2dSize3Stride1Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> L2Pooling2dSize3Stride3Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> L2Pooling2dSize3Stride3Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> L2Pooling2dSize3Stride4Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> L2Pooling2dSize3Stride4Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> L2Pooling2dSize7Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> L2Pooling2dSize7Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> L2Pooling2dSize9Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> L2Pooling2dSize9Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> LargeTensorsAveragePooling2dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> LargeTensorsAveragePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> IgnorePaddingSimpleL2Pooling2dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> IgnorePaddingSimpleL2Pooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> IgnorePaddingL2Pooling2dSize3Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> IgnorePaddingL2Pooling2dSize3Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> AsymmetricNonSquarePooling2dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> AsymmetricNonSquarePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> ComparePooling2dTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::PoolingAlgorithm poolingType);
+LayerTestResult<uint8_t, 4> ComparePooling2dUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::PoolingAlgorithm poolingType);
+
+LayerTestResult<float, 4> ConstantLinearActivationTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> SimpleNormalizationAcrossTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> SimpleNormalizationWithinTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float,4> SimpleNormalizationAcrossNhwcTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 2> SimpleSoftmaxTest(armnn::IWorkloadFactory& workloadFactory, float beta);
+LayerTestResult<uint8_t, 2> SimpleSoftmaxUint8Test(armnn::IWorkloadFactory& workloadFactory, float beta);
+
+LayerTestResult<float, 4> SimpleSigmoidTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> SimpleReshapeFloat32Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> SimpleReshapeUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> SimpleFloorTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 1> Concatenation1dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 2> Concatenation2dDim0Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 2> Concatenation2dDim1Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 2> Concatenation2dDim0DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 2> Concatenation2dDim1DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 3> Concatenation3dDim0Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 3> Concatenation3dDim1Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 3> Concatenation3dDim2Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 3> Concatenation3dDim0DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 3> Concatenation3dDim1DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 3> Concatenation3dDim2DiffInputDimsTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> SimpleSigmoidUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> CompareConvolution2dTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory);
+
+template<typename T>
+LayerTestResult<T, 4> CompareDepthwiseConvolution2dTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ const armnn::DataLayoutIndexed& layout);
+
+LayerTestResult<float, 4> CompareNormalizationTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::NormalizationAlgorithmChannel normChannel,
+ armnn::NormalizationAlgorithmMethod normMethod);
+
+LayerTestResult<float, 2> CompareSoftmaxTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory, float beta);
+
+LayerTestResult<float, 2> FullyConnectedFloat32Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ bool transposeWeights);
+
+std::vector<LayerTestResult<float, 3>> SplitterTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 3> CopyViaSplitterTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 3> MergerTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> AdditionTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> AdditionBroadcast1ElementTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> AdditionBroadcastTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> CompareAdditionTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory);
+
+LayerTestResult<float, 4> SubtractionTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> SubtractionBroadcast1ElementTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> SubtractionBroadcastTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> CompareActivationTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::ActivationFunction f,
+ unsigned int batchSize);
+
+LayerTestResult<float, 4> DivisionTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> DivisionByZeroTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> DivisionBroadcast1ElementTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> DivisionBroadcast1DVectorTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> MultiplicationTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> MultiplicationBroadcast1ElementTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> MultiplicationBroadcast1DVectorTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> CompareMultiplicationTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory);
+
+LayerTestResult<float, 4> BatchNormTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> BatchNormNhwcTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> CompareBatchNormTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory);
+
+LayerTestResult<float, 4> BoundedReLuUpperAndLowerBoundTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> BoundedReLuUint8UpperAndLowerBoundTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> BoundedReLuUpperBoundOnlyTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> BoundedReLuUint8UpperBoundOnlyTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> CompareBoundedReLuTest(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ float upperBound,
+ float lowerBound);
+
+// Tests that the output should be identical to the input when the output dimensions match the input ones.
+LayerTestResult<float, 4> ResizeBilinearNopTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout);
+
+// Tests the behaviour of the resize bilinear operation when rescaling a 2x2 image into a 1x1 image.
+LayerTestResult<float, 4> SimpleResizeBilinearTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout);
+
+// Tests the resize bilinear for minification of a square input matrix (also: input dimensions are a
+// multiple of output dimensions).
+LayerTestResult<float, 4> ResizeBilinearSqMinTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout);
+
+// Tests the resize bilinear for minification (output dimensions smaller than input dimensions).
+LayerTestResult<float, 4> ResizeBilinearMinTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout);
+
+// Tests the resize bilinear for magnification (output dimensions bigger than input dimensions).
+LayerTestResult<float, 4> ResizeBilinearMagTest(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout);
+
+LayerTestResult<float, 4> BatchNormTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> BatchNormNhwcTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 2> FakeQuantizationTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> L2Normalization1dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> L2Normalization2dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> L2Normalization3dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> L2Normalization4dTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> L2Normalization1dNhwcTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> L2Normalization2dNhwcTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> L2Normalization3dNhwcTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> L2Normalization4dNhwcTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> ConstantTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> ConstantTestUint8(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> BoundedReLuUint8Test(armnn::IWorkloadFactory& workloadFactory, float upperBound);
+LayerTestResult<uint8_t, 4> BoundedReLuUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ float upperBound,
+ float lowerBound);
+
+LayerTestResult<uint8_t, 2> FullyConnectedUint8Test(armnn::IWorkloadFactory& workloadFactory, bool biasEnabled);
+
+std::vector<LayerTestResult<uint8_t, 3>> SplitterUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 3> CopyViaSplitterUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 3> MergerUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> AdditionUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> AdditionBroadcast1ElementUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> AdditionBroadcastUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> SubtractionUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> SubtractionBroadcast1ElementUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> SubtractionBroadcastUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> CompareActivationUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::ActivationFunction f);
+
+LayerTestResult<uint8_t, 2> CompareSoftmaxUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ float beta);
+
+LayerTestResult<uint8_t, 4> MultiplicationUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> MultiplicationBroadcast1ElementUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> MultiplicationBroadcast1DVectorUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> DivisionUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> DivisionBroadcast1ElementUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> DivisionBroadcast1DVectorUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> SimpleConvolution2d3x5Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout);
+
+LayerTestResult<uint8_t, 4> SimpleConvolution2d3x3Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout);
+
+LayerTestResult<uint8_t, 4> DepthwiseConvolution2dUint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout);
+
+LayerTestResult<uint8_t, 4> DepthwiseConvolution2dDepthMul1Uint8Test(armnn::IWorkloadFactory& workloadFactory,
+ bool biasEnabled,
+ const armnn::DataLayoutIndexed& layout);
+
+LayerTestResult<uint8_t, 4> ConstantLinearActivationUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> ResizeBilinearNopUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> SimpleResizeBilinearUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> ResizeBilinearSqMinUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> ResizeBilinearMinUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> ResizeBilinearMagUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> BatchNormUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> BatchNormUint8NhwcTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 4> ConstantUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 1> Concatenation1dUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 2> Concatenation2dDim0Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 2> Concatenation2dDim1Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 2> Concatenation2dDim0DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 2> Concatenation2dDim1DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 3> Concatenation3dDim0Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 3> Concatenation3dDim1Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 3> Concatenation3dDim2Uint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 3> Concatenation3dDim0DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 3> Concatenation3dDim1DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 3> Concatenation3dDim2DiffInputDimsUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+
+LayerTestResult<float, 2> FullyConnectedLargeTest(armnn::IWorkloadFactory& workloadFactory,
+ bool transposeWeights);
+LayerTestResult<float, 4> SimplePermuteFloat32Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> SimplePermuteUint8Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<uint8_t, 2> PadUint82dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 3> PadUint83dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> PadUint84dTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 2> PadFloat322dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 3> PadFloat323dTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> PadFloat324dTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> PermuteFloat32ValueSet1Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> PermuteFloat32ValueSet2Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> PermuteFloat32ValueSet3Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 2> LstmLayerFloat32WithCifgWithPeepholeNoProjectionTest
+ (armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 2>
+ LstmLayerFloat32NoCifgNoPeepholeNoProjectionTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 2>
+LstmLayerFloat32NoCifgWithPeepholeWithProjectionTest(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> SimpleConvertFp16ToFp32Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<armnn::Half, 4> SimpleConvertFp32ToFp16Test(armnn::IWorkloadFactory& workloadFactory);
+
+
+LayerTestResult<uint8_t, 1> MeanUint8SimpleTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 3> MeanUint8SimpleAxisTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> MeanUint8KeepDimsTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 4> MeanUint8MultipleDimsTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<uint8_t, 1> MeanVtsUint8Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 1> MeanFloatSimpleTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 3> MeanFloatSimpleAxisTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> MeanFloatKeepDimsTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 4> MeanFloatMultipleDimsTest(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 1> MeanVtsFloat1Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 3> MeanVtsFloat2Test(armnn::IWorkloadFactory& workloadFactory);
+LayerTestResult<float, 3> MeanVtsFloat3Test(armnn::IWorkloadFactory& workloadFactory);
+
+LayerTestResult<float, 4> AdditionAfterMaxPoolTest(armnn::IWorkloadFactory& workloadFactory);
diff --git a/src/backends/backendsCommon/test/LstmTestImpl.hpp b/src/backends/backendsCommon/test/LstmTestImpl.hpp
new file mode 100644
index 0000000000..758f294d48
--- /dev/null
+++ b/src/backends/backendsCommon/test/LstmTestImpl.hpp
@@ -0,0 +1,1150 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "QuantizeHelper.hpp"
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+
+#include <test/TensorHelpers.hpp>
+
+#include <backendsCommon/CpuTensorHandle.hpp>
+#include <backendsCommon/WorkloadFactory.hpp>
+
+LayerTestResult<float, 2> LstmNoCifgNoPeepholeNoProjectionTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const boost::multi_array<float, 2>& input,
+ const boost::multi_array<float, 2>& outputExpected)
+{
+ unsigned int batchSize = boost::numeric_cast<unsigned int>(input.shape()[0]);
+ unsigned int inputSize = boost::numeric_cast<unsigned int>(input.shape()[1]);
+ unsigned int outputSize = boost::numeric_cast<unsigned int>(outputExpected.shape()[1]);
+ // cellSize and outputSize have the same size when there is no projection.
+ unsigned numUnits = outputSize;
+
+
+ armnn::TensorInfo inputTensorInfo({batchSize , inputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo cellStateInTensorInfo({batchSize , numUnits}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputStateInTensorInfo({batchSize , outputSize}, armnn::GetDataType<float>());
+
+
+ armnn::TensorInfo scratchBufferTensorInfo({batchSize, numUnits * 3}, armnn::GetDataType<float>());
+ armnn::TensorInfo cellStateOutTensorInfo({batchSize, numUnits}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputStateOutTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+
+
+ LayerTestResult<float, 2> ret(outputTensorInfo);
+
+ std::vector<float> inputVector;
+ inputVector.assign(input.data(), input.data() + (batchSize * inputSize));
+ auto inputTensor = MakeTensor<float,2>(inputTensorInfo, inputVector);
+
+ std::vector<float> cellStateInVector(batchSize * numUnits, 0.f);
+ auto cellStateInTensor = MakeTensor<float,2>(cellStateInTensorInfo, cellStateInVector);
+
+ std::vector<float> outputStateInVector(batchSize * outputSize, 0.f);
+ auto outputStateInTensor = MakeTensor<float,2>(outputStateInTensorInfo, outputStateInVector);
+
+ std::vector<float> scratchBufferVector(batchSize * numUnits * 3, 0.f);
+ auto scratchBufferTensor = MakeTensor<float,2>(scratchBufferTensorInfo, scratchBufferVector);
+
+ std::vector<float> outputStateOutVector(batchSize * outputSize, 0.f);
+ auto outputStateOutTensor = MakeTensor<float,2>(outputStateOutTensorInfo, outputStateOutVector);
+
+ std::vector<float> cellStateOutVector(batchSize * numUnits, 0.f);
+ auto cellStateOutTensor = MakeTensor<float,2>(cellStateOutTensorInfo, cellStateOutVector);
+
+ std::vector<float> outputVector;
+ outputVector.assign(outputExpected.data(), outputExpected.data() + (batchSize * outputSize));
+ ret.outputExpected = MakeTensor<float, 2>(outputTensorInfo, outputVector);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
+ workloadFactory.CreateTensorHandle(cellStateInTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
+ workloadFactory.CreateTensorHandle(outputStateInTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> scratchHandle = workloadFactory.CreateTensorHandle(scratchBufferTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
+ workloadFactory.CreateTensorHandle(outputStateOutTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
+ workloadFactory.CreateTensorHandle(cellStateOutTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+
+ armnn::LstmQueueDescriptor data;
+ armnn::WorkloadInfo info;
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
+ AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
+
+ AddOutputToWorkload(data, info, scratchBufferTensorInfo, scratchHandle.get());
+ AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
+ AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ armnn::TensorInfo tensorInfo4({numUnits}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfo8({numUnits, 2}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfo16({numUnits, 4}, armnn::GetDataType<float>());
+
+ auto inputToInputWeights = MakeTensor<float, 2>(tensorInfo8, {-0.45018822f, -0.02338299f, -0.0870589f,
+ -0.34550029f, 0.04266912f, -0.15680569f,
+ -0.34856534f, 0.43890524f});
+
+ auto inputToForgetWeights = MakeTensor<float, 2>(tensorInfo8, {0.09701663f, 0.20334584f, -0.50592935f,
+ -0.31343272f, -0.40032279f, 0.44781327f,
+ 0.01387155f, -0.35593212f});
+
+ auto inputToCellWeights = MakeTensor<float, 2>(tensorInfo8, {-0.50013041f, 0.1370284f, 0.11810488f, 0.2013163f,
+ -0.20583314f, 0.44344562f, 0.22077113f,
+ -0.29909778f});
+
+ auto inputToOutputWeights = MakeTensor<float, 2>(tensorInfo8, {-0.25065863f, -0.28290087f, 0.04613829f,
+ 0.40525138f, 0.44272184f, 0.03897077f,
+ -0.1556896f, 0.19487578f});
+
+ auto recurrentToInputWeights = MakeTensor<float, 2>(tensorInfo16, {-0.0063535f, -0.2042388f, 0.31454784f,
+ -0.35746509f, 0.28902304f, 0.08183324f,
+ -0.16555229f, 0.02286911f, -0.13566875f,
+ 0.03034258f, 0.48091322f, -0.12528998f,
+ 0.24077177f, -0.51332325f, -0.33502164f,
+ 0.10629296f});
+
+ auto recurrentToForgetWeights = MakeTensor<float, 2>(tensorInfo16, {-0.48684245f, -0.06655136f, 0.42224967f,
+ 0.2112639f, 0.27654213f, 0.20864892f,
+ -0.07646349f, 0.45877004f, 0.00141793f,
+ -0.14609534f, 0.36447752f, 0.09196436f,
+ 0.28053468f, 0.01560611f, -0.20127171f,
+ -0.01140004f});
+
+ auto recurrentToCellWeights = MakeTensor<float, 2>(tensorInfo16, {-0.3407414f, 0.24443203f, -0.2078532f,
+ 0.26320225f, 0.05695659f, -0.00123841f,
+ -0.4744786f, -0.35869038f, -0.06418842f,
+ -0.13502428f, -0.501764f, 0.22830659f,
+ -0.46367589f, 0.26016325f, -0.03894562f,
+ -0.16368064f});
+
+ auto recurrentToOutputWeights = MakeTensor<float, 2>(tensorInfo16, {0.43385774f, -0.17194885f, 0.2718237f,
+ 0.09215671f, 0.24107647f, -0.39835793f,
+ 0.18212086f, 0.01301402f, 0.48572797f,
+ -0.50656658f, 0.20047462f, -0.20607421f,
+ -0.51818722f, -0.15390486f, 0.0468148f,
+ 0.39922136f});
+
+ auto cellToInputWeights = MakeTensor<float, 1>(tensorInfo4, {0., 0., 0., 0.});
+
+ auto inputGateBias = MakeTensor<float, 1>(tensorInfo4, {0., 0., 0., 0.});
+
+ auto forgetGateBias = MakeTensor<float, 1>(tensorInfo4, {1., 1., 1., 1.});
+
+ auto cellBias = MakeTensor<float, 1>(tensorInfo4, {0., 0., 0., 0.});
+
+ auto outputGateBias = MakeTensor<float, 1>(tensorInfo4, {0., 0., 0., 0.});
+
+ armnn::ScopedCpuTensorHandle inputToInputWeightsTensor(tensorInfo8);
+ armnn::ScopedCpuTensorHandle inputToForgetWeightsTensor(tensorInfo8);
+ armnn::ScopedCpuTensorHandle inputToCellWeightsTensor(tensorInfo8);
+ armnn::ScopedCpuTensorHandle inputToOutputWeightsTensor(tensorInfo8);
+ armnn::ScopedCpuTensorHandle recurrentToForgetWeightsTensor(tensorInfo16);
+ armnn::ScopedCpuTensorHandle recurrentToInputWeightsTensor(tensorInfo16);
+ armnn::ScopedCpuTensorHandle recurrentToCellWeightsTensor(tensorInfo16);
+ armnn::ScopedCpuTensorHandle recurrentToOutputWeightsTensor(tensorInfo16);
+ armnn::ScopedCpuTensorHandle cellToInputWeightsTensor(tensorInfo4);
+ armnn::ScopedCpuTensorHandle inputGateBiasTensor(tensorInfo4);
+ armnn::ScopedCpuTensorHandle forgetGateBiasTensor(tensorInfo4);
+ armnn::ScopedCpuTensorHandle cellBiasTensor(tensorInfo4);
+ armnn::ScopedCpuTensorHandle outputGateBiasTensor(tensorInfo4);
+
+ AllocateAndCopyDataToITensorHandle(&inputToInputWeightsTensor, &inputToInputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, &inputToForgetWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, &inputToCellWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, &inputToOutputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToInputWeightsTensor, &recurrentToInputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, &recurrentToForgetWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, &recurrentToCellWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, &recurrentToOutputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&cellToInputWeightsTensor, &cellToInputWeights[0]);
+ AllocateAndCopyDataToITensorHandle(&inputGateBiasTensor, &inputGateBias[0]);
+ AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, &forgetGateBias[0]);
+ AllocateAndCopyDataToITensorHandle(&cellBiasTensor, &cellBias[0]);
+ AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, &outputGateBias[0]);
+
+ data.m_InputToInputWeights = &inputToInputWeightsTensor;
+ data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
+ data.m_InputToCellWeights = &inputToCellWeightsTensor;
+ data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
+ data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
+ data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
+ data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
+ data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
+ data.m_CellToInputWeights = &cellToInputWeightsTensor;
+ data.m_InputGateBias = &inputGateBiasTensor;
+ data.m_ForgetGateBias = &forgetGateBiasTensor;
+ data.m_CellBias = &cellBiasTensor;
+ data.m_OutputGateBias = &outputGateBiasTensor;
+
+
+ // Flags to set test configuration
+ data.m_Parameters.m_ActivationFunc = 4;
+ data.m_Parameters.m_CifgEnabled = false;
+ data.m_Parameters.m_PeepholeEnabled = false;
+ data.m_Parameters.m_ProjectionEnabled = false;
+
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateLstm(data, info);
+ inputHandle->Allocate();
+ outputStateInHandle->Allocate();
+ cellStateInHandle->Allocate();
+
+ scratchHandle->Allocate();
+ outputStateOutHandle->Allocate();
+ cellStateOutHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &inputTensor[0][0]);
+ CopyDataToITensorHandle(outputStateInHandle.get(), &outputStateInTensor[0][0]);
+ CopyDataToITensorHandle(cellStateInHandle.get(), &cellStateInTensor[0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0], outputHandle.get());
+
+ return ret;
+}
+
+
+LayerTestResult<float, 2>
+LstmLayerFloat32NoCifgWithPeepholeWithProjectionTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const boost::multi_array<float, 2>& input,
+ const boost::multi_array<float, 2>& outputExpected) {
+
+ unsigned int batchSize = 2;
+ unsigned int outputSize = 16;
+ unsigned int inputSize = 5;
+ unsigned numUnits = 20;
+
+ armnn::TensorInfo inputTensorInfo({batchSize , inputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo cellStateInTensorInfo({batchSize , numUnits}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputStateInTensorInfo({batchSize , outputSize}, armnn::GetDataType<float>());
+
+ // Scratch buffer size without CIFG [batchSize, numUnits * 3]
+ armnn::TensorInfo scratchBufferTensorInfo({batchSize, numUnits * 3}, armnn::GetDataType<float>());
+ armnn::TensorInfo cellStateOutTensorInfo({batchSize, numUnits}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputStateOutTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+
+ LayerTestResult<float, 2> ret(outputTensorInfo);
+
+ std::vector<float> inputVector;
+ inputVector.assign(input.data(), input.data() + (batchSize * inputSize));
+ auto inputTensor = MakeTensor<float,2>(inputTensorInfo, inputVector);
+
+ std::vector<float> cellStateInVector(batchSize * numUnits, 0.f);
+ auto cellStateInTensor = MakeTensor<float,2>(cellStateInTensorInfo, cellStateInVector);
+
+ std::vector<float> outputStateInVector(batchSize * outputSize, 0.f);
+ auto outputStateInTensor = MakeTensor<float,2>(outputStateInTensorInfo, outputStateInVector);
+
+ std::vector<float> scratchBufferVector(batchSize * numUnits * 3, 0.f);
+ auto scratchBufferTensor = MakeTensor<float,2>(scratchBufferTensorInfo, scratchBufferVector);
+
+ std::vector<float> outputStateOutVector(batchSize * outputSize, 0.f);
+ auto outputStateOutTensor = MakeTensor<float,2>(outputStateOutTensorInfo, outputStateOutVector);
+
+ std::vector<float> cellStateOutVector(batchSize * numUnits, 0.f);
+ auto cellStateOutTensor = MakeTensor<float,2>(cellStateOutTensorInfo, cellStateOutVector);
+
+ std::vector<float> outputVector;
+ outputVector.assign(outputExpected.data(), outputExpected.data() + (batchSize * outputSize));
+ ret.outputExpected = MakeTensor<float, 2>(outputTensorInfo, outputVector);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
+ workloadFactory.CreateTensorHandle(cellStateInTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
+ workloadFactory.CreateTensorHandle(outputStateInTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> scratchHandle = workloadFactory.CreateTensorHandle(scratchBufferTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
+ workloadFactory.CreateTensorHandle(outputStateOutTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
+ workloadFactory.CreateTensorHandle(cellStateOutTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::LstmQueueDescriptor data;
+ armnn::WorkloadInfo info;
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
+ AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
+
+ AddOutputToWorkload(data, info, scratchBufferTensorInfo, scratchHandle.get());
+ AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
+ AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ armnn::TensorInfo tensorInfo16({outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfo20({numUnits}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfo20x5({numUnits, inputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfo20x16({numUnits, outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfo16x20({outputSize, numUnits}, armnn::GetDataType<float>());
+
+ auto inputToInputWeights =
+ MakeTensor<float, 2>(tensorInfo20x5, {0.021393683f,0.06124551f, 0.046905167f,-0.014657677f,-0.03149463f,
+ 0.09171803f, 0.14647801f,0.10797193f, -0.0057968358f,0.0019193048f,
+ -0.2726754f, 0.10154029f, -0.018539885f, 0.080349885f, -0.10262385f,
+ -0.022599787f,-0.09121155f, -0.008675967f, -0.045206103f,-0.0821282f,
+ -0.008045952f,0.015478081f, 0.055217247f, 0.038719587f, 0.044153627f,
+ -0.06453243f,0.05031825f, -0.046935108f, -0.008164439f, 0.014574226f,
+ -0.1671009f, -0.15519552f, -0.16819797f,-0.13971269f,-0.11953059f,
+ 0.25005487f, -0.22790983f, 0.009855087f, -0.028140958f, -0.11200698f,
+ 0.11295408f, -0.0035217577f, 0.054485075f, 0.05184695f, 0.064711206f,
+ 0.10989193f, 0.11674786f, 0.03490607f, 0.07727357f, 0.11390585f,
+ -0.1863375f, -0.1034451f, -0.13945189f, -0.049401227f, -0.18767063f,
+ 0.042483903f, 0.14233552f, 0.13832581f, 0.18350165f, 0.14545603f,
+ -0.028545704f,0.024939531f,0.050929718f,0.0076203286f,-0.0029723682f,
+ -0.042484224f, -0.11827596f, -0.09171104f, -0.10808628f,-0.16327988f,
+ -0.2273378f, -0.0993647f, -0.017155107f,0.0023917493f,0.049272764f,
+ 0.0038534778f, 0.054764505f, 0.089753784f, 0.06947234f, 0.08014476f,
+ -0.04544234f, -0.0497073f,-0.07135631f, -0.048929106f,-0.004042012f,
+ -0.009284026f, 0.018042054f, 0.0036860977f,-0.07427302f, -0.11434604f,
+ -0.018995456f, 0.031487543f, 0.012834908f,0.019977754f,0.044256654f,
+ -0.39292613f, -0.18519334f, -0.11651281f,-0.06809892f, 0.011373677f
+ });
+
+ auto inputToForgetWeights =
+ MakeTensor<float, 2>(tensorInfo20x5, {-0.0018401089f, -0.004852237f,0.03698424f, 0.014181704f,0.028273236f,
+ -0.016726194f, -0.05249759f,-0.10204261f, 0.00861066f,-0.040979505f,
+ -0.009899187f,0.01923892f,-0.028177269f, -0.08535103f,-0.14585495f,
+ 0.10662567f,-0.01909731f,-0.017883534f,-0.0047269356f,-0.045103323f,
+ 0.0030784295f,0.076784775f,0.07463696f, 0.094531395f,0.0814421f,
+ -0.12257899f, -0.033945758f,-0.031303465f, 0.045630626f,0.06843887f,
+ -0.13492945f, -0.012480007f,-0.0811829f, -0.07224499f,-0.09628791f,
+ 0.045100946f,0.0012300825f, 0.013964662f, 0.099372394f,0.02543059f,
+ 0.06958324f, 0.034257296f, 0.0482646f, 0.06267997f,0.052625068f,
+ 0.12784666f, 0.07077897f, 0.025725935f, 0.04165009f,0.07241905f,
+ 0.018668644f, -0.037377294f,-0.06277783f,-0.08833636f,-0.040120605f,
+ -0.011405586f,-0.007808335f,-0.010301386f,-0.005102167f,0.027717464f,
+ 0.05483423f, 0.11449111f, 0.11289652f,0.10939839f, 0.13396506f,
+ -0.08402166f,-0.01901462f, -0.044678304f,-0.07720565f,0.014350063f,
+ -0.11757958f, -0.0652038f, -0.08185733f,-0.076754324f,-0.092614375f,
+ 0.10405491f, 0.052960336f, 0.035755895f,0.035839386f,-0.012540553f,
+ 0.036881298f, 0.02913376f, 0.03420159f,0.05448447f,-0.054523353f,
+ 0.02582715f, 0.02327355f, -0.011857179f,-0.0011980024f,-0.034641717f,
+ -0.026125094f,-0.17582615f,-0.15923657f,-0.27486774f,-0.0006143371f,
+ 0.0001771948f, -8.470171e-05f, 0.02651807f,0.045790765f,0.06956496f
+ });
+
+ auto inputToCellWeights =
+ MakeTensor<float, 2>(tensorInfo20x5, {-0.04580283f, -0.09549462f, -0.032418985f, -0.06454633f,
+ -0.043528453f, 0.043018587f, -0.049152344f, -0.12418144f,
+ -0.078985475f, -0.07596889f, 0.019484362f, -0.11434962f,
+ -0.0074034138f, -0.06314844f, -0.092981495f, 0.0062155537f,
+ -0.025034338f, -0.0028890965f, 0.048929527f, 0.06235075f,
+ 0.10665918f, -0.032036792f, -0.08505916f, -0.10843358f,
+ -0.13002433f, -0.036816437f, -0.02130134f, -0.016518239f,
+ 0.0047691227f, -0.0025825808f, 0.066017866f, 0.029991534f,
+ -0.10652836f, -0.1037554f, -0.13056071f, -0.03266643f,
+ -0.033702414f, -0.006473424f, -0.04611692f, 0.014419339f,
+ -0.025174323f, 0.0396852f, 0.081777506f, 0.06157468f,
+ 0.10210095f, -0.009658194f, 0.046511717f, 0.03603906f,
+ 0.0069369148f, 0.015960095f, -0.06507666f, 0.09551598f,
+ 0.053568836f, 0.06408714f, 0.12835667f, -0.008714329f,
+ -0.20211966f, -0.12093674f, 0.029450472f, 0.2849013f,
+ -0.029227901f, 0.1164364f, -0.08560263f, 0.09941786f,
+ -0.036999565f, -0.028842626f, -0.0033637602f, -0.017012902f,
+ -0.09720865f, -0.11193351f, -0.029155117f, -0.017936034f,
+ -0.009768936f, -0.04223324f, -0.036159635f, 0.06505112f,
+ -0.021742892f, -0.023377212f, -0.07221364f, -0.06430552f,
+ 0.05453865f, 0.091149814f, 0.06387331f, 0.007518393f,
+ 0.055960953f, 0.069779344f, 0.046411168f, 0.10509911f,
+ 0.07463894f, 0.0075130584f, 0.012850982f, 0.04555431f,
+ 0.056955688f, 0.06555285f, 0.050801456f, -0.009862683f,
+ 0.00826772f, -0.026555609f, -0.0073611983f, -0.0014897042f
+ });
+
+ auto inputToOutputWeights =
+ MakeTensor<float, 2>(tensorInfo20x5, {-0.0998932f, -0.07201956f, -0.052803773f,-0.15629593f,-0.15001918f,
+ -0.07650751f,0.02359855f, -0.075155355f, -0.08037709f, -0.15093534f,
+ 0.029517552f, -0.04751393f, 0.010350531f,-0.02664851f, -0.016839722f,
+ -0.023121163f, 0.0077019283f, 0.012851257f, -0.05040649f,-0.0129761f,
+ -0.021737747f,-0.038305793f,-0.06870586f, -0.01481247f,-0.001285394f,
+ 0.10124236f, 0.083122835f, 0.053313006f,-0.062235646f,-0.075637154f,
+ -0.027833903f, 0.029774971f, 0.1130802f, 0.09218906f, 0.09506135f,
+ -0.086665764f,-0.037162706f,-0.038880914f,-0.035832845f,-0.014481564f,
+ -0.09825003f,-0.12048569f,-0.097665586f,-0.05287633f, -0.0964047f,
+ -0.11366429f, 0.035777505f, 0.13568819f, 0.052451383f,0.050649304f,
+ 0.05798951f, -0.021852335f,-0.099848844f,0.014740475f,-0.078897946f,
+ 0.04974699f, 0.014160473f, 0.06973932f, 0.04964942f, 0.033364646f,
+ 0.08190124f, 0.025535367f, 0.050893165f, 0.048514254f,0.06945813f,
+ -0.078907564f,-0.06707616f, -0.11844508f, -0.09986688f,-0.07509403f,
+ 0.06263226f, 0.14925587f, 0.20188436f, 0.12098451f,0.14639415f,
+ 0.0015017595f, -0.014267382f, -0.03417257f,0.012711468f,0.0028300495f,
+ -0.024758482f, -0.05098548f,-0.0821182f, 0.014225672f, 0.021544158f,
+ 0.08949725f, 0.07505268f, -0.0020780868f, 0.04908258f,0.06476295f,
+ -0.022907063f,0.027562456f,0.040185735f, 0.019567577f,-0.015598739f,
+ -0.049097303f, -0.017121866f, -0.083368234f,-0.02332002f,-0.0840956f
+ });
+
+ auto inputGateBias =
+ MakeTensor<float, 1>(tensorInfo20, {0.02234832f, 0.14757581f, 0.18176508f, 0.10380666f, 0.053110216f,
+ -0.06928846f, -0.13942584f, -0.11816189f, 0.19483899f, 0.03652339f,
+ -0.10250295f, 0.036714908f, -0.18426876f, 0.036065217f, 0.21810818f,
+ 0.02383196f, -0.043370757f, 0.08690144f, -0.04444982f, 0.00030581196f
+ });
+
+ auto forgetGateBias =
+ MakeTensor<float, 1>(tensorInfo20, {0.035185695f, -0.042891346f, -0.03032477f, 0.23027696f,
+ 0.11098921f, 0.15378423f, 0.09263801f, 0.09790885f,
+ 0.09508917f, 0.061199076f, 0.07665568f, -0.015443159f,
+ -0.03499149f, 0.046190713f, 0.08895977f, 0.10899629f,
+ 0.40694186f, 0.06030037f, 0.012413437f, -0.06108739f
+ });
+
+ auto cellBias =
+ MakeTensor<float, 1>(tensorInfo20, {-0.024379363f, 0.0055531194f, 0.23377132f, 0.033463873f,
+ -0.1483596f, -0.10639995f, -0.091433935f, 0.058573797f,
+ -0.06809782f, -0.07889636f, -0.043246906f, -0.09829136f,
+ -0.4279842f, 0.034901652f, 0.18797937f, 0.0075234566f,
+ 0.016178843f, 0.1749513f, 0.13975595f, 0.92058027f
+ });
+
+ auto outputGateBias =
+ MakeTensor<float, 1>(tensorInfo20, {0.046159424f, -0.0012809046f, 0.03563469f, 0.12648113f, 0.027195795f,
+ 0.35373217f, -0.018957434f, 0.008907322f, -0.0762701f, 0.12018895f,
+ 0.04216877f, 0.0022856654f, 0.040952638f, 0.3147856f, 0.08225149f,
+ -0.057416286f, -0.14995944f, -0.008040261f, 0.13208859f, 0.029760877f
+ });
+
+ auto recurrentToInputWeights =
+ MakeTensor<float, 2>(tensorInfo20x16, {-0.001374326f, -0.078856036f, 0.10672688f, 0.029162422f,
+ -0.11585556f, 0.02557986f, -0.13446963f, -0.035785314f,
+ -0.01244275f, 0.025961924f, -0.02337298f, -0.044228926f,
+ -0.055839065f, -0.046598054f, -0.010546039f, -0.06900766f,
+ 0.027239809f, 0.022582639f, -0.013296484f, -0.05459212f,
+ 0.08981f, -0.045407712f, 0.08682226f, -0.06867011f,
+ -0.14390695f, -0.02916037f, 0.000996957f, 0.091420636f,
+ 0.14283475f, -0.07390571f, -0.06402044f, 0.062524505f,
+ -0.093129106f, 0.04860203f, -0.08364217f, -0.08119002f,
+ 0.009352075f, 0.22920375f, 0.0016303885f, 0.11583097f,
+ -0.13732095f, 0.012405723f, -0.07551853f, 0.06343048f,
+ 0.12162708f, -0.031923793f, -0.014335606f, 0.01790974f,
+ -0.10650317f, -0.0724401f, 0.08554849f, -0.05727212f,
+ 0.06556731f, -0.042729504f, -0.043227166f, 0.011683251f,
+ -0.013082158f, -0.029302018f, -0.010899579f, -0.062036745f,
+ -0.022509435f, -0.00964907f, -0.01567329f, 0.04260106f,
+ -0.07787477f, -0.11576462f, 0.017356863f, 0.048673786f,
+ -0.017577527f, -0.05527947f, -0.082487635f, -0.040137455f,
+ -0.10820036f, -0.04666372f, 0.022746278f, -0.07851417f,
+ 0.01068115f, 0.032956902f, 0.022433773f, 0.0026891115f,
+ 0.08944216f, -0.0685835f, 0.010513544f, 0.07228705f,
+ 0.02032331f, -0.059686817f, -0.0005566496f, -0.086984694f,
+ 0.040414046f, -0.1380399f, 0.094208956f, -0.05722982f,
+ 0.012092817f, -0.04989123f, -0.086576f, -0.003399834f,
+ -0.04696032f, -0.045747425f, 0.10091314f, 0.048676282f,
+ -0.029037097f, 0.031399418f, -0.0040285117f, 0.047237843f,
+ 0.09504992f, 0.041799378f, -0.049185462f, -0.031518843f,
+ -0.10516937f, 0.026374253f, 0.10058866f, -0.0033195973f,
+ -0.041975245f, 0.0073591834f, 0.0033782164f, -0.004325073f,
+ -0.10167381f, 0.042500053f, -0.01447153f, 0.06464186f,
+ -0.017142897f, 0.03312627f, 0.009205989f, 0.024138335f,
+ -0.011337001f, 0.035530265f, -0.010912711f, 0.0706555f,
+ -0.005894094f, 0.051841937f, -0.1401738f, -0.02351249f,
+ 0.0365468f, 0.07590991f, 0.08838724f, 0.021681072f,
+ -0.10086113f, 0.019608743f, -0.06195883f, 0.077335775f,
+ 0.023646897f, -0.095322326f, 0.02233014f, 0.09756986f,
+ -0.048691444f, -0.009579111f, 0.07595467f, 0.11480546f,
+ -0.09801813f, 0.019894179f, 0.08502348f, 0.004032281f,
+ 0.037211012f, 0.068537936f, -0.048005626f, -0.091520436f,
+ -0.028379958f, -0.01556313f, 0.06554592f, -0.045599163f,
+ -0.01672207f, -0.020169014f, -0.011877351f, -0.20212261f,
+ 0.010889619f, 0.0047078193f, 0.038385306f, 0.08540671f,
+ -0.017140968f, -0.0035865551f, 0.016678626f, 0.005633034f,
+ 0.015963363f, 0.00871737f, 0.060130805f, 0.028611384f,
+ 0.10109069f, -0.015060172f, -0.07894427f, 0.06401885f,
+ 0.011584063f, -0.024466386f, 0.0047652307f, -0.09041358f,
+ 0.030737216f, -0.0046374933f, 0.14215417f, -0.11823516f,
+ 0.019899689f, 0.006106124f, -0.027092824f, 0.0786356f,
+ 0.05052217f, -0.058925f, -0.011402121f, -0.024987547f,
+ -0.0013661642f, -0.06832946f, -0.015667673f, -0.1083353f,
+ -0.00096863037f, -0.06988685f, -0.053350925f, -0.027275559f,
+ -0.033664223f, -0.07978348f, -0.025200296f, -0.017207067f,
+ -0.058403496f, -0.055697463f, 0.005798788f, 0.12965427f,
+ -0.062582195f, 0.0013350133f, -0.10482091f, 0.0379771f,
+ 0.072521195f, -0.0029455067f, -0.13797039f, -0.03628521f,
+ 0.013806405f, -0.017858358f, -0.01008298f, -0.07700066f,
+ -0.017081132f, 0.019358726f, 0.0027079724f, 0.004635139f,
+ 0.062634714f, -0.02338735f, -0.039547626f, -0.02050681f,
+ 0.03385117f, -0.083611414f, 0.002862572f, -0.09421313f,
+ 0.058618143f, -0.08598433f, 0.00972939f, 0.023867095f,
+ -0.053934585f, -0.023203006f, 0.07452513f, -0.048767887f,
+ -0.07314807f, -0.056307215f, -0.10433547f, -0.06440842f,
+ 0.04328182f, 0.04389765f, -0.020006588f, -0.09076438f,
+ -0.11652589f, -0.021705797f, 0.03345259f, -0.010329105f,
+ -0.025767034f, 0.013057034f, -0.07316461f, -0.10145612f,
+ 0.06358255f, 0.18531723f, 0.07759293f, 0.12006465f,
+ 0.1305557f, 0.058638252f, -0.03393652f, 0.09622831f,
+ -0.16253184f, -2.4580743e-06f, 0.079869635f, -0.070196845f,
+ -0.005644518f, 0.06857898f, -0.12598175f, -0.035084512f,
+ 0.03156317f, -0.12794146f, -0.031963028f, 0.04692781f,
+ 0.030070418f, 0.0071660685f, -0.095516115f, -0.004643372f,
+ 0.040170413f, -0.062104587f, -0.0037324072f, 0.0554317f,
+ 0.08184801f, -0.019164372f, 0.06791302f, 0.034257166f,
+ -0.10307039f, 0.021943003f, 0.046745934f, 0.0790918f,
+ -0.0265588f, -0.007824208f, 0.042546265f, -0.00977924f,
+ -0.0002440307f, -0.017384544f, -0.017990116f, 0.12252321f,
+ -0.014512694f, -0.08251313f, 0.08861942f, 0.13589665f,
+ 0.026351685f, 0.012641483f, 0.07466548f, 0.044301085f,
+ -0.045414884f, -0.051112458f, 0.03444247f, -0.08502782f,
+ -0.04106223f, -0.028126027f, 0.028473156f, 0.10467447f
+ });
+
+ auto recurrentToForgetWeights =
+ MakeTensor<float, 2>(tensorInfo20x16, {-0.057784554f, -0.026057621f, -0.068447545f, -0.022581743f,
+ 0.14811787f, 0.10826372f, 0.09471067f, 0.03987225f,
+ -0.0039523416f, 0.00030638507f, 0.053185795f, 0.10572994f,
+ 0.08414449f, -0.022036452f, -0.00066928595f, -0.09203576f,
+ 0.032950465f, -0.10985798f, -0.023809856f, 0.0021431844f,
+ -0.02196096f, -0.00326074f, 0.00058621005f, -0.074678116f,
+ -0.06193199f, 0.055729095f, 0.03736828f, 0.020123724f,
+ 0.061878487f, -0.04729229f, 0.034919553f, -0.07585433f,
+ -0.04421272f, -0.044019096f, 0.085488975f, 0.04058006f,
+ -0.06890133f, -0.030951202f, -0.024628663f, -0.07672815f,
+ 0.034293607f, 0.08556707f, -0.05293577f, -0.033561368f,
+ -0.04899627f, 0.0241671f, 0.015736353f, -0.095442444f,
+ -0.029564252f, 0.016493602f, -0.035026584f, 0.022337519f,
+ -0.026871363f, 0.004780428f, 0.0077918363f, -0.03601621f,
+ 0.016435321f, -0.03263031f, -0.09543275f, -0.047392778f,
+ 0.013454138f, 0.028934088f, 0.01685226f, -0.086110644f,
+ -0.046250615f, -0.01847454f, 0.047608484f, 0.07339695f,
+ 0.034546845f, -0.04881143f, 0.009128804f, -0.08802852f,
+ 0.03761666f, 0.008096139f, -0.014454086f, 0.014361001f,
+ -0.023502491f, -0.0011840804f, -0.07607001f, 0.001856849f,
+ -0.06509276f, -0.006021153f, -0.08570962f, -0.1451793f,
+ 0.060212336f, 0.055259194f, 0.06974018f, 0.049454916f,
+ -0.027794661f, -0.08077226f, -0.016179763f, 0.1169753f,
+ 0.17213494f, -0.0056326236f, -0.053934924f, -0.0124349f,
+ -0.11520337f, 0.05409887f, 0.088759385f, 0.0019655675f,
+ 0.0042065294f, 0.03881498f, 0.019844765f, 0.041858196f,
+ -0.05695512f, 0.047233116f, 0.038937137f, -0.06542224f,
+ 0.014429736f, -0.09719407f, 0.13908425f, -0.05379757f,
+ 0.012321099f, 0.082840554f, -0.029899208f, 0.044217527f,
+ 0.059855383f, 0.07711018f, -0.045319796f, 0.0948846f,
+ -0.011724666f, -0.0033288454f, -0.033542685f, -0.04764985f,
+ -0.13873616f, 0.040668588f, 0.034832682f, -0.015319203f,
+ -0.018715994f, 0.046002675f, 0.0599172f, -0.043107376f,
+ 0.0294216f, -0.002314414f, -0.022424703f, 0.0030315618f,
+ 0.0014641669f, 0.0029166266f, -0.11878115f, 0.013738511f,
+ 0.12375372f, -0.0006038222f, 0.029104086f, 0.087442465f,
+ 0.052958444f, 0.07558703f, 0.04817258f, 0.044462286f,
+ -0.015213451f, -0.08783778f, -0.0561384f, -0.003008196f,
+ 0.047060397f, -0.002058388f, 0.03429439f, -0.018839769f,
+ 0.024734668f, 0.024614193f, -0.042046934f, 0.09597743f,
+ -0.0043254104f, 0.04320769f, 0.0064070094f, -0.0019131786f,
+ -0.02558259f, -0.022822596f, -0.023273505f, -0.02464396f,
+ -0.10991725f, -0.006240552f, 0.0074488563f, 0.024044557f,
+ 0.04383914f, -0.046476185f, 0.028658995f, 0.060410924f,
+ 0.050786525f, 0.009452605f, -0.0073054377f, -0.024810238f,
+ 0.0052906186f, 0.0066939713f, -0.0020913032f, 0.014515517f,
+ 0.015898481f, 0.021362653f, -0.030262267f, 0.016587038f,
+ -0.011442813f, 0.041154444f, -0.007631438f, -0.03423484f,
+ -0.010977775f, 0.036152758f, 0.0066366293f, 0.11915515f,
+ 0.02318443f, -0.041350313f, 0.021485701f, -0.10906167f,
+ -0.028218046f, -0.00954771f, 0.020531068f, -0.11995105f,
+ -0.03672871f, 0.024019798f, 0.014255957f, -0.05221243f,
+ -0.00661567f, -0.04630967f, 0.033188973f, 0.10107534f,
+ -0.014027541f, 0.030796422f, -0.10270911f, -0.035999842f,
+ 0.15443139f, 0.07684145f, 0.036571592f, -0.035900835f,
+ -0.0034699554f, 0.06209149f, 0.015920248f, -0.031122351f,
+ -0.03858649f, 0.01849943f, 0.13872518f, 0.01503974f,
+ 0.069941424f, -0.06948533f, -0.0088794185f, 0.061282158f,
+ -0.047401894f, 0.03100163f, -0.041533746f, -0.10430945f,
+ 0.044574402f, -0.01425562f, -0.024290353f, 0.034563623f,
+ 0.05866852f, 0.023947537f, -0.09445152f, 0.035450947f,
+ 0.02247216f, -0.0042998926f, 0.061146557f, -0.10250651f,
+ 0.020881841f, -0.06747029f, 0.10062043f, -0.0023941975f,
+ 0.03532124f, -0.016341697f, 0.09685456f, -0.016764693f,
+ 0.051808182f, 0.05875331f, -0.04536488f, 0.001626336f,
+ -0.028892258f, -0.01048663f, -0.009793449f, -0.017093895f,
+ 0.010987891f, 0.02357273f, -0.00010856845f, 0.0099760275f,
+ -0.001845119f, -0.03551521f, 0.0018358806f, 0.05763657f,
+ -0.01769146f, 0.040995963f, 0.02235177f, -0.060430344f,
+ 0.11475477f, -0.023854522f, 0.10071741f, 0.0686208f,
+ -0.014250481f, 0.034261297f, 0.047418304f, 0.08562733f,
+ -0.030519066f, 0.0060542435f, 0.014653856f, -0.038836084f,
+ 0.04096551f, 0.032249358f, -0.08355519f, -0.026823482f,
+ 0.056386515f, -0.010401743f, -0.028396193f, 0.08507674f,
+ 0.014410365f, 0.020995233f, 0.17040324f, 0.11511526f,
+ 0.02459721f, 0.0066619175f, 0.025853224f, -0.023133837f,
+ -0.081302024f, 0.017264642f, -0.009585969f, 0.09491168f,
+ -0.051313367f, 0.054532815f, -0.014298593f, 0.10657464f,
+ 0.007076659f, 0.10964551f, 0.0409152f, 0.008275321f,
+ -0.07283536f, 0.07937492f, 0.04192024f, -0.1075027f
+ });
+
+ auto recurrentToCellWeights =
+ MakeTensor<float, 2>(tensorInfo20x16, {-0.037322544f, 0.018592842f, 0.0056175636f, -0.06253426f,
+ 0.055647098f, -0.05713207f, -0.05626563f, 0.005559383f,
+ 0.03375411f, -0.025757805f, -0.088049285f, 0.06017052f,
+ -0.06570978f, 0.007384076f, 0.035123326f, -0.07920549f,
+ 0.053676967f, 0.044480428f, -0.07663568f, 0.0071805613f,
+ 0.08089997f, 0.05143358f, 0.038261272f, 0.03339287f,
+ -0.027673481f, 0.044746667f, 0.028349208f, 0.020090483f,
+ -0.019443132f, -0.030755889f, -0.0040000007f, 0.04465846f,
+ -0.021585021f, 0.0031670958f, 0.0053199246f, -0.056117613f,
+ -0.10893326f, 0.076739706f, -0.08509834f, -0.027997585f,
+ 0.037871376f, 0.01449768f, -0.09002357f, -0.06111149f,
+ -0.046195522f, 0.0422062f, -0.005683705f, -0.1253618f,
+ -0.012925729f, -0.04890792f, 0.06985068f, 0.037654128f,
+ 0.03398274f, -0.004781977f, 0.007032333f, -0.031787455f,
+ 0.010868644f, -0.031489216f, 0.09525667f, 0.013939797f,
+ 0.0058680447f, 0.0167067f, 0.02668468f, -0.04797466f,
+ -0.048885044f, -0.12722108f, 0.035304096f, 0.06554885f,
+ 0.00972396f, -0.039238118f, -0.05159735f, -0.11329045f,
+ 0.1613692f, -0.03750952f, 0.06529313f, -0.071974665f,
+ -0.11769596f, 0.015524369f, -0.0013754242f, -0.12446318f,
+ 0.02786344f, -0.014179351f, 0.005264273f, 0.14376344f,
+ 0.015983658f, 0.03406988f, -0.06939408f, 0.040699873f,
+ 0.02111075f, 0.09669095f, 0.041345075f, -0.08316494f,
+ -0.07684199f, -0.045768797f, 0.032298047f, -0.041805092f,
+ 0.0119405f, 0.0061010392f, 0.12652606f, 0.0064572375f,
+ -0.024950314f, 0.11574242f, 0.04508852f, -0.04335324f,
+ 0.06760663f, -0.027437469f, 0.07216407f, 0.06977076f,
+ -0.05438599f, 0.034033038f, -0.028602652f, 0.05346137f,
+ 0.043184172f, -0.037189785f, 0.10420091f, 0.00882477f,
+ -0.054019816f, -0.074273005f, -0.030617684f, -0.0028467078f,
+ 0.024302477f, -0.0038869337f, 0.005332455f, 0.0013399826f,
+ 0.04361412f, -0.007001822f, 0.09631092f, -0.06702025f,
+ -0.042049985f, -0.035070654f, -0.04103342f, -0.10273396f,
+ 0.0544271f, 0.037184782f, -0.13150354f, -0.0058036847f,
+ -0.008264958f, 0.042035464f, 0.05891794f, 0.029673764f,
+ 0.0063542654f, 0.044788733f, 0.054816857f, 0.062257513f,
+ -0.00093483756f, 0.048938446f, -0.004952862f, -0.007730018f,
+ -0.04043371f, -0.017094059f, 0.07229206f, -0.023670016f,
+ -0.052195564f, -0.025616996f, -0.01520939f, 0.045104615f,
+ -0.007376126f, 0.003533447f, 0.006570588f, 0.056037236f,
+ 0.12436656f, 0.051817212f, 0.028532185f, -0.08686856f,
+ 0.11868599f, 0.07663395f, -0.07323171f, 0.03463402f,
+ -0.050708205f, -0.04458982f, -0.11590894f, 0.021273347f,
+ 0.1251325f, -0.15313013f, -0.12224372f, 0.17228661f,
+ 0.023029093f, 0.086124025f, 0.006445803f, -0.03496501f,
+ 0.028332196f, 0.04449512f, -0.042436164f, -0.026587414f,
+ -0.006041347f, -0.09292539f, -0.05678812f, 0.03897832f,
+ 0.09465633f, 0.008115513f, -0.02171956f, 0.08304309f,
+ 0.071401566f, 0.019622514f, 0.032163795f, -0.004167056f,
+ 0.02295182f, 0.030739572f, 0.056506045f, 0.004612461f,
+ 0.06524936f, 0.059999723f, 0.046395954f, -0.0045512207f,
+ -0.1335546f, -0.030136576f, 0.11584653f, -0.014678886f,
+ 0.0020118146f, -0.09688814f, -0.0790206f, 0.039770417f,
+ -0.0329582f, 0.07922767f, 0.029322514f, 0.026405897f,
+ 0.04207835f, -0.07073373f, 0.063781224f, 0.0859677f,
+ -0.10925287f, -0.07011058f, 0.048005477f, 0.03438226f,
+ -0.09606514f, -0.006669445f, -0.043381985f, 0.04240257f,
+ -0.06955775f, -0.06769346f, 0.043903265f, -0.026784198f,
+ -0.017840602f, 0.024307009f, -0.040079936f, -0.019946516f,
+ 0.045318738f, -0.12233574f, 0.026170589f, 0.0074471775f,
+ 0.15978073f, 0.10185836f, 0.10298046f, -0.015476589f,
+ -0.039390966f, -0.072174534f, 0.0739445f, -0.1211869f,
+ -0.0347889f, -0.07943156f, 0.014809798f, -0.12412325f,
+ -0.0030663363f, 0.039695457f, 0.0647603f, -0.08291318f,
+ -0.018529687f, -0.004423833f, 0.0037507233f, 0.084633216f,
+ -0.01514876f, -0.056505352f, -0.012800942f, -0.06994386f,
+ 0.012962922f, -0.031234352f, 0.07029052f, 0.016418684f,
+ 0.03618972f, 0.055686004f, -0.08663945f, -0.017404709f,
+ -0.054761406f, 0.029065743f, 0.052404847f, 0.020238016f,
+ 0.0048197987f, -0.0214882f, 0.07078733f, 0.013016777f,
+ 0.06262858f, 0.009184685f, 0.020785125f, -0.043904778f,
+ -0.0270329f, -0.03299152f, -0.060088247f, -0.015162964f,
+ -0.001828936f, 0.12642565f, -0.056757294f, 0.013586685f,
+ 0.09232601f, -0.035886683f, 0.06000002f, 0.05229691f,
+ -0.052580316f, -0.082029596f, -0.010794592f, 0.012947712f,
+ -0.036429964f, -0.085508935f, -0.13127148f, -0.017744139f,
+ 0.031502828f, 0.036232427f, -0.031581745f, 0.023051167f,
+ -0.05325106f, -0.03421577f, 0.028793324f, -0.034633752f,
+ -0.009881397f, -0.043551125f, -0.018609839f, 0.0019097115f,
+ -0.008799762f, 0.056595087f, 0.0022273948f, 0.055752404f
+ });
+
+ auto recurrentToOutputWeights =
+ MakeTensor<float, 2>(tensorInfo20x16, {0.025825322f, -0.05813119f, 0.09495884f,-0.045984812f, -0.01255415f,
+ -0.0026479573f,-0.08196161f,-0.054914974f,-0.0046604523f,
+ -0.029587349f, -0.044576716f, -0.07480124f, -0.082868785f,
+ 0.023254942f, 0.027502948f, -0.0039728214f, -0.08683098f,
+ -0.08116779f, -0.014675607f, -0.037924774f, -0.023314456f,
+ -0.007401714f, -0.09255757f, 0.029460307f, -0.08829125f,
+ -0.005139627f, -0.08989442f, -0.0555066f, 0.13596267f,
+ -0.025062224f, -0.048351806f, -0.03850004f, 0.07266485f,
+ -0.022414139f, 0.05940088f, 0.075114764f, 0.09597592f,
+ -0.010211725f, -0.0049794707f, -0.011523867f, -0.025980417f,
+ 0.072999895f, 0.11091378f, -0.081685916f, 0.014416728f,
+ 0.043229222f, 0.034178585f, -0.07530371f, 0.035837382f,
+ -0.085607f, -0.007721233f, -0.03287832f, -0.043848954f,
+ -0.06404588f, -0.06632928f, -0.073643476f, 0.008214239f,
+ -0.045984086f, 0.039764922f, 0.03474462f, 0.060612556f,
+ -0.080590084f, 0.049127717f, 0.04151091f, -0.030063879f,
+ 0.008801774f, -0.023021035f, -0.019558564f, 0.05158114f,
+ -0.010947698f, -0.011825728f, 0.0075720972f, 0.0699727f,
+ -0.0039981045f, 0.069350146f, 0.08799282f, 0.016156472f,
+ 0.035502106f, 0.11695009f, 0.006217345f, 0.13392477f,
+ -0.037875112f, 0.025745004f, 0.08940699f, -0.00924166f,
+ 0.0046702605f, -0.036598757f, -0.08811812f, 0.10522024f,
+ -0.032441203f, 0.008176899f, -0.04454919f, 0.07058152f,
+ 0.0067963637f, 0.039206743f, 0.03259838f, 0.03725492f,
+ -0.09515802f, 0.013326398f, -0.052055415f, -0.025676316f,
+ 0.03198509f, -0.015951829f, -0.058556724f, 0.036879618f,
+ 0.043357447f, 0.028362012f, -0.05908629f, 0.0059240665f,
+ -0.04995891f, -0.019187413f,0.0276265f, -0.01628143f, 0.0025863599f,
+ 0.08800015f, 0.035250366f, -0.022165963f, -0.07328642f,
+ -0.009415526f, -0.07455109f, 0.11690406f, 0.0363299f,
+ 0.07411125f, 0.042103454f, -0.009660886f, 0.019076364f,
+ 0.018299393f, -0.046004917f, 0.08891175f,0.0431396f, -0.026327137f,
+ -0.051502608f, 0.08979574f, -0.051670972f, 0.04940282f,
+ -0.07491107f, -0.021240504f, 0.022596184f, -0.034280192f,
+ 0.060163025f, -0.058211457f, -0.051837247f, -0.01349775f,
+ -0.04639988f, -0.035936575f, -0.011681591f, 0.064818054f,
+ 0.0073146066f, -0.021745546f, -0.043124277f, -0.06471268f,
+ -0.07053354f, -0.029321948f, -0.05330136f, 0.016933719f,
+ -0.053782392f, 0.13747959f, -0.1361751f, -0.11569455f,
+ 0.0033329215f, 0.05693899f, -0.053219706f, 0.063698f,
+ 0.07977434f, -0.07924483f, 0.06936997f, 0.0034815092f,
+ -0.007305279f, -0.037325785f, -0.07251102f, -0.033633437f,
+ -0.08677009f, 0.091591336f, -0.14165086f, 0.021752775f,
+ 0.019683983f, 0.0011612234f, -0.058154266f, 0.049996935f,
+ 0.0288841f, -0.0024567875f, -0.14345716f, 0.010955264f,-0.10234828f,
+ 0.1183656f, -0.0010731248f, -0.023590032f,-0.072285876f,-0.0724771f,
+ -0.026382286f, -0.0014920527f, 0.042667855f, 0.0018776858f,
+ 0.02986552f, 0.009814309f, 0.0733756f, 0.12289186f,
+ 0.018043943f, -0.0458958f, 0.049412545f, 0.033632483f,
+ 0.05495232f, 0.036686596f, -0.013781798f, -0.010036754f,
+ 0.02576849f, -0.08307328f, 0.010112348f, 0.042521734f,
+ -0.05869831f, -0.071689695f, 0.03876447f, -0.13275425f, -0.0352966f,
+ -0.023077697f, 0.10285965f, 0.084736146f, 0.15568255f,
+ -0.00040734606f, 0.027835453f, -0.10292561f, -0.032401145f,
+ 0.10053256f, -0.026142767f, -0.08271222f, -0.0030240538f,
+ -0.016368777f, 0.1070414f, 0.042672627f, 0.013456989f,
+ -0.0437609f, -0.022309763f, 0.11576483f, 0.04108048f,
+ 0.061026827f, -0.0190714f, -0.0869359f, 0.037901703f, 0.0610107f,
+ 0.07202949f, 0.01675338f, 0.086139716f, -0.08795751f,
+ -0.014898893f, -0.023771819f, -0.01965048f, 0.007955471f,
+ -0.043740474f, 0.03346837f, -0.10549954f, 0.090567775f,
+ 0.042013682f, -0.03176985f, 0.12569028f, -0.02421228f,
+ -0.029526481f, 0.023851605f, 0.031539805f, 0.05292009f,
+ -0.02344001f, -0.07811758f, -0.08834428f, 0.10094801f,
+ 0.16594367f, -0.06861939f, -0.021256343f, -0.041093912f,
+ -0.06669611f, 0.035498552f, 0.021757556f, -0.09302526f,
+ -0.015403468f, -0.06614931f, -0.051798206f, -0.013874718f,
+ 0.03630673f, 0.010412845f, -0.08077351f, 0.046185967f,
+ 0.0035662893f, 0.03541868f, -0.094149634f, -0.034814864f,
+ 0.003128424f, -0.020674974f, -0.03944324f, -0.008110165f,
+ -0.11113267f, 0.08484226f, 0.043586485f, 0.040582247f,
+ 0.0968012f, -0.065249965f, -0.028036479f, 0.0050708856f,
+ 0.0017462453f, 0.0326779f, 0.041296225f, 0.09164146f,
+ -0.047743853f, -0.015952192f, -0.034451712f, 0.084197424f,
+ -0.05347844f, -0.11768019f, 0.085926116f, -0.08251791f,
+ -0.045081906f, 0.0948852f, 0.068401024f, 0.024856757f,
+ 0.06978981f, -0.057309967f, -0.012775832f, -0.0032452994f,
+ 0.01977615f, -0.041040014f, -0.024264973f,0.063464895f, 0.05431621f
+ });
+
+ auto cellToInputWeights =
+ MakeTensor<float, 1>(tensorInfo20, {0.040369894f, 0.030746894f, 0.24704495f, 0.018586371f, -0.037586458f,
+ -0.15312155f, -0.11812848f, -0.11465643f, 0.20259799f, 0.11418174f,
+ -0.10116027f, -0.011334949f, 0.12411352f, -0.076769054f,-0.052169047f,
+ 0.21198851f, -0.38871562f, -0.09061183f, -0.09683246f, -0.21929175f
+ });
+
+
+ auto cellToForgetWeights =
+ MakeTensor<float, 1>(tensorInfo20, {-0.01998659f,-0.15568835f,-0.24248174f, -0.012770197f, 0.041331276f,
+ -0.072311886f, -0.052123554f,-0.0066330447f,-0.043891653f,0.036225766f,
+ -0.047248036f, 0.021479502f,0.033189066f, 0.11952997f, -0.020432774f,
+ 0.64658105f, -0.06650122f, -0.03467612f, 0.095340036f, 0.23647355f
+ });
+
+ auto cellToOutputWeights =
+ MakeTensor<float, 1>(tensorInfo20, {0.08286371f, -0.08261836f, -0.51210177f, 0.002913762f, 0.17764764f,
+ -0.5495371f, -0.08460716f, -0.24552552f, 0.030037103f, 0.04123544f,
+ -0.11940523f, 0.007358328f, 0.1890978f, 0.4833202f, -0.34441817f,
+ 0.36312827f, -0.26375428f, 0.1457655f, -0.19724406f, 0.15548733f
+ });
+
+ auto projectionWeights =
+ MakeTensor<float, 2>(tensorInfo16x20,
+ {-0.009802181f, 0.09401916f, 0.0717386f, -0.13895074f, 0.09641832f,
+ 0.060420845f, 0.08539281f, 0.054285463f, 0.061395317f, 0.034448683f,
+ -0.042991187f, 0.019801661f, -0.16840284f, -0.015726732f, -0.23041931f,
+ -0.024478018f, -0.10959692f, -0.013875541f, 0.18600968f, -0.061274476f,
+ 0.0138165f, -0.08160894f, -0.07661644f, 0.032372914f, 0.16169067f,
+ 0.22465782f, -0.03993472f, -0.004017731f, 0.08633481f, -0.28869787f,
+ 0.08682067f, 0.17240396f, 0.014975425f, 0.056431185f, 0.031037588f,
+ 0.16702051f, 0.0077946745f, 0.15140012f, 0.29405436f, 0.120285f,
+ -0.188994f, -0.027265169f, 0.043389652f, -0.022061434f, 0.014777949f,
+ -0.20203483f, 0.094781205f, 0.19100232f, 0.13987629f, -0.036132768f,
+ -0.06426278f, -0.05108664f, 0.13221376f, 0.009441198f, -0.16715929f,
+ 0.15859416f, -0.040437475f, 0.050779544f, -0.022187516f, 0.012166504f,
+ 0.027685808f, -0.07675938f, -0.0055694645f, -0.09444123f, 0.0046453946f,
+ 0.050794356f, 0.10770313f, -0.20790008f, -0.07149004f, -0.11425117f,
+ 0.008225835f, -0.035802525f, 0.14374903f, 0.15262283f, 0.048710253f,
+ 0.1847461f, -0.007487823f, 0.11000021f, -0.09542012f, 0.22619456f,
+ -0.029149994f, 0.08527916f, 0.009043713f, 0.0042746216f, 0.016261552f,
+ 0.022461696f, 0.12689082f, -0.043589946f, -0.12035478f, -0.08361797f,
+ -0.050666027f, -0.1248618f, -0.1275799f, -0.071875185f, 0.07377272f,
+ 0.09944291f, -0.18897448f, -0.1593054f, -0.06526116f, -0.040107165f,
+ -0.004618631f, -0.067624845f, -0.007576253f, 0.10727444f, 0.041546922f,
+ -0.20424393f, 0.06907816f, 0.050412357f, 0.00724631f, 0.039827548f,
+ 0.12449835f, 0.10747581f, 0.13708383f, 0.09134148f, -0.12617786f,
+ -0.06428341f, 0.09956831f, 0.1208086f, -0.14676677f, -0.0727722f,
+ 0.1126304f, 0.010139365f, 0.015571211f, -0.038128063f, 0.022913318f,
+ -0.042050496f, 0.16842307f, -0.060597885f, 0.10531834f, -0.06411776f,
+ -0.07451711f, -0.03410368f, -0.13393489f, 0.06534304f, 0.003620307f,
+ 0.04490757f, 0.05970546f, 0.05197996f, 0.02839995f, 0.10434969f,
+ -0.013699693f, -0.028353551f, -0.07260381f, 0.047201227f, -0.024575593f,
+ -0.036445823f, 0.07155557f, 0.009672501f, -0.02328883f, 0.009533515f,
+ -0.03606021f, -0.07421458f, -0.028082801f, -0.2678904f, -0.13221288f,
+ 0.18419984f, -0.13012612f, -0.014588381f, -0.035059117f, -0.04824723f,
+ 0.07830115f, -0.056184657f, 0.03277091f, 0.025466874f, 0.14494097f,
+ -0.12522776f, -0.098633975f, -0.10766018f, -0.08317623f, 0.08594209f,
+ 0.07749552f, 0.039474737f, 0.1776665f, -0.07409566f, -0.0477268f,
+ 0.29323658f, 0.10801441f, 0.1154011f, 0.013952499f, 0.10739139f,
+ 0.10708251f, -0.051456142f, 0.0074137426f, -0.10430189f, 0.10034707f,
+ 0.045594677f, 0.0635285f, -0.0715442f, -0.089667566f, -0.10811871f,
+ 0.00026344223f, 0.08298446f, -0.009525053f, 0.006585689f, -0.24567553f,
+ -0.09450807f, 0.09648481f, 0.026996298f, -0.06419476f, -0.04752702f,
+ -0.11063944f, -0.23441927f, -0.17608605f, -0.052156363f, 0.067035615f,
+ 0.19271925f, -0.0032889997f, -0.043264326f, 0.09663576f, -0.057112187f,
+ -0.10100678f, 0.0628376f, 0.04447668f, 0.017961001f, -0.10094388f,
+ -0.10190601f, 0.18335468f, 0.10494553f, -0.052095775f, -0.0026118709f,
+ 0.10539724f, -0.04383912f, -0.042349473f, 0.08438151f, -0.1947263f,
+ 0.02251204f, 0.11216432f, -0.10307853f, 0.17351969f, -0.039091777f,
+ 0.08066188f, -0.00561982f, 0.12633002f, 0.11335965f, -0.0088127935f,
+ -0.019777594f, 0.06864014f, -0.059751723f, 0.016233567f, -0.06894641f,
+ -0.28651384f, -0.004228674f, 0.019708522f, -0.16305895f, -0.07468996f,
+ -0.0855457f, 0.099339016f, -0.07580735f, -0.13775392f, 0.08434318f,
+ 0.08330512f, -0.12131499f, 0.031935584f, 0.09180414f, -0.08876437f,
+ -0.08049874f, 0.008753825f, 0.03498998f, 0.030215185f, 0.03907079f,
+ 0.089751154f, 0.029194152f, -0.03337423f, -0.019092513f, 0.04331237f,
+ 0.04299654f, -0.036394123f, -0.12915532f, 0.09793732f, 0.07512415f,
+ -0.11319543f, -0.032502122f, 0.15661901f, 0.07671967f, -0.005491124f,
+ -0.19379048f, -0.218606f, 0.21448623f, 0.017840758f, 0.1416943f,
+ -0.07051762f, 0.19488361f, 0.02664691f, -0.18104725f, -0.09334311f,
+ 0.15026465f, -0.15493552f, -0.057762887f, -0.11604192f, -0.262013f,
+ -0.01391798f, 0.012185008f, 0.11156489f, -0.07483202f, 0.06693364f,
+ -0.26151478f, 0.046425626f, 0.036540434f, -0.16435726f, 0.17338543f,
+ -0.21401681f, -0.11385144f, -0.08283257f, -0.069031075f, 0.030635102f,
+ 0.010969227f, 0.11109743f, 0.010919218f, 0.027526086f, 0.13519906f,
+ 0.01891392f, -0.046839405f, -0.040167913f, 0.017953383f, -0.09700955f,
+ 0.0061885654f, -0.07000971f, 0.026893595f, -0.038844477f, 0.14543656f
+ });
+
+ std::vector<float> projectionBiasVector(outputSize, 0.f);
+ auto projectionBias = MakeTensor<float,1>(tensorInfo16, projectionBiasVector);
+
+ armnn::ScopedCpuTensorHandle inputToInputWeightsTensor(tensorInfo20x5);
+ armnn::ScopedCpuTensorHandle inputToForgetWeightsTensor(tensorInfo20x5);
+ armnn::ScopedCpuTensorHandle inputToCellWeightsTensor(tensorInfo20x5);
+ armnn::ScopedCpuTensorHandle inputToOutputWeightsTensor(tensorInfo20x5);
+ armnn::ScopedCpuTensorHandle recurrentToForgetWeightsTensor(tensorInfo20x16);
+ armnn::ScopedCpuTensorHandle recurrentToInputWeightsTensor(tensorInfo20x16);
+ armnn::ScopedCpuTensorHandle recurrentToCellWeightsTensor(tensorInfo20x16);
+ armnn::ScopedCpuTensorHandle recurrentToOutputWeightsTensor(tensorInfo20x16);
+ armnn::ScopedCpuTensorHandle cellToInputWeightsTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle inputGateBiasTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle forgetGateBiasTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle cellBiasTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle outputGateBiasTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle cellToForgetWeightsTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle cellToOutputWeightsTensor(tensorInfo20);
+ armnn::ScopedCpuTensorHandle projectionWeightsTensor(tensorInfo16x20);
+ armnn::ScopedCpuTensorHandle projectionBiasTensor(tensorInfo16);
+
+ AllocateAndCopyDataToITensorHandle(&inputToInputWeightsTensor, &inputToInputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, &inputToForgetWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, &inputToCellWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, &inputToOutputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToInputWeightsTensor, &recurrentToInputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, &recurrentToForgetWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, &recurrentToCellWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, &recurrentToOutputWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&cellToInputWeightsTensor, &cellToInputWeights[0]);
+ AllocateAndCopyDataToITensorHandle(&inputGateBiasTensor, &inputGateBias[0]);
+ AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, &forgetGateBias[0]);
+ AllocateAndCopyDataToITensorHandle(&cellBiasTensor, &cellBias[0]);
+ AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, &outputGateBias[0]);
+ AllocateAndCopyDataToITensorHandle(&cellToForgetWeightsTensor, &cellToForgetWeights[0]);
+ AllocateAndCopyDataToITensorHandle(&cellToOutputWeightsTensor, &cellToOutputWeights[0]);
+ AllocateAndCopyDataToITensorHandle(&projectionWeightsTensor, &projectionWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&projectionBiasTensor, &projectionBias[0]);
+
+ data.m_InputToInputWeights = &inputToInputWeightsTensor;
+ data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
+ data.m_InputToCellWeights = &inputToCellWeightsTensor;
+ data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
+ data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
+ data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
+ data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
+ data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
+ data.m_CellToInputWeights = &cellToInputWeightsTensor;
+ data.m_InputGateBias = &inputGateBiasTensor;
+ data.m_ForgetGateBias = &forgetGateBiasTensor;
+ data.m_CellBias = &cellBiasTensor;
+ data.m_OutputGateBias = &outputGateBiasTensor;
+ data.m_CellToForgetWeights = &cellToForgetWeightsTensor;
+ data.m_CellToOutputWeights = &cellToOutputWeightsTensor;
+ data.m_ProjectionWeights = &projectionWeightsTensor;
+ data.m_ProjectionBias = &projectionBiasTensor;
+
+ // Flags to set test configuration
+ data.m_Parameters.m_ActivationFunc = 4;
+ data.m_Parameters.m_CifgEnabled = false;
+ data.m_Parameters.m_PeepholeEnabled = true;
+ data.m_Parameters.m_ProjectionEnabled = true;
+
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateLstm(data, info);
+ inputHandle->Allocate();
+ outputStateInHandle->Allocate();
+ cellStateInHandle->Allocate();
+
+ scratchHandle->Allocate();
+ outputStateOutHandle->Allocate();
+ cellStateOutHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &inputTensor[0][0]);
+ CopyDataToITensorHandle(outputStateInHandle.get(), &outputStateInTensor[0][0]);
+ CopyDataToITensorHandle(cellStateInHandle.get(), &cellStateInTensor[0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0], outputHandle.get());
+
+ return ret;
+
+}
+
+
+LayerTestResult<float, 2> LstmLayerWithCifgWithPeepholeNoProjectionTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ const boost::multi_array<float, 2>& input,
+ const boost::multi_array<float, 2>& outputExpected)
+{
+ bool cifgEnabled = true;
+ bool peepholeEnabled = true;
+ bool projectionEnabled = false;
+ // These are not the input and the output of Lstm yet
+ unsigned int batchSize = boost::numeric_cast<unsigned int>(input.shape()[0]);
+ unsigned int inputSize = boost::numeric_cast<unsigned int>(input.shape()[1]);
+
+ unsigned int outputSize = boost::numeric_cast<unsigned int>(outputExpected.shape()[1]);
+
+ const unsigned int cellSize = outputSize;
+
+ // Decide the shape of all input tensors
+ armnn::TensorInfo inputTensorInfo({batchSize , inputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputStateInTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo cellStateInTensorInfo({batchSize, cellSize}, armnn::GetDataType<float>());
+
+ unsigned int scratchBufferSize = cifgEnabled ? cellSize * 4 : cellSize * 3;
+ armnn::TensorInfo scratchBufferTensorInfo({batchSize, scratchBufferSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputStateOutTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo cellStateOutTensorInfo({batchSize, cellSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo outputTensorInfo({batchSize, outputSize}, armnn::GetDataType<float>());
+
+ // List of inputs
+ std::vector<float> inputData;
+ inputData.assign(input.data(), input.data() + batchSize*inputSize);
+ auto inputTensor = MakeTensor<float,2>(inputTensorInfo, inputData);
+
+ std::vector<float> outputStateInVector(batchSize * outputSize, 0.f);
+ auto outputStateInTensor = MakeTensor<float, 2>(outputStateInTensorInfo, outputStateInVector);
+
+ std::vector<float> cellStateInVector(batchSize * cellSize, 0.f);
+ auto cellStateInTensor = MakeTensor<float, 2>(cellStateInTensorInfo, cellStateInVector);
+
+
+ // Prepare all the weights in the descriptor for LSTM
+ armnn::LstmQueueDescriptor data;
+ armnn::TensorInfo tensorInfoInput({cellSize, inputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfoOutput({cellSize, outputSize}, armnn::GetDataType<float>());
+ armnn::TensorInfo tensorInfoNumUnits({cellSize}, armnn::GetDataType<float>());
+
+ auto inputToCellWeights = MakeTensor<float, 2>(tensorInfoInput,
+ {-0.49770179f, -0.27711356f, -0.09624726f, 0.05100781f,
+ 0.04717243f, 0.48944736f, -0.38535351f,
+ -0.17212132f});
+ auto inputToForgetWeights = MakeTensor<float, 2>(tensorInfoInput,
+ {-0.55291498f, -0.42866567f, 0.13056988f,
+ -0.3633365f, -0.22755712f, 0.28253698f, 0.24407166f,
+ 0.33826375f});
+ auto inputToOutputWeights = MakeTensor<float, 2>(tensorInfoInput,
+ {0.10725588f, -0.02335852f, -0.55932593f,
+ -0.09426838f, -0.44257352f, 0.54939759f,
+ 0.01533556f, 0.42751634f});
+ auto cellBias = MakeTensor<float, 1>(tensorInfoNumUnits, {0.f, 0.f, 0.f, 0.f});
+ auto forgetGateBias = MakeTensor<float, 1>(tensorInfoNumUnits, {1.f, 1.f, 1.f, 1.f});
+ auto outputGateBias = MakeTensor<float, 1>(tensorInfoNumUnits, {0.f, 0.f, 0.f, 0.f});
+
+ auto recurrentToCellWeights = MakeTensor<float, 2>(tensorInfoOutput,
+ {0.54066205f, -0.32668582f, -0.43562764f, -0.56094903f, 0.42957711f,
+ 0.01841056f, -0.32764608f, -0.33027974f, -0.10826075f, 0.20675004f,
+ 0.19069612f, -0.03026325f, -0.54532051f, 0.33003211f, 0.44901288f,
+ 0.21193194f});
+ auto recurrentToForgetWeights = MakeTensor<float, 2>(tensorInfoOutput,
+ {-0.13832897f, -0.0515101f, -0.2359007f, -0.16661474f, -0.14340827f,
+ 0.36986142f, 0.23414481f, 0.55899f, 0.10798943f, -0.41174671f, 0.17751795f,
+ -0.34484994f, -0.35874045f, -0.11352962f, 0.27268326f, 0.54058349f});
+
+ auto recurrentToOutputWeights = MakeTensor<float, 2>(tensorInfoOutput,
+ {0.41613156f, 0.42610586f, -0.16495961f, -0.5663873f, 0.30579174f, -0.05115908f,
+ -0.33941799f, 0.23364776f, 0.11178309f, 0.09481031f, -0.26424935f, 0.46261835f,
+ 0.50248802f, 0.26114327f, -0.43736315f, 0.33149987f});
+
+ auto cellToForgetWeights = MakeTensor<float, 1>(tensorInfoNumUnits,
+ {0.47485286f, -0.51955009f, -0.24458408f, 0.31544167f});
+ auto cellToOutputWeights = MakeTensor<float, 1>(tensorInfoNumUnits,
+ {-0.17135078f, 0.82760304f, 0.85573703f, -0.77109635f});
+
+ armnn::ScopedCpuTensorHandle inputToCellWeightsTensor(tensorInfoInput);
+ armnn::ScopedCpuTensorHandle inputToForgetWeightsTensor(tensorInfoInput);
+ armnn::ScopedCpuTensorHandle inputToOutputWeightsTensor(tensorInfoInput);
+
+ armnn::ScopedCpuTensorHandle cellBiasTensor(tensorInfoNumUnits);
+ armnn::ScopedCpuTensorHandle forgetGateBiasTensor(tensorInfoNumUnits);
+ armnn::ScopedCpuTensorHandle outputGateBiasTensor(tensorInfoNumUnits);
+
+ armnn::ScopedCpuTensorHandle recurrentToCellWeightsTensor(tensorInfoOutput);
+ armnn::ScopedCpuTensorHandle recurrentToForgetWeightsTensor(tensorInfoOutput);
+ armnn::ScopedCpuTensorHandle recurrentToOutputWeightsTensor(tensorInfoOutput);
+
+
+ armnn::ScopedCpuTensorHandle cellToForgetWeightsTensor(tensorInfoNumUnits);
+ armnn::ScopedCpuTensorHandle cellToOutputWeightsTensor(tensorInfoNumUnits);
+
+ AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, &inputToCellWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, &inputToForgetWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, &inputToOutputWeights[0][0]);
+
+ AllocateAndCopyDataToITensorHandle(&cellBiasTensor, &cellBias[0]);
+ AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, &forgetGateBias[0]);
+ AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, &outputGateBias[0]);
+
+ AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, &recurrentToCellWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, &recurrentToForgetWeights[0][0]);
+ AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, &recurrentToOutputWeights[0][0]);
+
+ AllocateAndCopyDataToITensorHandle(&cellToForgetWeightsTensor, &cellToForgetWeights[0]);
+ AllocateAndCopyDataToITensorHandle(&cellToOutputWeightsTensor, &cellToOutputWeights[0]);
+
+
+ data.m_InputToCellWeights = &inputToCellWeightsTensor;
+ data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
+ data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
+
+ data.m_CellBias = &cellBiasTensor;
+ data.m_ForgetGateBias = &forgetGateBiasTensor;
+ data.m_OutputGateBias = &outputGateBiasTensor;
+
+ data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
+ data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
+ data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
+
+ data.m_CellToForgetWeights = &cellToForgetWeightsTensor;
+ data.m_CellToOutputWeights = &cellToOutputWeightsTensor;
+
+ // other parameters for the descriptor
+ data.m_Parameters.m_CifgEnabled = cifgEnabled;
+ data.m_Parameters.m_ProjectionEnabled = projectionEnabled;
+ data.m_Parameters.m_PeepholeEnabled = peepholeEnabled;
+
+ data.m_Parameters.m_ActivationFunc = 4;
+ data.m_Parameters.m_ClippingThresProj = 0.0;
+ data.m_Parameters.m_ClippingThresCell = 0.0;
+
+
+ // List of outputs
+ std::vector<float> scratchBufferVector(batchSize * scratchBufferSize, 0.f);
+ auto scratchBufferTensor = MakeTensor<float,2>(scratchBufferTensorInfo, scratchBufferVector);
+ LayerTestResult<float, 2> ret0(scratchBufferTensorInfo);
+
+ // Output state for a certain time step
+ std::vector<float> outputStateOutVector(batchSize * outputSize, 0.f);
+ auto outputStateOutTensor = MakeTensor<float,2>(outputStateOutTensorInfo, outputStateOutVector);
+ LayerTestResult<float, 2> ret1(outputStateOutTensorInfo);
+
+ // Cell state for a certain time step
+ std::vector<float> cellStateOutVector(batchSize * cellSize, 0.f);
+ auto cellStateOutTensor = MakeTensor<float,2>(cellStateOutTensorInfo, cellStateOutVector);
+ LayerTestResult<float, 2> ret2(cellStateOutTensorInfo);
+
+ // Output for a certain time step
+ std::vector<float> outputVector(batchSize * outputSize, 0.f);
+ auto outputTensor = MakeTensor<float, 2>(outputTensorInfo, outputVector);
+ std::vector<float> outputData;
+ outputData.assign(outputExpected.data(), outputExpected.data() + batchSize*outputSize);
+ LayerTestResult<float, 2> ret3(outputTensorInfo);
+ ret3.outputExpected = MakeTensor<float, 2>(outputTensorInfo, outputData);
+
+ // Prepare the inputs and outputs for the workload
+ std::unique_ptr<armnn::ITensorHandle> inputHandle =
+ workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
+ workloadFactory.CreateTensorHandle(outputStateInTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
+ workloadFactory.CreateTensorHandle(cellStateInTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> scratchBufferHandle =
+ workloadFactory.CreateTensorHandle(scratchBufferTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateOutHandle =
+ workloadFactory.CreateTensorHandle(outputStateOutTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateOutHandle =
+ workloadFactory.CreateTensorHandle(cellStateOutTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle =
+ workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
+ AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
+
+ AddOutputToWorkload(data, info, scratchBufferTensorInfo, scratchBufferHandle.get());
+ AddOutputToWorkload(data, info, outputStateOutTensorInfo, outputStateOutHandle.get());
+ AddOutputToWorkload(data, info, cellStateOutTensorInfo, cellStateOutHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateLstm(data, info);
+
+
+ inputHandle->Allocate();
+ outputStateInHandle->Allocate();
+ cellStateInHandle->Allocate();
+
+ scratchBufferHandle->Allocate();
+ outputStateOutHandle->Allocate();
+ cellStateOutHandle->Allocate();
+ outputHandle->Allocate();
+
+
+ CopyDataToITensorHandle(inputHandle.get(), &inputTensor[0][0]);
+ CopyDataToITensorHandle(outputStateInHandle.get(), &outputStateInTensor[0][0]);
+ CopyDataToITensorHandle(cellStateInHandle.get(), &cellStateInTensor[0][0]);
+
+ CopyDataToITensorHandle(scratchBufferHandle.get(), &scratchBufferTensor[0][0]);
+ CopyDataToITensorHandle(outputStateOutHandle.get(), &outputStateOutTensor[0][0]);
+ CopyDataToITensorHandle(cellStateOutHandle.get(), &cellStateOutTensor[0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret0.output[0][0], scratchBufferHandle.get());
+ CopyDataFromITensorHandle(&ret1.output[0][0], outputStateOutHandle.get());
+ CopyDataFromITensorHandle(&ret2.output[0][0], cellStateOutHandle.get());
+ CopyDataFromITensorHandle(&ret3.output[0][0], outputHandle.get());
+
+ return ret3;
+}
diff --git a/src/backends/backendsCommon/test/NormTestImpl.hpp b/src/backends/backendsCommon/test/NormTestImpl.hpp
new file mode 100644
index 0000000000..0d8d4340a8
--- /dev/null
+++ b/src/backends/backendsCommon/test/NormTestImpl.hpp
@@ -0,0 +1,343 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include <armnn/Exceptions.hpp>
+#include <armnn/LayerSupport.hpp>
+#include "armnn/Types.hpp"
+
+#include <backendsCommon/CpuTensorHandle.hpp>
+#include <backendsCommon/WorkloadFactory.hpp>
+
+LayerTestResult<float,4> SimpleNormalizationTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ armnn::NormalizationAlgorithmChannel normChannel,
+ armnn::NormalizationAlgorithmMethod normMethod)
+{
+ const unsigned int inputHeight = 2;
+ const unsigned int inputWidth = 2;
+ const unsigned int inputChannels = 1;
+ const unsigned int inputNum = 2;
+
+ unsigned int outputHeight = inputHeight;
+ unsigned int outputWidth = inputWidth;
+ unsigned int outputChannels = inputChannels;
+ unsigned int outputNum = inputNum;
+
+ unsigned int inputShape[] = { inputNum, inputChannels, inputHeight, inputWidth };
+ unsigned int outputShape[] = { outputNum, outputChannels, outputHeight, outputWidth };
+
+ auto inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ auto outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ LayerTestResult<float,4> ret(outputTensorInfo);
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>({
+ // Batch #0
+ 1.0f, 2.0f,
+ 3.0f, 4.0f,
+ // Batch #1
+ 5.0f, 6.0f,
+ 7.0f, 8.0f
+ }));
+
+ float alpha = 1.f;
+ float beta = 1.f;
+ float kappa = 1.f;
+ uint32_t normSize = 3;
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::NormalizationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Parameters.m_NormChannelType = normChannel;
+ data.m_Parameters.m_NormMethodType = normMethod;
+ data.m_Parameters.m_NormSize = normSize;
+ data.m_Parameters.m_Alpha = alpha;
+ data.m_Parameters.m_Beta = beta;
+ data.m_Parameters.m_K = kappa;
+ data.m_Parameters.m_DataLayout = armnn::DataLayout::NCHW;
+
+ armnn::PassthroughCpuTensorHandle refHandle(outputTensorInfo, &ret.outputExpected[0][0][0][0]);
+ armnn::NormalizationQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, &refHandle);
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateNormalization(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ switch (normMethod)
+ {
+ case armnn::NormalizationAlgorithmMethod::LocalBrightness:
+ {
+ switch (normChannel)
+ {
+ case armnn::NormalizationAlgorithmChannel::Within:
+ {
+ // When normalising within channels, the 3x3 kernel covers the entire 2x2 input at every index.
+ // Therefore, all output values should equal the inputs, but divided by:
+ // pow((kappa + (accumulatedScale * alpha)), beta)
+ // ...where accumulatedScale is the sum of every element squared.
+ float divisor[inputNum];
+ for(int i = 0; i < boost::numeric_cast<int>(inputNum); i++)
+ {
+ float accumulatedScale = input[i][0][0][0]*input[i][0][0][0] +
+ input[i][0][0][1]*input[i][0][0][1] +
+ input[i][0][1][0]*input[i][0][1][0] +
+ input[i][0][1][1]*input[i][0][1][1];
+ divisor[i] = powf((kappa + accumulatedScale * alpha), beta);
+ }
+ ret.outputExpected = MakeTensor<float, 4>(outputTensorInfo,
+ std::vector<float>({input[0][0][0][0]/divisor[0],
+ input[0][0][0][1]/divisor[0],
+ input[0][0][1][0]/divisor[0],
+ input[0][0][1][1]/divisor[0],
+ input[1][0][0][0]/divisor[1],
+ input[1][0][0][1]/divisor[1],
+ input[1][0][1][0]/divisor[1],
+ input[1][0][1][1]/divisor[1]}));
+ break;
+ }
+ case armnn::NormalizationAlgorithmChannel::Across:
+ {
+ // When normalising across channels, all output values should equal the inputs, but multiplied by:
+ // pow((kappa + (accumulatedScale * alpha)), -beta)
+ // ...where accumulatedScale is the sum of the inputs for adjacent channels for this element squared
+ // ...where adjacent channels means within half the normSize for the channel
+ // The test data has only one channel, so this is simplified below.
+ std::vector<float> outputVector;
+ for (int n = 0; n < boost::numeric_cast<int>(inputNum); ++n)
+ {
+ for (int h = 0; h < boost::numeric_cast<int>(inputHeight); ++h)
+ {
+ for (int w = 0; w < boost::numeric_cast<int>(inputWidth); ++w)
+ {
+ float accumulatedScale = input[n][0][h][w]*input[n][0][h][w];
+ float scale = powf((kappa + accumulatedScale * alpha), -beta);
+ outputVector.push_back(input[n][0][h][w] * scale);
+ }
+ }
+ }
+ ret.outputExpected = MakeTensor<float, 4>(outputTensorInfo, outputVector);
+ break;
+ }
+ default:
+ {
+ throw armnn::UnimplementedException("Unsupported normalisation channel type, "
+ "only Across and Within are supported");
+ }
+ }
+ break;
+ }
+ case armnn::NormalizationAlgorithmMethod::LocalContrast: // NOTE: intentional fallthrough.
+ default:
+ {
+ throw armnn::UnimplementedException("Unsupported normalisation method type, "
+ "only LocalBrightness is supported");
+ }
+ }
+
+ return ret;
+}
+
+LayerTestResult<float,4> SimpleNormalizationNhwcTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ armnn::NormalizationAlgorithmChannel normChannel,
+ armnn::NormalizationAlgorithmMethod normMethod)
+{
+ const unsigned int inputHeight = 2;
+ const unsigned int inputWidth = 2;
+ const unsigned int inputChannels = 1;
+ const unsigned int inputNum = 2;
+
+ unsigned int outputHeight = inputHeight;
+ unsigned int outputWidth = inputWidth;
+ unsigned int outputChannels = inputChannels;
+ unsigned int outputNum = inputNum;
+
+ unsigned int inputShape[] = { inputNum, inputHeight, inputWidth, inputChannels };
+ unsigned int outputShape[] = { outputNum, outputHeight, outputWidth, outputChannels };
+
+ auto inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ auto outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ LayerTestResult<float,4> ret(outputTensorInfo);
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo, std::vector<float>({
+ // Batch #0
+ 1.0f, 2.0f,
+ 3.0f, 4.0f,
+ // Batch #1
+ 5.0f, 6.0f,
+ 7.0f, 8.0f
+ }));
+
+ float alpha = 1.f;
+ float beta = 1.f;
+ float kappa = 1.f;
+ uint32_t normSize = 3;
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::NormalizationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Parameters.m_NormChannelType = normChannel;
+ data.m_Parameters.m_NormMethodType = normMethod;
+ data.m_Parameters.m_NormSize = normSize;
+ data.m_Parameters.m_Alpha = alpha;
+ data.m_Parameters.m_Beta = beta;
+ data.m_Parameters.m_K = kappa;
+ data.m_Parameters.m_DataLayout = armnn::DataLayout::NHWC;
+
+ armnn::PassthroughCpuTensorHandle refHandle(outputTensorInfo, &ret.outputExpected[0][0][0][0]);
+ armnn::NormalizationQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, &refHandle);
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateNormalization(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ switch (normMethod)
+ {
+ case armnn::NormalizationAlgorithmMethod::LocalBrightness:
+ {
+ switch (normChannel)
+ {
+ case armnn::NormalizationAlgorithmChannel::Across:
+ {
+ std::vector<float> expectedOutput{ 0.5f, 0.400000006f, 0.300000012f, 0.235294119f,
+ 0.192307696f, 0.16216217f, 0.140000001f, 0.123076923f };
+ ret.outputExpected = MakeTensor<float, 4>(outputTensorInfo, expectedOutput);
+ break;
+ }
+ default:
+ {
+ throw armnn::UnimplementedException("Unsupported normalisation channel type, "
+ "Only Cross-map is supported for NHWC layout");
+ }
+ }
+ break;
+ }
+ case armnn::NormalizationAlgorithmMethod::LocalContrast: // NOTE: intentional fallthrough.
+ default:
+ {
+ throw armnn::UnimplementedException("Unsupported normalisation method type, "
+ "only LocalBrightness is supported");
+ }
+ }
+
+ return ret;
+}
+
+LayerTestResult<float,4> CompareNormalizationTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::NormalizationAlgorithmChannel normChannel,
+ armnn::NormalizationAlgorithmMethod normMethod)
+{
+ constexpr unsigned int inputNum = 5;
+ constexpr unsigned int inputChannels = 3;
+ constexpr unsigned int inputHeight = 32;
+ constexpr unsigned int inputWidth = 24;
+
+ constexpr unsigned int outputNum = inputNum;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputHeight = inputHeight;
+ constexpr unsigned int outputWidth = inputWidth;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = {inputNum, inputChannels, inputHeight, inputWidth};
+ unsigned int outputShape[] = {outputNum, outputChannels, outputHeight, outputWidth};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ LayerTestResult<float,4> ret(outputTensorInfo);
+
+ auto input = MakeRandomTensor<float, 4>(inputTensorInfo, 111234);
+
+ constexpr float alpha = 1.f;
+ constexpr float beta = 1.f;
+ constexpr float kappa = 1.f;
+ constexpr uint32_t normSize = 5;
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::NormalizationQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Parameters.m_NormChannelType = normChannel;
+ data.m_Parameters.m_NormMethodType = normMethod;
+ data.m_Parameters.m_NormSize = normSize;
+ data.m_Parameters.m_Alpha = alpha;
+ data.m_Parameters.m_Beta = beta;
+ data.m_Parameters.m_K = kappa;
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> inputHandleRef = refWorkloadFactory.CreateTensorHandle(inputTensorInfo);
+
+ armnn::NormalizationQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadInput(refData, refInfo, 0, inputTensorInfo, inputHandleRef.get());
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());
+
+ // Don't execute if Normalization is not supported for the method and channel types, as an exception will be raised.
+ armnn::BackendId backend = workloadFactory.GetBackendId();
+ const size_t reasonIfUnsupportedMaxLen = 255;
+ char reasonIfUnsupported[reasonIfUnsupportedMaxLen+1];
+ ret.supported = armnn::IsNormalizationSupported(backend, inputTensorInfo, outputTensorInfo, data.m_Parameters,
+ reasonIfUnsupported, reasonIfUnsupportedMaxLen);
+ if (!ret.supported)
+ {
+ return ret;
+ }
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateNormalization(data, info);
+ std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreateNormalization(refData, refInfo);
+
+ outputHandleRef->Allocate();
+ inputHandleRef->Allocate();
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandleRef.get(), &input[0][0][0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+ refWorkloadFactory.Finalize();
+ workloadRef->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+ CopyDataFromITensorHandle(&ret.outputExpected[0][0][0][0], outputHandleRef.get());
+
+ return ret;
+}
+
diff --git a/src/backends/backendsCommon/test/OptimizedNetworkTests.cpp b/src/backends/backendsCommon/test/OptimizedNetworkTests.cpp
new file mode 100644
index 0000000000..8d88241000
--- /dev/null
+++ b/src/backends/backendsCommon/test/OptimizedNetworkTests.cpp
@@ -0,0 +1,330 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include <armnn/ArmNN.hpp>
+
+#include <Graph.hpp>
+#include <Network.hpp>
+
+#include <reference/RefWorkloadFactory.hpp>
+
+#include <boost/test/unit_test.hpp>
+
+BOOST_AUTO_TEST_SUITE(OptimizedNetwork)
+
+BOOST_AUTO_TEST_CASE(SerializeToDot)
+{
+ armnn::Network net;
+
+ //Defines layers.
+ auto input = net.AddInputLayer(0);
+ auto add = net.AddAdditionLayer();
+ auto output = net.AddOutputLayer(0);
+
+ // Connects layers.
+ input->GetOutputSlot(0).Connect(add->GetInputSlot(0));
+ input->GetOutputSlot(0).Connect(add->GetInputSlot(1));
+ add->GetOutputSlot(0).Connect(output->GetInputSlot(0));
+
+ armnn::TensorShape shape({4});
+ armnn::TensorInfo info(shape, armnn::DataType::Float32);
+ input->GetOutputSlot(0).SetTensorInfo(info);
+ add->GetOutputSlot(0).SetTensorInfo(info);
+
+ armnn::IRuntime::CreationOptions options;
+ armnn::IRuntimePtr runtime(armnn::IRuntime::Create(options));
+
+ std::vector<armnn::BackendId> backends = {armnn::Compute::CpuRef};
+ armnn::IOptimizedNetworkPtr optimizedNet = armnn::Optimize(net, backends, runtime->GetDeviceSpec());
+
+ std::ostringstream ss;
+ optimizedNet->SerializeToDot(ss);
+
+ auto inputId = input->GetGuid();
+ auto addId = add->GetGuid();
+ auto outputId = output->GetGuid();
+
+ std::stringstream expected;
+ expected <<
+ "digraph Optimized {\n"
+ " node [shape=\"record\"];\n"
+ " edge [fontsize=8 fontcolor=\"blue\" fontname=\"arial-bold\"];\n"
+ " " << inputId << " [label=\"{Input}\"];\n"
+ " " << addId << " [label=\"{Addition}\"];\n"
+ " " << outputId << " [label=\"{Output}\"];\n"
+ " " << inputId << " -> " << addId << " [label=< [4] >];\n"
+ " " << inputId << " -> " << addId << " [label=< [4] >];\n"
+ " " << addId << " -> " << outputId << " [label=< [4] >];\n"
+ "}\n";
+
+ BOOST_TEST(ss.str() == expected.str());
+}
+
+BOOST_AUTO_TEST_CASE(OptimizeValidateDeviceNonSupportLayerNoFallback)
+{
+ // build up the structure of the network
+ armnn::INetworkPtr net(armnn::INetwork::Create());
+
+ armnn::IConnectableLayer* input = net->AddInputLayer(0);
+
+ // This layer configuration isn't supported by CpuAcc and isn't allowed to fall back, so Optimize will return null.
+ armnn::NormalizationDescriptor descriptor;
+ armnn::IConnectableLayer* normalize = net->AddNormalizationLayer(descriptor);
+
+ armnn::IConnectableLayer* output = net->AddOutputLayer(0);
+
+ input->GetOutputSlot(0).Connect(normalize->GetInputSlot(0));
+ normalize->GetOutputSlot(0).Connect(output->GetInputSlot(0));
+
+ input->GetOutputSlot(0).SetTensorInfo(armnn::TensorInfo({ 1, 1, 4, 4 }, armnn::DataType::Float32));
+ normalize->GetOutputSlot(0).SetTensorInfo(armnn::TensorInfo({ 1, 1, 4, 4 }, armnn::DataType::Float32));
+
+ armnn::IRuntime::CreationOptions options;
+ armnn::IRuntimePtr runtime(armnn::IRuntime::Create(options));
+
+ std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc };
+ armnn::IOptimizedNetworkPtr optNet = armnn::Optimize(*net, backends, runtime->GetDeviceSpec());
+ BOOST_CHECK(!optNet);
+}
+
+BOOST_AUTO_TEST_CASE(OptimizeValidateDeviceNonSupportLayerWithFallback)
+{
+ // build up the structure of the network
+ armnn::INetworkPtr net(armnn::INetwork::Create());
+
+ armnn::IConnectableLayer* input = net->AddInputLayer(0);
+
+ // This layer configuration isn't supported by CpuAcc but it allows to fallback to CpuRef.
+ armnn::NormalizationDescriptor descriptor;
+ armnn::IConnectableLayer* normalize = net->AddNormalizationLayer(descriptor);
+
+ armnn::IConnectableLayer* output = net->AddOutputLayer(0);
+
+ input->GetOutputSlot(0).Connect(normalize->GetInputSlot(0));
+ normalize->GetOutputSlot(0).Connect(output->GetInputSlot(0));
+
+ input->GetOutputSlot(0).SetTensorInfo(armnn::TensorInfo({ 1, 1, 4, 4 }, armnn::DataType::Float32));
+ normalize->GetOutputSlot(0).SetTensorInfo(armnn::TensorInfo({ 1, 1, 4, 4 }, armnn::DataType::Float32));
+
+ armnn::IRuntime::CreationOptions options;
+ armnn::IRuntimePtr runtime(armnn::IRuntime::Create(options));
+
+ std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc, armnn::Compute::CpuRef };
+ armnn::IOptimizedNetworkPtr optNet = armnn::Optimize(*net, backends, runtime->GetDeviceSpec());
+ BOOST_REQUIRE(optNet);
+
+ for (auto&& layer : static_cast<armnn::OptimizedNetwork*>(optNet.get())->GetGraph())
+ {
+ // If NEON is enabled, Input and Output layers are supported by CpuAcc,
+ // the other layers are supported by CpuRef.
+ // If NEON is not enabled, all layers are supported by CpuRef.
+#if ARMCOMPUTENEON_ENABLED
+ if (layer->GetType() == armnn::LayerType::Input || layer->GetType() == armnn::LayerType::Output)
+ {
+ BOOST_CHECK(layer->GetBackendId() == armnn::Compute::CpuAcc);
+ }
+ else if (layer->GetType() == armnn::LayerType::Normalization)
+ {
+ BOOST_CHECK(layer->GetBackendId() == armnn::Compute::CpuRef);
+ }
+#else
+ BOOST_CHECK(layer->GetBackendId() == armnn::Compute::CpuRef);
+#endif
+ }
+}
+
+BOOST_AUTO_TEST_CASE(OptimizeValidateWorkloadsUndefinedComputeDevice)
+{
+ const armnn::TensorInfo desc({3, 5}, armnn::DataType::Float32);
+
+ armnn::Network net;
+
+ armnn::NormalizationDescriptor nmDesc;
+ armnn::ActivationDescriptor acDesc;
+
+ // in
+ // |
+ // nm
+ // / |
+ // ac |
+ // \ |
+ // ml
+ // |
+ // sm
+ // |
+ // ot
+ armnn::IConnectableLayer* layer = net.AddInputLayer(0, "in");
+ layer->GetOutputSlot(0).SetTensorInfo(desc);
+
+ armnn::IConnectableLayer* const normLayer = net.AddNormalizationLayer(nmDesc, "nm");
+
+ layer->GetOutputSlot(0).Connect(normLayer->GetInputSlot(0));
+ normLayer->GetOutputSlot(0).SetTensorInfo(desc);
+
+ layer = net.AddActivationLayer(acDesc, "ac");
+
+ normLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(0));
+ layer->GetOutputSlot(0).SetTensorInfo(desc);
+
+ armnn::IConnectableLayer* prevLayer = layer;
+ layer = net.AddMultiplicationLayer("ml");
+
+ prevLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(0));
+ normLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(1));
+ layer->GetOutputSlot(0).SetTensorInfo(desc);
+
+ prevLayer = layer;
+ armnn::SoftmaxDescriptor softmaxDescriptor;
+ layer = net.AddSoftmaxLayer(softmaxDescriptor, "sm");
+
+ prevLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(0));
+ layer->GetOutputSlot(0).SetTensorInfo(desc);
+
+ prevLayer = layer;
+ layer = net.AddOutputLayer(0, "ot");
+
+ prevLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(0));
+
+ armnn::IRuntime::CreationOptions options;
+ armnn::IRuntimePtr runtime(armnn::IRuntime::Create(options));
+
+ std::vector<armnn::BackendId> backends = { armnn::Compute::Undefined };
+
+ armnn::IOptimizedNetworkPtr optNet = armnn::Optimize(net, backends, runtime->GetDeviceSpec());
+ BOOST_CHECK(!optNet);
+
+}
+
+BOOST_AUTO_TEST_CASE(OptimizeValidateWorkloadsUndefinedComputeDeviceWithFallback)
+{
+ const armnn::TensorInfo desc({3, 5}, armnn::DataType::Float32);
+
+ armnn::Network net;
+
+ armnn::NormalizationDescriptor nmDesc;
+ armnn::ActivationDescriptor acDesc;
+
+ // in
+ // |
+ // nm
+ // / |
+ // ac |
+ // \ |
+ // ml
+ // |
+ // sm
+ // |
+ // ot
+ armnn::IConnectableLayer* layer = net.AddInputLayer(0, "in");
+ layer->GetOutputSlot(0).SetTensorInfo(desc);
+
+ armnn::IConnectableLayer* const normLayer = net.AddNormalizationLayer(nmDesc, "nm");
+
+ layer->GetOutputSlot(0).Connect(normLayer->GetInputSlot(0));
+ normLayer->GetOutputSlot(0).SetTensorInfo(desc);
+
+ layer = net.AddActivationLayer(acDesc, "ac");
+
+ normLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(0));
+ layer->GetOutputSlot(0).SetTensorInfo(desc);
+
+ armnn::IConnectableLayer* prevLayer = layer;
+ layer = net.AddMultiplicationLayer("ml");
+
+ prevLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(0));
+ normLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(1));
+ layer->GetOutputSlot(0).SetTensorInfo(desc);
+
+ prevLayer = layer;
+ armnn::SoftmaxDescriptor softmaxDescriptor;
+ layer = net.AddSoftmaxLayer(softmaxDescriptor, "sm");
+
+ prevLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(0));
+ layer->GetOutputSlot(0).SetTensorInfo(desc);
+
+ prevLayer = layer;
+ layer = net.AddOutputLayer(0, "ot");
+
+ prevLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(0));
+
+ armnn::IRuntime::CreationOptions options;
+ armnn::IRuntimePtr runtime(armnn::IRuntime::Create(options));
+
+ std::vector<armnn::BackendId> backends = { armnn::Compute::Undefined, armnn::Compute::CpuRef };
+
+ armnn::IOptimizedNetworkPtr optNet = armnn::Optimize(net, backends, runtime->GetDeviceSpec());
+ BOOST_CHECK(optNet);
+
+ // validate workloads
+ armnn::RefWorkloadFactory fact;
+ for (auto&& layer : static_cast<armnn::OptimizedNetwork*>(optNet.get())->GetGraph())
+ {
+ BOOST_CHECK(layer->GetBackendId() == armnn::Compute::CpuRef);
+ BOOST_CHECK_NO_THROW(
+ layer->CreateWorkload(static_cast<armnn::OptimizedNetwork*>(optNet.get())->GetGraph(), fact));
+ }
+}
+
+BOOST_AUTO_TEST_CASE(OptimizeValidateWorkloadsDuplicateComputeDeviceWithFallback)
+{
+ // build up the structure of the network
+ armnn::INetworkPtr net(armnn::INetwork::Create());
+
+ armnn::IConnectableLayer* input = net->AddInputLayer(0);
+
+ // This layer configuration isn't supported by CpuAcc but it allows to fallback to CpuRef.
+ armnn::NormalizationDescriptor descriptor;
+ armnn::IConnectableLayer* normalize = net->AddNormalizationLayer(descriptor);
+
+ armnn::IConnectableLayer* output = net->AddOutputLayer(0);
+
+ input->GetOutputSlot(0).Connect(normalize->GetInputSlot(0));
+ normalize->GetOutputSlot(0).Connect(output->GetInputSlot(0));
+
+ input->GetOutputSlot(0).SetTensorInfo(armnn::TensorInfo({ 1, 1, 4, 4 }, armnn::DataType::Float32));
+ normalize->GetOutputSlot(0).SetTensorInfo(armnn::TensorInfo({ 1, 1, 4, 4 }, armnn::DataType::Float32));
+
+ armnn::IRuntime::CreationOptions options;
+ armnn::IRuntimePtr runtime(armnn::IRuntime::Create(options));
+
+ std::vector<armnn::BackendId> backends = { armnn::Compute::CpuAcc,
+ armnn::Compute::GpuAcc,
+ armnn::Compute::CpuRef };
+
+ armnn::IOptimizedNetworkPtr optNet = armnn::Optimize(*net, backends, runtime->GetDeviceSpec());
+ BOOST_REQUIRE(optNet);
+
+ for (auto&& layer : static_cast<armnn::OptimizedNetwork*>(optNet.get())->GetGraph())
+ {
+ // If NEON is enabled, Input and Output layers are supported by CpuAcc,
+ // the other layers are supported by CpuRef.
+ // If only CL is enabled, Input and Output layers are supported by GpuAcc,
+ // the other layers are supported by CpuRef.
+ // If neither NEON, nor CL is enabled, all layers are supported by CpuRef.
+#if ARMCOMPUTENEON_ENABLED
+ if (layer->GetType() == armnn::LayerType::Input || layer->GetType() == armnn::LayerType::Output)
+ {
+ BOOST_CHECK(layer->GetBackendId() == armnn::Compute::CpuAcc);
+ }
+ else if (layer->GetType() == armnn::LayerType::Normalization)
+ {
+ BOOST_CHECK(layer->GetBackendId() == armnn::Compute::CpuRef);
+ }
+#elif ARMCOMPUTECL_ENABLED
+ if (layer->GetType() == armnn::LayerType::Input || layer->GetType() == armnn::LayerType::Output)
+ {
+ BOOST_CHECK(layer->GetBackendId() == armnn::Compute::GpuAcc);
+ }
+ else if (layer->GetType() == armnn::LayerType::Normalization)
+ {
+ BOOST_CHECK(layer->GetBackendId() == armnn::Compute::CpuRef);
+ }
+#else
+ BOOST_CHECK(layer->GetBackendId() == armnn::Compute::CpuRef);
+#endif
+ }
+}
+
+BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/backends/backendsCommon/test/PermuteTestImpl.hpp b/src/backends/backendsCommon/test/PermuteTestImpl.hpp
new file mode 100644
index 0000000000..529f9d34e0
--- /dev/null
+++ b/src/backends/backendsCommon/test/PermuteTestImpl.hpp
@@ -0,0 +1,225 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "QuantizeHelper.hpp"
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+
+#include <test/TensorHelpers.hpp>
+
+#include <backendsCommon/CpuTensorHandle.hpp>
+#include <backendsCommon/WorkloadFactory.hpp>
+
+template<typename T>
+LayerTestResult<T, 4> SimplePermuteTestImpl(
+ armnn::IWorkloadFactory& workloadFactory,
+ armnn::PermuteDescriptor descriptor,
+ armnn::TensorInfo inputTensorInfo,
+ armnn::TensorInfo outputTensorInfo,
+ const std::vector<T>& inputData,
+ const std::vector<T>& outputExpectedData)
+{
+ auto input = MakeTensor<T, 4>(inputTensorInfo, inputData);
+
+ LayerTestResult<T, 4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputExpectedData);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::PermuteQueueDescriptor data;
+ data.m_Parameters = descriptor;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreatePermute(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+LayerTestResult<float, 4> SimplePermuteFloat32TestCommon(armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 1, 2, 2, 2 };
+ unsigned int outputShape[] = { 1, 2, 2, 2 };
+
+ armnn::PermuteDescriptor descriptor;
+ descriptor.m_DimMappings = {0U, 3U, 1U, 2U};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ std::vector<float> input = std::vector<float>(
+ {
+ 1.0f, 2.0f,
+ 3.0f, 4.0f,
+
+ 5.0f, 6.0f,
+ 7.0f, 8.0f
+ });
+
+ std::vector<float> outputExpected = std::vector<float>(
+ {
+ 1.0f, 5.0f, 2.0f, 6.0f,
+ 3.0f, 7.0f, 4.0f, 8.0f
+ });
+
+ return SimplePermuteTestImpl<float>(workloadFactory, descriptor, inputTensorInfo,
+ outputTensorInfo, input, outputExpected);
+}
+
+LayerTestResult<uint8_t, 4> SimplePermuteUint8TestCommon(armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 1, 2, 2, 2 };
+ unsigned int outputShape[] = { 1, 2, 2, 2 };
+
+ armnn::PermuteDescriptor descriptor;
+ descriptor.m_DimMappings = {0U, 3U, 1U, 2U};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo.SetQuantizationScale(1.0f);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationScale(1.0f);
+
+ std::vector<uint8_t> input = std::vector<uint8_t>(
+ {
+ 1, 2,
+ 3, 4,
+
+ 5, 6,
+ 7, 8
+ });
+
+ std::vector<uint8_t> outputExpected = std::vector<uint8_t>(
+ {
+ 1, 5, 2, 6,
+ 3, 7, 4, 8
+ });
+
+ return SimplePermuteTestImpl<uint8_t>(workloadFactory, descriptor, inputTensorInfo,
+ outputTensorInfo, input, outputExpected);
+}
+
+LayerTestResult<float, 4>
+PermuteFloat32ValueSet1TestCommon(armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 1, 2, 2, 3 };
+ unsigned int outputShape[] = { 1, 3, 2, 2 };
+
+ armnn::PermuteDescriptor descriptor;
+ descriptor.m_DimMappings = {0U, 2U, 3U, 1U};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ std::vector<float> input = std::vector<float>(
+ {
+ 1.0f, 2.0f, 3.0f,
+ 11.0f, 12.0f, 13.0f,
+ 21.0f, 22.0f, 23.0f,
+ 31.0f, 32.0f, 33.0f,
+ });
+
+ std::vector<float> outputExpected = std::vector<float>(
+ {
+ 1.0f, 11.0f, 21.0f, 31.0f,
+ 2.0f, 12.0f, 22.0f, 32.0f,
+ 3.0f, 13.0f, 23.0f, 33.0f,
+ });
+
+ return SimplePermuteTestImpl<float>(workloadFactory, descriptor, inputTensorInfo,
+ outputTensorInfo, input, outputExpected);
+}
+
+LayerTestResult<float, 4>
+PermuteFloat32ValueSet2TestCommon(armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 1, 3, 2, 2 };
+ unsigned int outputShape[] = { 1, 2, 2, 3 };
+
+ armnn::PermuteDescriptor descriptor;
+ descriptor.m_DimMappings = {0U, 3U, 1U, 2U};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ std::vector<float> input = std::vector<float>(
+ {
+ 1.0f, 11.0f, 21.0f, 31.0f,
+ 2.0f, 12.0f, 22.0f, 32.0f,
+ 3.0f, 13.0f, 23.0f, 33.0f,
+ });
+
+ std::vector<float> outputExpected = std::vector<float>(
+ {
+ 1.0f, 2.0f, 3.0f,
+ 11.0f, 12.0f, 13.0f,
+ 21.0f, 22.0f, 23.0f,
+ 31.0f, 32.0f, 33.0f,
+ });
+
+ return SimplePermuteTestImpl<float>(workloadFactory, descriptor, inputTensorInfo,
+ outputTensorInfo, input, outputExpected);
+}
+
+LayerTestResult<float, 4>
+PermuteFloat32ValueSet3TestCommon(armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 1, 2, 3, 3 };
+ unsigned int outputShape[] = { 1, 3, 2, 3 };
+
+ armnn::PermuteDescriptor descriptor;
+ descriptor.m_DimMappings = {0U, 2U, 3U, 1U};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ std::vector<float> input = std::vector<float>(
+ {
+ 1.0f, 2.0f, 3.0f,
+ 11.0f, 12.0f, 13.0f,
+ 21.0f, 22.0f, 23.0f,
+ 31.0f, 32.0f, 33.0f,
+ 41.0f, 42.0f, 43.0f,
+ 51.0f, 52.0f, 53.0f,
+ });
+
+ std::vector<float> outputExpected = std::vector<float>(
+ {
+ 1.0f, 11.0f, 21.0f, 31.0f, 41.0f, 51.0f,
+ 2.0f, 12.0f, 22.0f, 32.0f, 42.0f, 52.0f,
+ 3.0f, 13.0f, 23.0f, 33.0f, 43.0f, 53.0f,
+ });
+
+ return SimplePermuteTestImpl<float>(workloadFactory, descriptor, inputTensorInfo,
+ outputTensorInfo, input, outputExpected);
+}
diff --git a/src/backends/backendsCommon/test/Pooling2dTestImpl.hpp b/src/backends/backendsCommon/test/Pooling2dTestImpl.hpp
new file mode 100644
index 0000000000..ded45ab999
--- /dev/null
+++ b/src/backends/backendsCommon/test/Pooling2dTestImpl.hpp
@@ -0,0 +1,1240 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "QuantizeHelper.hpp"
+
+#include <armnn/ArmNN.hpp>
+
+#include <Permute.hpp>
+
+#include <backendsCommon/CpuTensorHandle.hpp>
+#include <backendsCommon/WorkloadFactory.hpp>
+#include <backendsCommon/WorkloadInfo.hpp>
+
+#include <test/TensorHelpers.hpp>
+
+#include <boost/numeric/conversion/cast.hpp>
+
+#include <algorithm>
+#include <string>
+
+template<typename T>
+LayerTestResult<T, 4> SimplePooling2dTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ armnn::Pooling2dDescriptor descriptor,
+ float qScale,
+ int32_t qOffset,
+ const boost::multi_array<T, 4>& input,
+ const boost::multi_array<T, 4>& outputExpected)
+{
+ const armnn::DataLayoutIndexed dataLayout = descriptor.m_DataLayout;
+ auto heightIndex = dataLayout.GetHeightIndex();
+ auto widthIndex = dataLayout.GetWidthIndex();
+ auto channelsIndex = dataLayout.GetChannelsIndex();
+
+ unsigned int inputHeight = boost::numeric_cast<unsigned int>(input.shape()[heightIndex]);
+ unsigned int inputWidth = boost::numeric_cast<unsigned int>(input.shape()[widthIndex]);
+ unsigned int inputChannels = boost::numeric_cast<unsigned int>(input.shape()[channelsIndex]);
+ unsigned int inputBatchSize = boost::numeric_cast<unsigned int>(input.shape()[0]);
+
+ unsigned int outputHeight = boost::numeric_cast<unsigned int>(outputExpected.shape()[heightIndex]);
+ unsigned int outputWidth = boost::numeric_cast<unsigned int>(outputExpected.shape()[widthIndex]);
+ unsigned int outputChannels = boost::numeric_cast<unsigned int>(outputExpected.shape()[channelsIndex]);
+ unsigned int outputBatchSize = boost::numeric_cast<unsigned int>(outputExpected.shape()[0]);
+
+ armnn::TensorInfo inputTensorInfo = GetTensorInfo<T>(inputBatchSize, inputChannels, inputHeight,
+ inputWidth, dataLayout);
+ armnn::TensorInfo outputTensorInfo = GetTensorInfo<T>(outputBatchSize, outputChannels, outputHeight,
+ outputWidth, dataLayout);
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ LayerTestResult<T, 4> result(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::Pooling2dQueueDescriptor queueDescriptor;
+ queueDescriptor.m_Parameters = descriptor;
+ queueDescriptor.m_Parameters.m_DataLayout = dataLayout;
+
+ armnn::WorkloadInfo workloadInfo;
+ AddInputToWorkload(queueDescriptor, workloadInfo, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(queueDescriptor, workloadInfo, outputTensorInfo, outputHandle.get());
+
+ // Don't execute if Pooling is not supported, as an exception will be raised.
+ armnn::BackendId backend = workloadFactory.GetBackendId();
+ const size_t reasonIfUnsupportedMaxLen = 255;
+ char reasonIfUnsupported[reasonIfUnsupportedMaxLen+1];
+ result.supported = armnn::IsPooling2dSupported(backend, inputTensorInfo, outputTensorInfo,
+ queueDescriptor.m_Parameters,
+ reasonIfUnsupported, reasonIfUnsupportedMaxLen);
+ if (!result.supported)
+ {
+ return result;
+ }
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreatePooling2d(queueDescriptor, workloadInfo);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&result.output[0][0][0][0], outputHandle.get());
+
+ result.outputExpected = outputExpected;
+
+ return result;
+}
+
+//
+// Tests max pooling with the following parameters:
+//
+// Pooling size: 3x3
+// Stride: (2,4)
+// input size: 8x13
+// channels: 2
+// batch size: 2
+//
+template<typename T>
+LayerTestResult<T, 4> SimpleMaxPooling2dSize3x3Stride2x4TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Max;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 3;
+ descriptor.m_StrideX = 2;
+ descriptor.m_StrideY = 4;
+ // forceNoPadding is mainly used for compatibility with ARM Compute.
+ // As of 16/05/2017, it errors if padX or padY are equal to or greater than the pool size.
+ descriptor.m_PadLeft = descriptor.m_PadRight = forceNoPadding ? 0 : 3;
+ descriptor.m_PadTop = descriptor.m_PadBottom = 0;
+ descriptor.m_OutputShapeRounding = armnn::OutputShapeRounding::Floor;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ unsigned int inputWidth = 8;
+ unsigned int inputHeight = 13;
+ unsigned int outputWidth =
+ (inputWidth + descriptor.m_PadLeft + descriptor.m_PadRight + descriptor.m_StrideX - descriptor.m_PoolWidth) /
+ descriptor.m_StrideX;
+ unsigned int outputHeight =
+ (inputHeight + descriptor.m_PadTop + descriptor.m_PadBottom + descriptor.m_StrideY - descriptor.m_PoolHeight) /
+ descriptor.m_StrideY;
+ unsigned int channels = 2;
+ unsigned int batchSize = 2;
+
+ armnn::TensorInfo inputTensorInfo({ batchSize, channels, inputHeight, inputWidth }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ batchSize, channels, outputHeight, outputWidth }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ std::vector<float> singleChannelData({
+ 0.0f, 4.0f, 8.0f, 1.0f, 6.0f, 4.0f, 5.0f, 8.0f,
+ 1.0f, 1.0f, 6.0f, 0.0f, 3.0f, 7.0f, 4.0f, 7.0f,
+ 8.0f, 5.0f, 0.0f, 0.0f, 8.0f, 3.0f, 4.0f, 3.0f,
+ 8.0f, 2.0f, 5.0f, 4.0f, 1.0f, 9.0f, 2.0f, 0.0f,
+ 5.0f, 4.0f, 5.0f, 0.0f, 0.0f, 0.0f, 7.0f, 2.0f,
+ 1.0f, 2.0f, 6.0f, 2.0f, 7.0f, 9.0f, 5.0f, 2.0f,
+ 9.0f, 7.0f, 3.0f, 1.0f, 3.0f, 4.0f, 8.0f, 3.0f,
+ 1.0f, 0.0f, 0.0f, 5.0f, 5.0f, 4.0f, 2.0f, 0.0f,
+ 6.0f, 4.0f, 3.0f, 6.0f, 9.0f, 5.0f, 5.0f, 6.0f,
+ 8.0f, 7.0f, 9.0f, 6.0f, 1.0f, 4.0f, 1.0f, 9.0f,
+ 7.0f, 1.0f, 9.0f, 2.0f, 9.0f, 9.0f, 8.0f, 1.0f,
+ 4.0f, 4.0f, 5.0f, 9.0f, 2.0f, 6.0f, 6.0f, 4.0f,
+ 3.0f, 5.0f, 4.0f, 0.0f, 1.0f, 5.0f, 9.0f, 7.0f,
+ });
+
+ // Constructs input data.
+ std::vector<float> inputData;
+ auto negator = [](float f) { return -f; };
+
+ // First image (two channels where the second channel is the negative of the first one).
+ inputData.insert(inputData.end(), singleChannelData.begin(), singleChannelData.end());
+ std::transform(singleChannelData.begin(), singleChannelData.end(), std::back_inserter(inputData), negator);
+
+ // Second image (same as first image).
+ inputData.insert(inputData.end(), singleChannelData.begin(), singleChannelData.end());
+ std::transform(singleChannelData.begin(), singleChannelData.end(), std::back_inserter(inputData), negator);
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, inputData));
+
+ // These were calculated manually.
+ auto shape(GetTensorShapeAsArray<4>(outputTensorInfo));
+ boost::multi_array<T, 4> outputExpected(shape);
+ if (forceNoPadding)
+ {
+ outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 8.0f, 8.0f, 8.0f,
+ 9.0f, 7.0f, 9.0f,
+ 9.0f, 9.0f, 9.0f,
+
+ 0.0f, 0.0f, -3.0f,
+ -1.0f, 0.0f, 0.0f,
+ -1.0f, -1.0f, -1.0f,
+
+ 8.0f, 8.0f, 8.0f,
+ 9.0f, 7.0f, 9.0f,
+ 9.0f, 9.0f, 9.0f,
+
+ 0.0f, 0.0f, -3.0f,
+ -1.0f, 0.0f, 0.0f,
+ -1.0f, -1.0f, -1.0f
+ }));
+ }
+ else
+ {
+ outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 0.0f, 8.0f, 8.0f, 8.0f, 8.0f, 8.0f,
+ 0.0f, 9.0f, 7.0f, 9.0f, 9.0f, 3.0f,
+ 0.0f, 8.0f, 9.0f, 9.0f, 9.0f, 9.0f,
+
+ 0.0f, 0.0f, 0.0f, 0.0f,-3.0f, 0.0f,
+ 0.0f,-1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f,-1.0f,-1.0f,-1.0f,-1.0f, 0.0f,
+
+ 0.0f, 8.0f, 8.0f, 8.0f, 8.0f, 8.0f,
+ 0.0f, 9.0f, 7.0f, 9.0f, 9.0f, 3.0f,
+ 0.0f, 8.0f, 9.0f, 9.0f, 9.0f, 9.0f,
+
+ 0.0f, 0.0f, 0.0f, 0.0f,-3.0f, 0.0f,
+ 0.0f,-1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f,-1.0f,-1.0f,-1.0f,-1.0f, 0.0f
+ }));
+ }
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> SimpleMaxPooling2dTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ const armnn::DataLayoutIndexed& dataLayout = armnn::DataLayout::NCHW,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Max;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 2;
+ descriptor.m_StrideX = descriptor.m_StrideY = 2;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+ descriptor.m_DataLayout = dataLayout;
+
+ armnn::TensorInfo inputTensorInfo = GetTensorInfo<T>(1, 2, 4, 4, dataLayout);
+ armnn::TensorInfo outputTensorInfo = GetTensorInfo<T>(1, 2, 2, 2, dataLayout);
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ std::vector<T> inputData(
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 2.0f, 5.0f, 6.0f,
+ 3.0f, 4.0f, 7.0f, 8.0f,
+ 9.0f, 10.0f, 13.0f, 14.0f,
+ 11.0f, 12.0f, 15.0f, 16.0f,
+
+ 17.0f, 18.0f, 21.0f, 22.0f,
+ 19.0f, 20.0f, 23.0f, 24.0f,
+ 25.0f, 26.0f, 29.0f, 30.0f,
+ 27.0f, 28.0f, 31.0f, 32.0f,
+ }));
+
+ std::vector<T> outputData(
+ QuantizedVector<T>(qScale, qOffset, {
+ 4.0f, 8.0f,
+ 12.0f, 16.0f,
+
+ 20.0f, 24.0f,
+ 28.0f, 32.0f,
+ }));
+
+ const armnn::PermutationVector NCHWToNHWC = { 0, 3, 1, 2 };
+ if (dataLayout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ std::vector<T> tmp(inputData.size());
+ armnnUtils::Permute(inputTensorInfo.GetShape(), NCHWToNHWC, inputData.data(), tmp.data());
+ inputData = tmp;
+
+ std::vector<T> tmp1(outputData.size());
+ armnnUtils::Permute(outputTensorInfo.GetShape(), NCHWToNHWC, outputData.data(), tmp1.data());
+ outputData = tmp1;
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, inputData);
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputData);
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> SimpleAveragePooling2dTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ armnn::DataLayoutIndexed dataLayout = armnn::DataLayout::NCHW,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Average;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 2;
+ descriptor.m_StrideX = descriptor.m_StrideY = 2;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+ descriptor.m_DataLayout = dataLayout;
+
+ armnn::TensorInfo inputTensorInfo = GetTensorInfo<T>(1, 2, 4, 4, dataLayout);
+ armnn::TensorInfo outputTensorInfo = GetTensorInfo<T>(1, 2, 2, 2, dataLayout);
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ std::vector<T> inputData(
+ QuantizedVector<T>(qScale, qOffset, {
+ 2.0f, 2.0f, 6.0f, 6.0f,
+ 4.0f, 4.0f, 8.0f, 8.0f,
+ 10.0f, 12.0f, 14.0f, 16.0f,
+ 10.0f, 12.0f, 16.0f, 14.0f,
+
+ 18.0f, 20.0f, 24.0f, 22.0f,
+ 20.0f, 18.0f, 22.0f, 24.0f,
+ 26.0f, 28.0f, 0.0f, 0.0f,
+ 26.0f, 28.0f, 0.0f, 0.0f,
+ }));
+
+ std::vector<T> outputData(
+ QuantizedVector<T>(qScale, qOffset, {
+ 3.0f, 7.0f,
+ 11.0f, 15.0f,
+
+ 19.0f, 23.0f,
+ 27.0f, 0.0f,
+ }));
+
+ const armnn::PermutationVector NCHWToNHWC = { 0, 3, 1, 2 };
+ if (dataLayout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ std::vector<T> tmp(inputData.size());
+ armnnUtils::Permute(inputTensorInfo.GetShape(), NCHWToNHWC, inputData.data(), tmp.data());
+ inputData = tmp;
+
+ std::vector<T> tmp1(outputData.size());
+ armnnUtils::Permute(outputTensorInfo.GetShape(), NCHWToNHWC, outputData.data(), tmp1.data());
+ outputData = tmp1;
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, inputData);
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputData);
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> LargeTensorsAveragePooling2dTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Average;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 100;
+ descriptor.m_StrideX = descriptor.m_StrideY = 5;
+ descriptor.m_PadLeft = 50;
+ descriptor.m_PadRight = 50;
+ descriptor.m_PadTop = 50;
+ descriptor.m_PadBottom = 50;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ armnn::TensorInfo inputTensorInfo({ 5, 3, 52, 60 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 5, 3, 11, 13 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ std::vector<T> inputVec;
+
+ for (unsigned int i = 0 ; i < inputTensorInfo.GetShape().GetNumElements(); ++i)
+ {
+ inputVec.push_back(1);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, inputVec);
+
+ std::vector<T> outputVec;
+
+ for (unsigned int i = 0 ; i < outputTensorInfo.GetShape().GetNumElements(); ++i)
+ {
+ outputVec.push_back(1);
+ }
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputVec);
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> SimpleL2Pooling2dTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ armnn::DataLayoutIndexed dataLayout = armnn::DataLayout::NCHW,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::L2;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 2;
+ descriptor.m_StrideX = descriptor.m_StrideY = 2;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+ descriptor.m_DataLayout = dataLayout;
+
+ armnn::TensorInfo inputTensorInfo = GetTensorInfo<T>(1, 2, 4, 4, dataLayout);
+ armnn::TensorInfo outputTensorInfo = GetTensorInfo<T>(1, 2, 2, 2, dataLayout);
+
+ std::vector<T> inputData(
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 7.0f, 5.0f, 5.0f,
+ 1.0f, 7.0f, 5.0f, 5.0f,
+ 3.0f, 3.0f, 1.0f, 1.0f,
+ 3.0f, 3.0f, 1.0f, 1.0f,
+
+ 1.0f, 7.0f, 0.0f, 0.0f,
+ 1.0f, 7.0f, 2.0f, 0.0f,
+ 0.0f, 2.0f, 1.0f, 1.0f,
+ 0.0f, 0.0f, 1.0f, 1.0f,
+ }));
+
+ std::vector<T> outputData(
+ QuantizedVector<T>(qScale, qOffset, {
+ 5.0f, 5.0f,
+ 3.0f, 1.0f,
+
+ 5.0f, 1.0f,
+ 1.0f, 1.0f,
+ }));
+
+ const armnn::PermutationVector NCHWToNHWC = { 0, 3, 1, 2 };
+ if (dataLayout.GetDataLayout() == armnn::DataLayout::NHWC)
+ {
+ std::vector<T> tmp(inputData.size());
+ armnnUtils::Permute(inputTensorInfo.GetShape(), NCHWToNHWC, inputData.data(), tmp.data());
+ inputData = tmp;
+
+ std::vector<T> tmp1(outputData.size());
+ armnnUtils::Permute(outputTensorInfo.GetShape(), NCHWToNHWC, outputData.data(), tmp1.data());
+ outputData = tmp1;
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, inputData);
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputData);
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> L2Pooling2dSize3Stride1TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::L2;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 3;
+ descriptor.m_StrideX = descriptor.m_StrideY = 1;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 2.0f, 1.0f, 5.0f, 2.0f,
+ 1.0f, 2.0f, 2.0f, 1.0f,
+ 5.0f, 4.0f, 1.0f, 5.0f,
+ 2.0f, 1.0f, 5.0f, 2.0f,
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 2, 2 }, armnn::GetDataType<T>());
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 3.0f, 3.0f,
+ 3.0f, 3.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> L2Pooling2dSize3Stride3TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::L2;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 3;
+ descriptor.m_StrideX = descriptor.m_StrideY = 3;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 9, 9 }, armnn::GetDataType<T>());
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f,
+ 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f,
+ 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f,
+ 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f,
+ 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f,
+ 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f,
+ 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f,
+ 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f,
+ 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f,
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 3, 3 }, armnn::GetDataType<T>());
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 3.0f, 3.0f, 3.0f,
+ 3.0f, 3.0f, 3.0f,
+ 3.0f, 3.0f, 3.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> L2Pooling2dSize3Stride4TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::L2;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 3;
+ descriptor.m_StrideX = descriptor.m_StrideY = 4;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 7, 7 }, armnn::GetDataType<T>());
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 2.0f, 1.0f, 5.0f, 0.0f, 2.0f, 1.0f, 5.0f,
+ 1.0f, 2.0f, 2.0f, 0.0f, 1.0f, 2.0f, 2.0f,
+ 5.0f, 4.0f, 1.0f, 0.0f, 5.0f, 4.0f, 1.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 2.0f, 1.0f, 5.0f, 0.0f, 2.0f, 1.0f, 5.0f,
+ 1.0f, 2.0f, 2.0f, 0.0f, 1.0f, 2.0f, 2.0f,
+ 5.0f, 4.0f, 1.0f, 0.0f, 5.0f, 4.0f, 1.0f,
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 2, 2 }, armnn::GetDataType<T>());
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 3.0f, 3.0f,
+ 3.0f, 3.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> L2Pooling2dSize7TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::L2;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 7;
+ descriptor.m_StrideX = descriptor.m_StrideY = 7;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 7, 7 }, armnn::GetDataType<T>());
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 0.0f, 2.0f, 0.0f, 3.0f, 0.0f, 4.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 5.0f, 0.0f, 6.0f, 0.0f, 7.0f, 0.0f,
+ 8.0f, 0.0f, 9.0f, 0.0f, 10.0f, 0.0f, 5.0f,
+ 0.0f, 5.0f, 0.0f, 2.0f, 0.0f, 1.0f, 1.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 1, 1 }, armnn::GetDataType<T>());
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 3.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> L2Pooling2dSize9TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::L2;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 9;
+ descriptor.m_StrideX = descriptor.m_StrideY = 9;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 9, 9 }, armnn::GetDataType<T>());
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f,
+ 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f,
+ 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f,
+ 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f,
+ 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f,
+ 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f,
+ 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f, 2.0f, 1.0f, 5.0f,
+ 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f, 1.0f, 2.0f, 2.0f,
+ 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f, 5.0f, 4.0f, 1.0f,
+ }));
+
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 1, 1 }, armnn::GetDataType<T>());
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 3.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> AsymmetricNonSquarePooling2dTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 1, 3 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 2, 2 }, armnn::GetDataType<T>());
+
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Max;
+ descriptor.m_PoolWidth = 2;
+ descriptor.m_PoolHeight = 3;
+ descriptor.m_StrideX = 2;
+ descriptor.m_StrideY = 1;
+ descriptor.m_PadLeft = 2;
+ descriptor.m_PadRight = 0;
+ descriptor.m_PadTop = 1;
+ descriptor.m_PadBottom = 2;
+ descriptor.m_OutputShapeRounding = armnn::OutputShapeRounding::Floor;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ // Construct input data.
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 3.0f, 4.0f,
+ }));
+
+ // These were calculated manually.
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 0.0f, 3.0f, 0.0f, 3.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> ComparePooling2dTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ armnn::PoolingAlgorithm poolingType,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ const unsigned int inputWidth = 16;
+ const unsigned int inputHeight = 32;
+ const unsigned int channelCount = 2;
+ const unsigned int batchSize = 5;
+
+ const unsigned int poolSize = 3;
+ const unsigned int strideX = 2;
+ const unsigned int strideY = 4;
+ const unsigned int padX = 0;
+ const unsigned int padY = 0;
+
+ const unsigned int outputWidth = (inputWidth + 2 * padX + strideX - poolSize) / strideX;
+ const unsigned int outputHeight = (inputHeight + 2 * padY + strideY - poolSize) / strideY;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { batchSize, channelCount, inputHeight, inputWidth };
+ unsigned int outputShape[] = { batchSize, channelCount, outputHeight, outputWidth };
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::GetDataType<T>());
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ boost::multi_array<T, 4> input = MakeRandomTensor<T, 4>(inputTensorInfo, 81715);
+
+ LayerTestResult<T, 4> comparisonResult(outputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::Pooling2dQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+ data.m_Parameters.m_PoolType = poolingType;
+ data.m_Parameters.m_PoolWidth = poolSize;
+ data.m_Parameters.m_PoolHeight = poolSize;
+ data.m_Parameters.m_StrideX = strideX;
+ data.m_Parameters.m_StrideY = strideY;
+ data.m_Parameters.m_PadLeft = padX;
+ data.m_Parameters.m_PadRight = padX;
+ data.m_Parameters.m_PadTop = padY;
+ data.m_Parameters.m_PadBottom = padY;
+ data.m_Parameters.m_OutputShapeRounding = armnn::OutputShapeRounding::Floor;
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> inputHandleRef = refWorkloadFactory.CreateTensorHandle(inputTensorInfo);
+
+ // Don't execute if Pooling is not supported, as an exception will be raised.
+ armnn::BackendId backend = workloadFactory.GetBackendId();
+ const size_t reasonIfUnsupportedMaxLen = 255;
+ char reasonIfUnsupported[reasonIfUnsupportedMaxLen+1];
+ comparisonResult.supported = armnn::IsPooling2dSupported(backend, inputTensorInfo, outputTensorInfo,
+ data.m_Parameters,
+ reasonIfUnsupported, reasonIfUnsupportedMaxLen);
+ if (!comparisonResult.supported)
+ {
+ return comparisonResult;
+ }
+
+ armnn::Pooling2dQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadInput(refData, refInfo, 0, inputTensorInfo, inputHandleRef.get());
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreatePooling2d(data, info);
+ std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreatePooling2d(refData, refInfo);
+
+ outputHandleRef->Allocate();
+ inputHandleRef->Allocate();
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+ CopyDataToITensorHandle(inputHandleRef.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+ workloadRef->Execute();
+
+ CopyDataFromITensorHandle(&comparisonResult.output[0][0][0][0], outputHandle.get());
+ CopyDataFromITensorHandle(&comparisonResult.outputExpected[0][0][0][0], outputHandleRef.get());
+
+ return comparisonResult;
+}
+
+//
+// Tests max pooling with the following parameters:
+//
+// Pooling size: 2x2
+// Stride: (2,2)
+// input size: 4x4
+// channels: 1
+// batch size: 1
+//
+template<typename T>
+LayerTestResult<T, 4> SimpleMaxPooling2dSize2x2Stride2x2TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Max;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 2;
+ descriptor.m_StrideX = 2;
+ descriptor.m_StrideY = 2;
+ descriptor.m_PadLeft = descriptor.m_PadRight = forceNoPadding ? 0 : 3;
+ descriptor.m_PadTop = descriptor.m_PadBottom = 0;
+ descriptor.m_OutputShapeRounding = armnn::OutputShapeRounding::Floor;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::Exclude;
+
+ unsigned int inputWidth = 4;
+ unsigned int inputHeight = 4;
+ unsigned int outputWidth =
+ (inputWidth + descriptor.m_PadLeft + descriptor.m_PadRight + descriptor.m_StrideX - descriptor.m_PoolWidth) /
+ descriptor.m_StrideX;
+ unsigned int outputHeight =
+ (inputHeight + descriptor.m_PadTop + descriptor.m_PadBottom + descriptor.m_StrideY - descriptor.m_PoolHeight) /
+ descriptor.m_StrideY;
+ unsigned int channels = 1;
+ unsigned int batchSize = 1;
+
+ std::vector<float> inputData = {
+ 510.0f, 222.0f, 780.0f, 654.0f,
+ 141.0f, 276.0f, 15.0f, 546.0f,
+ 303.0f, 618.0f, 582.0f, 339.0f,
+ 438.0f, 564.0f, 573.0f, 402.0f
+ };
+
+ // Note that left and right edges will be 0.f, due to the 2x2 max pooling only accessing zeros here.
+ std::vector<float> expectedOutputDataWithPadding = {
+ 0.0f, 510.0f, 780.0f, 654.0f, 0.0f,
+ 0.0f, 438.0f, 618.0f, 402.0f, 0.0f
+ };
+
+ std::vector<float> expectedOutputDataNoPadding = {
+ 510.0f, 780.0f,
+ 618.0f, 582.0f
+ };
+
+ armnn::TensorInfo inputTensorInfo({ batchSize, channels, inputHeight, inputWidth }, armnn::GetDataType<T>());
+
+ // Scale and offset should match input - we're just calculating maximum values.
+ armnn::TensorInfo outputTensorInfo({ batchSize, channels, outputHeight, outputWidth }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, inputData));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ forceNoPadding ? QuantizedVector<T>(qScale, qOffset, expectedOutputDataNoPadding) :
+ QuantizedVector<T>(qScale, qOffset, expectedOutputDataWithPadding));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+//
+// Tests max pooling with the following parameters:
+//
+// Pooling size: 3x2
+// Stride: (2,2)
+// input size: 3x2
+// channels: 1
+// batch size: 1
+//
+template<typename T>
+LayerTestResult<T, 4> IgnorePaddingAveragePooling2dSize3x2Stride2x2TestCommon(
+ armnn::IWorkloadFactory& workloadFactory,
+ bool forceNoPadding,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Average;
+ descriptor.m_PoolWidth = 3;
+ descriptor.m_PoolHeight = 2;
+ descriptor.m_StrideX = 2;
+ descriptor.m_StrideY = 2;
+ descriptor.m_PadLeft = (forceNoPadding) ? 0 : 1;
+ descriptor.m_PadRight = descriptor.m_PadLeft;
+ descriptor.m_PadTop = 0;
+ descriptor.m_PadBottom = 0;
+ descriptor.m_OutputShapeRounding = armnn::OutputShapeRounding::Floor;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::IgnoreValue;
+
+ unsigned int inputWidth = 3;
+ unsigned int inputHeight = 2;
+ unsigned int outputWidth =
+ (inputWidth + descriptor.m_PadLeft + descriptor.m_PadRight + descriptor.m_StrideX - descriptor.m_PoolWidth) /
+ descriptor.m_StrideX;
+ unsigned int outputHeight =
+ (inputHeight + descriptor.m_PadTop + descriptor.m_PadBottom + descriptor.m_StrideY - descriptor.m_PoolHeight) /
+ descriptor.m_StrideY;
+ unsigned int channels = 1;
+ unsigned int batchSize = 1;
+
+ std::vector<float> inputData = {
+ 3.0f, 6.0f, 9.0f,
+ 12.0f, 15.0f, 18.0f,
+ };
+
+ std::vector<float> expectedOutputDataWithPadding = {
+ 6.0f, 8.0f,
+ };
+
+ std::vector<float> expectedOutputDataNoPadding = {
+ 10.5f,
+ };
+
+ armnn::TensorInfo inputTensorInfo({ batchSize, channels, inputHeight, inputWidth }, armnn::GetDataType<T>());
+
+ // Scale and offset should match input - we're just calculating average values.
+ armnn::TensorInfo outputTensorInfo({ batchSize, channels, outputHeight, outputWidth }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo, QuantizedVector<T>(qScale, qOffset, inputData));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ forceNoPadding ? QuantizedVector<T>(qScale, qOffset, expectedOutputDataNoPadding) :
+ QuantizedVector<T>(qScale, qOffset, expectedOutputDataWithPadding));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+
+template<typename T>
+LayerTestResult<T, 4> IgnorePaddingSimpleMaxPooling2dTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Max;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 2;
+ descriptor.m_StrideX = descriptor.m_StrideY = 2;
+ descriptor.m_PadLeft = 1;
+ descriptor.m_PadRight = 1;
+ descriptor.m_PadTop = 1;
+ descriptor.m_PadBottom = 1;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::IgnoreValue;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 3, 3 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ -1.0f, -2.0f, 3.0f, 4.0f,
+ -1.0f, -2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, -3.0f, -4.0f,
+ 1.0f, 2.0f, -3.0f, -4.0f,
+ }));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ -1.0f, 3.0f, 4.0f,
+ 1.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, -4.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> IgnorePaddingMaxPooling2dSize3TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Max;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 3;
+ descriptor.m_StrideX = descriptor.m_StrideY = 1;
+ descriptor.m_PadLeft = 1;
+ descriptor.m_PadRight = 1;
+ descriptor.m_PadTop = 1;
+ descriptor.m_PadBottom = 1;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::IgnoreValue;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ -1.0f, -2.0f, 3.0f, 4.0f,
+ -1.0f, -2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, -3.0f, -4.0f,
+ 1.0f, 2.0f, -3.0f, -4.0f,
+ }));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ -1.0f, 3.0f, 4.0f, 4.0f,
+ 2.0f, 3.0f, 4.0f, 4.0f,
+ 2.0f, 3.0f, 4.0f, 4.0f,
+ 2.0f, 2.0f, 2.0f, -3.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> IgnorePaddingSimpleAveragePooling2dTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Average;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 2;
+ descriptor.m_StrideX = descriptor.m_StrideY = 2;
+ descriptor.m_PadLeft = 1;
+ descriptor.m_PadRight = 1;
+ descriptor.m_PadTop = 1;
+ descriptor.m_PadBottom = 1;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::IgnoreValue;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 3, 3 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 12.0f, 20.0f, 32.0f, 40.0f,
+ 12.0f, 20.0f, 32.0f, 40.0f,
+ 12.0f, 20.0f, 32.0f, 40.0f,
+ 12.0f, 20.0f, 32.0f, 40.0f,
+ }));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 3.0f, 13.0f, 10.0f,
+ 6.0f, 26.0f, 20.0f,
+ 3.0f, 13.0f, 10.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> IgnorePaddingSimpleAveragePooling2dNoPaddingTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Average;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 3;
+ descriptor.m_StrideX = descriptor.m_StrideY = 2;
+ descriptor.m_PadLeft = 0;
+ descriptor.m_PadRight = 0;
+ descriptor.m_PadTop = 0;
+ descriptor.m_PadBottom = 0;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::IgnoreValue;
+ descriptor.m_OutputShapeRounding = armnn::OutputShapeRounding::Ceiling;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 4, 4}, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 2, 2 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ }));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 2.0f, 3.5f,
+ 2.0f, 3.5f
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> IgnorePaddingAveragePooling2dSize3TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::Average;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 3;
+ descriptor.m_StrideX = descriptor.m_StrideY = 1;
+ descriptor.m_PadLeft = 1;
+ descriptor.m_PadRight = 1;
+ descriptor.m_PadTop = 1;
+ descriptor.m_PadBottom = 1;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::IgnoreValue;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 9.0f, 27.0f, 18.0f, 36.0f,
+ 18.0f, 9.0f, 18.0f, 9.0f,
+ 27.0f, 18.0f, 9.0f, 27.0f,
+ 9.0f, 27.0f, 9.0f, 18.0f,
+ }));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 7.0f, 11.0f, 13.0f, 9.0f,
+ 12.0f, 17.0f, 19.0f, 13.0f,
+ 12.0f, 16.0f, 16.0f, 10.0f,
+ 9.0f, 11.0f, 12.0f, 7.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> IgnorePaddingSimpleL2Pooling2dTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::L2;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 2;
+ descriptor.m_StrideX = descriptor.m_StrideY = 2;
+ descriptor.m_PadLeft = 1;
+ descriptor.m_PadRight = 1;
+ descriptor.m_PadTop = 1;
+ descriptor.m_PadBottom = 1;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::IgnoreValue;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 3, 3 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 2.0f, 4.0f, 8.0f, 16.0f,
+ 4.0f, 2.0f, 2.0f, 4.0f,
+ 8.0f, 2.0f, 4.0f, 2.0f,
+ 16.0f, 2.0f, 2.0f, 8.0f,
+ }));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 4.4721f, 8.0f,
+ 4.4721f, 2.6457f, 2.236f,
+ 8.0f, 1.4142f, 4.0f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
+
+template<typename T>
+LayerTestResult<T, 4> IgnorePaddingL2Pooling2dSize3TestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 1.0f,
+ int32_t qOffset = 0)
+{
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = armnn::PoolingAlgorithm::L2;
+ descriptor.m_PoolWidth = descriptor.m_PoolHeight = 3;
+ descriptor.m_StrideX = descriptor.m_StrideY = 1;
+ descriptor.m_PadLeft = 1;
+ descriptor.m_PadRight = 1;
+ descriptor.m_PadTop = 1;
+ descriptor.m_PadBottom = 1;
+ descriptor.m_PaddingMethod = armnn::PaddingMethod::IgnoreValue;
+
+ armnn::TensorInfo inputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo({ 1, 1, 4, 4 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+ }
+
+ auto input = MakeTensor<T, 4>(inputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ 1.0f, 2.0f, 3.0f, 4.0f,
+ }));
+
+ auto outputExpected = MakeTensor<T, 4>(outputTensorInfo,
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0540f, 1.7638f, 2.5385f, 2.3570f,
+ 1.2909f, 2.1602f, 3.1091f, 2.8867f,
+ 1.2909f, 2.1602f, 3.1091f, 2.8867f,
+ 1.0540f, 1.7638f, 2.5385f, 2.3570f,
+ }));
+
+ return SimplePooling2dTestImpl<T>(workloadFactory, descriptor, qScale, qOffset, input, outputExpected);
+}
diff --git a/src/backends/backendsCommon/test/QuantizeHelper.hpp b/src/backends/backendsCommon/test/QuantizeHelper.hpp
new file mode 100644
index 0000000000..bb4e561d59
--- /dev/null
+++ b/src/backends/backendsCommon/test/QuantizeHelper.hpp
@@ -0,0 +1,91 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/TypesUtils.hpp>
+
+#include <initializer_list>
+#include <iterator>
+#include <vector>
+#include <boost/core/ignore_unused.hpp>
+
+template<typename T, bool DoQuantize=true>
+struct SelectiveQuantizer
+{
+ static T Quantize(float value, float scale, int32_t offset)
+ {
+ return armnn::Quantize<T>(value, scale, offset);
+ }
+
+ static float Dequantize(T value, float scale, int32_t offset)
+ {
+ return armnn::Dequantize(value, scale, offset);
+ }
+};
+
+template<typename T>
+struct SelectiveQuantizer<T, false>
+{
+ static T Quantize(float value, float scale, int32_t offset)
+ {
+ boost::ignore_unused(scale, offset);
+ return value;
+ }
+
+ static float Dequantize(T value, float scale, int32_t offset)
+ {
+ boost::ignore_unused(scale, offset);
+ return value;
+ }
+};
+
+template<typename T>
+T SelectiveQuantize(float value, float scale, int32_t offset)
+{
+ return SelectiveQuantizer<T, armnn::IsQuantizedType<T>()>::Quantize(value, scale, offset);
+};
+
+template<typename T>
+float SelectiveDequantize(T value, float scale, int32_t offset)
+{
+ return SelectiveQuantizer<T, armnn::IsQuantizedType<T>()>::Dequantize(value, scale, offset);
+};
+
+template<typename ItType>
+struct IsFloatingPointIterator
+{
+ static constexpr bool value=std::is_floating_point<typename std::iterator_traits<ItType>::value_type>::value;
+};
+
+template <typename T, typename FloatIt,
+typename std::enable_if<IsFloatingPointIterator<FloatIt>::value, int>::type=0 // Makes sure fp iterator is valid.
+>
+std::vector<T> QuantizedVector(float qScale, int32_t qOffset, FloatIt first, FloatIt last)
+{
+ std::vector<T> quantized;
+ quantized.reserve(boost::numeric_cast<size_t>(std::distance(first, last)));
+
+ for (auto it = first; it != last; ++it)
+ {
+ auto f = *it;
+ T q =SelectiveQuantize<T>(f, qScale, qOffset);
+ quantized.push_back(q);
+ }
+
+ return quantized;
+}
+
+template<typename T>
+std::vector<T> QuantizedVector(float qScale, int32_t qOffset, const std::vector<float>& array)
+{
+ return QuantizedVector<T>(qScale, qOffset, array.begin(), array.end());
+}
+
+template<typename T>
+std::vector<T> QuantizedVector(float qScale, int32_t qOffset, std::initializer_list<float> array)
+{
+ return QuantizedVector<T>(qScale, qOffset, array.begin(), array.end());
+}
diff --git a/src/backends/backendsCommon/test/ReshapeTestImpl.hpp b/src/backends/backendsCommon/test/ReshapeTestImpl.hpp
new file mode 100644
index 0000000000..fee992deb6
--- /dev/null
+++ b/src/backends/backendsCommon/test/ReshapeTestImpl.hpp
@@ -0,0 +1,177 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "QuantizeHelper.hpp"
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+
+#include <backendsCommon/CpuTensorHandle.hpp>
+#include <backendsCommon/WorkloadFactory.hpp>
+
+#include <test/TensorHelpers.hpp>
+
+template<typename T>
+LayerTestResult<T, 4> SimpleReshapeTestImpl(
+ armnn::IWorkloadFactory& workloadFactory,
+ armnn::TensorInfo inputTensorInfo,
+ armnn::TensorInfo outputTensorInfo,
+ const std::vector<T>& inputData,
+ const std::vector<T>& outputExpectedData)
+{
+ auto input = MakeTensor<T, 4>(inputTensorInfo, inputData);
+
+ LayerTestResult<T, 4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<T, 4>(outputTensorInfo, outputExpectedData);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::ReshapeQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateReshape(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+LayerTestResult<float, 4> SimpleReshapeFloat32Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 2, 2, 3, 3 };
+ unsigned int outputShape[] = { 2, 2, 9, 1 };
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ std::vector<float> input = std::vector<float>(
+ {
+ 0.0f, 1.0f, 2.0f,
+ 3.0f, 4.0f, 5.0f,
+ 6.0f, 7.0f, 8.0f,
+
+ 9.0f, 10.0f, 11.0f,
+ 12.0f, 13.0f, 14.0f,
+ 15.0f, 16.0f, 17.0f,
+
+ 18.0f, 19.0f, 20.0f,
+ 21.0f, 22.0f, 23.0f,
+ 24.0f, 25.0f, 26.0f,
+
+ 27.0f, 28.0f, 29.0f,
+ 30.0f, 31.0f, 32.0f,
+ 33.0f, 34.0f, 35.0f,
+ });
+
+ std::vector<float> outputExpected = std::vector<float>(
+ {
+ 0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f,
+
+ 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f,
+
+ 18.0f, 19.0f, 20.0f, 21.0f, 22.0f, 23.0f, 24.0f, 25.0f, 26.0f,
+
+ 27.0f, 28.0f, 29.0f, 30.0f, 31.0f, 32.0f, 33.0f, 34.0f, 35.0f,
+ });
+
+ return SimpleReshapeTestImpl<float>(workloadFactory, inputTensorInfo, outputTensorInfo, input, outputExpected);
+}
+
+LayerTestResult<float, 4> SimpleFloorTest(armnn::IWorkloadFactory& workloadFactory)
+{
+ const armnn::TensorInfo inputTensorInfo({1, 3, 2, 3}, armnn::DataType::Float32);
+ const armnn::TensorInfo outputTensorInfo(inputTensorInfo);
+
+ auto input = MakeTensor<float, 4>(inputTensorInfo,
+ { -37.5f, -15.2f, -8.76f, -2.0f, -1.5f, -1.3f, -0.5f, -0.4f, 0.0f,
+ 1.0f, 0.4f, 0.5f, 1.3f, 1.5f, 2.0f, 8.76f, 15.2f, 37.5f });
+
+ LayerTestResult<float, 4> ret(outputTensorInfo);
+ ret.outputExpected = MakeTensor<float, 4>(outputTensorInfo,
+ { -38.0f, -16.0f, -9.0f, -2.0f, -2.0f, -2.0f, -1.0f, -1.0f, 0.0f,
+ 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 2.0f, 8.0f, 15.0f, 37.0f });
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::FloorQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateFloor(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0][0][0], outputHandle.get());
+
+ return ret;
+}
+
+LayerTestResult<uint8_t, 4> SimpleReshapeUint8Test(armnn::IWorkloadFactory& workloadFactory)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 2, 2, 3, 3 };
+ unsigned int outputShape[] = { 2, 2, 9, 1 };
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::QuantisedAsymm8);
+ inputTensorInfo.SetQuantizationScale(1.0f);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationScale(1.0f);
+
+ std::vector<uint8_t> input = std::vector<uint8_t>(
+ {
+ 0, 1, 2,
+ 3, 4, 5,
+ 6, 7, 8,
+
+ 9, 10, 11,
+ 12, 13, 14,
+ 15, 16, 17,
+
+ 18, 19, 20,
+ 21, 22, 23,
+ 24, 25, 26,
+
+ 27, 28, 29,
+ 30, 31, 32,
+ 33, 34, 35,
+ });
+
+ std::vector<uint8_t> outputExpected = std::vector<uint8_t>(
+ {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8,
+
+ 9, 10, 11, 12, 13, 14, 15, 16, 17,
+
+ 18, 19, 20, 21, 22, 23, 24, 25, 26,
+
+ 27, 28, 29, 30, 31, 32, 33, 34, 35,
+ });
+
+ return SimpleReshapeTestImpl<uint8_t>(workloadFactory, inputTensorInfo, outputTensorInfo, input, outputExpected);
+}
diff --git a/src/backends/backendsCommon/test/RuntimeTestImpl.hpp b/src/backends/backendsCommon/test/RuntimeTestImpl.hpp
new file mode 100644
index 0000000000..b446fc48c3
--- /dev/null
+++ b/src/backends/backendsCommon/test/RuntimeTestImpl.hpp
@@ -0,0 +1,43 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+
+#include <Runtime.hpp>
+
+namespace
+{
+
+inline void CreateAndDropDummyNetwork(const std::vector<armnn::BackendId>& backends, armnn::Runtime& runtime)
+{
+ armnn::NetworkId networkIdentifier;
+ {
+ armnn::TensorInfo inputTensorInfo(armnn::TensorShape({ 7, 7 }), armnn::DataType::Float32);
+ armnn::TensorInfo outputTensorInfo(armnn::TensorShape({ 7, 7 }), armnn::DataType::Float32);
+
+ armnn::INetworkPtr network(armnn::INetwork::Create());
+
+ armnn::IConnectableLayer* input = network->AddInputLayer(0, "input");
+ armnn::IConnectableLayer* layer = network->AddActivationLayer(armnn::ActivationDescriptor(), "test");
+ armnn::IConnectableLayer* output = network->AddOutputLayer(0, "output");
+
+ input->GetOutputSlot(0).Connect(layer->GetInputSlot(0));
+ layer->GetOutputSlot(0).Connect(output->GetInputSlot(0));
+
+ // Sets the tensors in the network.
+ input->GetOutputSlot(0).SetTensorInfo(inputTensorInfo);
+ layer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
+
+ // optimize the network
+ armnn::IOptimizedNetworkPtr optNet = Optimize(*network, backends, runtime.GetDeviceSpec());
+
+ runtime.LoadNetwork(networkIdentifier, std::move(optNet));
+ }
+
+ runtime.UnloadNetwork(networkIdentifier);
+}
+
+} // anonymous namespace
diff --git a/src/backends/backendsCommon/test/SoftmaxTestImpl.hpp b/src/backends/backendsCommon/test/SoftmaxTestImpl.hpp
new file mode 100644
index 0000000000..1e145a1a2e
--- /dev/null
+++ b/src/backends/backendsCommon/test/SoftmaxTestImpl.hpp
@@ -0,0 +1,153 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include "QuantizeHelper.hpp"
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+#include <armnn/TypesUtils.hpp>
+
+#include <backendsCommon/CpuTensorHandle.hpp>
+#include <backendsCommon/WorkloadFactory.hpp>
+
+#include <test/TensorHelpers.hpp>
+
+#include <algorithm>
+
+template<typename T>
+LayerTestResult<T, 2> SimpleSoftmaxTestImpl(armnn::IWorkloadFactory& workloadFactory, float beta)
+{
+ using std::exp;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 2, 4 };
+
+ inputTensorInfo = armnn::TensorInfo(2, inputShape, armnn::GetDataType<T>());
+ float qScale = 1.f / 256.f;
+ int qOffset = 0;
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+
+ outputTensorInfo = armnn::TensorInfo(2, inputShape, armnn::GetDataType<T>());
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+
+ LayerTestResult<T, 2> ret(outputTensorInfo);
+
+ // Each row is independently softmax'd.
+ auto input = MakeTensor<T, 2>(inputTensorInfo, std::vector<T>(
+ QuantizedVector<T>(qScale, 0, {
+ 0.f, 1.f, 0.f, 0.f,
+ .5f, 0.f, 0.f, 0.f,
+ })));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::SoftmaxQueueDescriptor data;
+ data.m_Parameters.m_Beta = beta;
+
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateSoftmax(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0], outputHandle.get());
+
+ float x0[4] = { exp((0.f - 1.0f) * beta), exp((1.0f - 1.0f) * beta),
+ exp((0.0f - 1.0f) * beta), exp((0.0f - 1.0f) * beta) };
+ float sum0 = x0[0] + x0[1] + x0[2] + x0[3];
+ float x1[4] = { exp((0.5f - 0.5f) * beta), exp((0.0f - 0.5f) * beta),
+ exp((0.0f - 0.5f) * beta), exp((0.0f - 0.5f) * beta) };
+ float sum1 = x1[0] + x1[1] + x1[2] + x1[3];
+
+ ret.outputExpected = MakeTensor<T, 2>(outputTensorInfo, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ x0[0] / sum0, x0[1] / sum0, x0[2] / sum0, x0[3] / sum0,
+ x1[0] / sum1, x1[1] / sum1, x1[2] / sum1, x1[3] / sum1
+ })));
+
+ return ret;
+}
+
+template<typename T>
+LayerTestResult<T, 2> CompareSoftmaxTestImpl(armnn::IWorkloadFactory& workloadFactory,
+ armnn::IWorkloadFactory& refWorkloadFactory,
+ float beta)
+{
+
+ const int batchSize = 20;
+ const int channels = 30;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { batchSize, channels };
+
+ inputTensorInfo = armnn::TensorInfo(2, inputShape, armnn::GetDataType<T>());
+ outputTensorInfo = armnn::TensorInfo(2, inputShape, armnn::GetDataType<T>());
+ float qScale = 1.f / 256.f;
+ int qOffset = 0;
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo.SetQuantizationScale(qScale);
+ outputTensorInfo.SetQuantizationOffset(qOffset);
+
+
+ LayerTestResult<T, 2> ret(outputTensorInfo);
+ auto input = MakeRandomTensor<T, 2>(inputTensorInfo, 0xF00D, 0.0f, 1.0f);
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = workloadFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::SoftmaxQueueDescriptor data;
+ data.m_Parameters.m_Beta = beta;
+
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandleRef = refWorkloadFactory.CreateTensorHandle(outputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> inputHandleRef = refWorkloadFactory.CreateTensorHandle(inputTensorInfo);
+
+
+ armnn::SoftmaxQueueDescriptor refData = data;
+ armnn::WorkloadInfo refInfo = info;
+ SetWorkloadInput(refData, refInfo, 0, inputTensorInfo, inputHandleRef.get());
+ SetWorkloadOutput(refData, refInfo, 0, outputTensorInfo, outputHandleRef.get());
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateSoftmax(data, info);
+ std::unique_ptr<armnn::IWorkload> workloadRef = refWorkloadFactory.CreateSoftmax(refData, refInfo);
+
+ outputHandleRef->Allocate();
+ inputHandleRef->Allocate();
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0]);
+ CopyDataToITensorHandle(inputHandleRef.get(), &input[0][0]);
+
+ workloadFactory.Finalize();
+ workload->Execute();
+ refWorkloadFactory.Finalize();
+ workloadRef->Execute();
+
+ CopyDataFromITensorHandle(&ret.output[0][0], outputHandle.get());
+ CopyDataFromITensorHandle(&ret.outputExpected[0][0], outputHandleRef.get());
+
+ return ret;
+}
diff --git a/src/backends/backendsCommon/test/SplitterTestImpl.hpp b/src/backends/backendsCommon/test/SplitterTestImpl.hpp
new file mode 100644
index 0000000000..677950cf2d
--- /dev/null
+++ b/src/backends/backendsCommon/test/SplitterTestImpl.hpp
@@ -0,0 +1,304 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/ArmNN.hpp>
+#include <armnn/Tensor.hpp>
+
+#include <backendsCommon/CpuTensorHandle.hpp>
+#include <backendsCommon/WorkloadFactory.hpp>
+#include <backendsCommon/test/QuantizeHelper.hpp>
+
+#include <test/TensorHelpers.hpp>
+
+template<typename T>
+std::vector<LayerTestResult<T,3>> SplitterTestCommon(armnn::IWorkloadFactory& workloadFactory,
+ float qScale = 0.0f,
+ int32_t qOffset = 0)
+{
+ unsigned int inputWidth = 5;
+ unsigned int inputHeight = 6;
+ unsigned int inputChannels = 3;
+
+ // NOTE: Compute Library imposes a restriction that the x and y dimension (input height and width)
+ // cannot be split.
+ // For the reasons for this, see first comment on https://jira.arm.com/browse/IVGCVSW-1239
+ //
+ // This test has therefore been recast to split the channels, then split the resulting subtensor.
+
+ // To take channel 0 of original output
+ // and channel 0 and channel 1 of the split subtensor.
+ unsigned int outputWidth1 = inputWidth;
+ unsigned int outputHeight1 = inputHeight;
+ unsigned int outputChannels1 = 1;
+
+ // To take channel 1 and 2 of the original output.
+ unsigned int outputWidth2 = inputWidth;
+ unsigned int outputHeight2 = inputHeight;
+ unsigned int outputChannels2 = 2;
+
+
+ // Define the tensor descriptors.
+ armnn::TensorInfo inputTensorInfo({ inputChannels, inputHeight, inputWidth }, armnn::GetDataType<T>());
+
+ // Outputs of the original split.
+ armnn::TensorInfo outputTensorInfo1({ outputChannels1, outputHeight1, outputWidth1 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo2({ outputChannels2, outputHeight2, outputWidth2 }, armnn::GetDataType<T>());
+
+ // Outputs of the subsequent subtensor split.
+ armnn::TensorInfo outputTensorInfo3({ outputChannels1, outputHeight1, outputWidth1 }, armnn::GetDataType<T>());
+ armnn::TensorInfo outputTensorInfo4({ outputChannels1, outputHeight1, outputWidth1 }, armnn::GetDataType<T>());
+
+ // Set quantization parameters if the requested type is a quantized type.
+ // The quantization doesn't really matter as the splitter operator doesn't dequantize/quantize.
+ if(armnn::IsQuantizedType<T>())
+ {
+ inputTensorInfo.SetQuantizationScale(qScale);
+ inputTensorInfo.SetQuantizationOffset(qOffset);
+ outputTensorInfo1.SetQuantizationScale(qScale);
+ outputTensorInfo1.SetQuantizationOffset(qOffset);
+ outputTensorInfo2.SetQuantizationScale(qScale);
+ outputTensorInfo2.SetQuantizationOffset(qOffset);
+ outputTensorInfo3.SetQuantizationScale(qScale);
+ outputTensorInfo3.SetQuantizationOffset(qOffset);
+ outputTensorInfo4.SetQuantizationScale(qScale);
+ outputTensorInfo4.SetQuantizationOffset(qOffset);
+ }
+
+ LayerTestResult<T,3> ret1(outputTensorInfo1);
+ LayerTestResult<T,3> ret2(outputTensorInfo2);
+ LayerTestResult<T,3> ret3(outputTensorInfo3);
+ LayerTestResult<T,3> ret4(outputTensorInfo4);
+
+ auto input = MakeTensor<T, 3>(inputTensorInfo, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f,
+ 6.0f, 7.0f, 8.0f, 9.0f, 10.0f,
+ 11.0f, 12.0f, 13.0f, 14.0f, 15.0f,
+ 16.0f, 17.0f, 18.0f, 19.0f, 20.0f,
+ 21.0f, 22.0f, 23.0f, 24.0f, 25.0f,
+ 26.0f, 27.0f, 28.0f, 29.0f, 30.0f,
+
+ 31.0f, 32.0f, 33.0f, 34.0f, 35.0f,
+ 36.0f, 37.0f, 38.0f, 39.0f, 40.0f,
+ 41.0f, 42.0f, 43.0f, 44.0f, 45.0f,
+ 46.0f, 47.0f, 48.0f, 49.0f, 50.0f,
+ 51.0f, 52.0f, 53.0f, 54.0f, 55.0f,
+ 56.0f, 57.0f, 58.0f, 59.0f, 60.0f,
+
+ 61.0f, 62.0f, 63.0f, 64.0f, 65.0f,
+ 66.0f, 67.0f, 68.0f, 69.0f, 70.0f,
+ 71.0f, 72.0f, 73.0f, 74.0f, 75.0f,
+ 76.0f, 77.0f, 78.0f, 79.0f, 80.0f,
+ 81.0f, 82.0f, 83.0f, 84.0f, 85.0f,
+ 86.0f, 87.0f, 88.0f, 89.0f, 90.0f,
+ })
+ ));
+
+ // Channel 0 of the original input.
+ ret1.outputExpected = MakeTensor<T, 3>(outputTensorInfo1, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f,
+ 6.0f, 7.0f, 8.0f, 9.0f, 10.0f,
+ 11.0f, 12.0f, 13.0f, 14.0f, 15.0f,
+ 16.0f, 17.0f, 18.0f, 19.0f, 20.0f,
+ 21.0f, 22.0f, 23.0f, 24.0f, 25.0f,
+ 26.0f, 27.0f, 28.0f, 29.0f, 30.0f,
+ })
+ ));
+
+ // Channel 1 & 2 of the original input.
+ ret2.outputExpected = MakeTensor<T, 3>(outputTensorInfo2, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 31.0f, 32.0f, 33.0f, 34.0f, 35.0f,
+ 36.0f, 37.0f, 38.0f, 39.0f, 40.0f,
+ 41.0f, 42.0f, 43.0f, 44.0f, 45.0f,
+ 46.0f, 47.0f, 48.0f, 49.0f, 50.0f,
+ 51.0f, 52.0f, 53.0f, 54.0f, 55.0f,
+ 56.0f, 57.0f, 58.0f, 59.0f, 60.0f,
+
+ 61.0f, 62.0f, 63.0f, 64.0f, 65.0f,
+ 66.0f, 67.0f, 68.0f, 69.0f, 70.0f,
+ 71.0f, 72.0f, 73.0f, 74.0f, 75.0f,
+ 76.0f, 77.0f, 78.0f, 79.0f, 80.0f,
+ 81.0f, 82.0f, 83.0f, 84.0f, 85.0f,
+ 86.0f, 87.0f, 88.0f, 89.0f, 90.0f,
+ })
+ ));
+
+ // Channel 0 of return 2 (i.e. channels 1 and 2 of the original input).
+ ret3.outputExpected = MakeTensor<T, 3>(outputTensorInfo3, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 31.0f, 32.0f, 33.0f, 34.0f, 35.0f,
+ 36.0f, 37.0f, 38.0f, 39.0f, 40.0f,
+ 41.0f, 42.0f, 43.0f, 44.0f, 45.0f,
+ 46.0f, 47.0f, 48.0f, 49.0f, 50.0f,
+ 51.0f, 52.0f, 53.0f, 54.0f, 55.0f,
+ 56.0f, 57.0f, 58.0f, 59.0f, 60.0f,
+ })
+ ));
+
+ // Channel 1 of return 2.
+ ret4.outputExpected = MakeTensor<T, 3>(outputTensorInfo4, std::vector<T>(
+ QuantizedVector<T>(qScale, qOffset, {
+ 61.0f, 62.0f, 63.0f, 64.0f, 65.0f,
+ 66.0f, 67.0f, 68.0f, 69.0f, 70.0f,
+ 71.0f, 72.0f, 73.0f, 74.0f, 75.0f,
+ 76.0f, 77.0f, 78.0f, 79.0f, 80.0f,
+ 81.0f, 82.0f, 83.0f, 84.0f, 85.0f,
+ 86.0f, 87.0f, 88.0f, 89.0f, 90.0f,
+ })
+ ));
+
+ // NOTE: as a corollary of the splitting of x and y restriction the x and y values of the view origins
+ // have to be zero, the co-ordinates are as per the tensor info above channels, height/y, width/x
+ // note that under the hood the compute engine reverses these i.e. its coordinate system is x, y, channels.
+ std::vector<unsigned int> wOrigin1 = {0, 0, 0}; //Extent of the window is defined by size of output[0].
+ armnn::SplitterQueueDescriptor::ViewOrigin window1(wOrigin1);
+
+ std::vector<unsigned int> wOrigin2 = {1, 0, 0}; //Extent of the window is defined by size of output[1].
+ armnn::SplitterQueueDescriptor::ViewOrigin window2(wOrigin2);
+
+ std::vector<unsigned int> wOrigin3 = {0, 0, 0}; //Extent of the window is defined by size of output[2].
+ armnn::SplitterQueueDescriptor::ViewOrigin window3(wOrigin3);
+
+ std::vector<unsigned int> wOrigin4 = {1, 0, 0}; //Extent of the window is defined by size of output[3].
+ armnn::SplitterQueueDescriptor::ViewOrigin window4(wOrigin4);
+
+ bool subTensorsSupported = workloadFactory.SupportsSubTensors();
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(inputTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle1 =
+ subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*inputHandle, outputTensorInfo1.GetShape(), wOrigin1.data()) :
+ workloadFactory.CreateTensorHandle(outputTensorInfo1);
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle2 =
+ subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*inputHandle, outputTensorInfo2.GetShape(), wOrigin2.data()) :
+ workloadFactory.CreateTensorHandle(outputTensorInfo2);
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle3 =
+ subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*outputHandle2, outputTensorInfo3.GetShape(), wOrigin3.data()) :
+ workloadFactory.CreateTensorHandle(outputTensorInfo3);
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle4 =
+ subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*outputHandle2, outputTensorInfo4.GetShape(), wOrigin4.data()) :
+ workloadFactory.CreateTensorHandle(outputTensorInfo4);
+
+ // Do the first split
+ armnn::SplitterQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, outputTensorInfo1, outputHandle1.get());
+ AddOutputToWorkload(data, info, outputTensorInfo2, outputHandle2.get());
+
+ data.m_ViewOrigins.push_back(window1);
+ data.m_ViewOrigins.push_back(window2);
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateSplitter(data, info);
+
+ inputHandle->Allocate();
+ outputHandle1->Allocate();
+ outputHandle2->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0]);
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(&ret1.output[0][0][0], outputHandle1.get());
+ CopyDataFromITensorHandle(&ret2.output[0][0][0], outputHandle2.get());
+
+// // Do the second split.
+ armnn::SplitterQueueDescriptor data2;
+ armnn::WorkloadInfo info2;
+ AddInputToWorkload(data2, info2, outputTensorInfo2, outputHandle2.get());
+ AddOutputToWorkload(data2, info2, outputTensorInfo3, outputHandle3.get());
+ AddOutputToWorkload(data2, info2, outputTensorInfo4, outputHandle4.get());
+
+ data2.m_ViewOrigins.push_back(window3);
+ data2.m_ViewOrigins.push_back(window4);
+
+ std::unique_ptr<armnn::IWorkload> workload2 = workloadFactory.CreateSplitter(data2, info2);
+
+ outputHandle3->Allocate();
+ outputHandle4->Allocate();
+
+ workload2->Execute();
+
+ CopyDataFromITensorHandle(&ret3.output[0][0][0], outputHandle3.get());
+ CopyDataFromITensorHandle(&ret4.output[0][0][0], outputHandle4.get());
+
+ std::vector<LayerTestResult<T,3>> ret = {ret1, ret2, ret3, ret4,};
+
+ return ret;
+}
+
+
+template <typename T>
+LayerTestResult<T, 3> CopyViaSplitterTestImpl(armnn::IWorkloadFactory& workloadFactory, float qScale, int32_t qOffset)
+{
+ const armnn::TensorInfo tensorInfo({ 3, 6, 5 }, armnn::GetDataType<T>());
+ auto input = MakeTensor<T, 3>(tensorInfo, QuantizedVector<T>(qScale, qOffset,
+ {
+ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f,
+ 6.0f, 7.0f, 8.0f, 9.0f, 10.0f,
+ 11.0f, 12.0f, 13.0f, 14.0f, 15.0f,
+ 16.0f, 17.0f, 18.0f, 19.0f, 20.0f,
+ 21.0f, 22.0f, 23.0f, 24.0f, 25.0f,
+ 26.0f, 27.0f, 28.0f, 29.0f, 30.0f,
+
+ 31.0f, 32.0f, 33.0f, 34.0f, 35.0f,
+ 36.0f, 37.0f, 38.0f, 39.0f, 40.0f,
+ 41.0f, 42.0f, 43.0f, 44.0f, 45.0f,
+ 46.0f, 47.0f, 48.0f, 49.0f, 50.0f,
+ 51.0f, 52.0f, 53.0f, 54.0f, 55.0f,
+ 56.0f, 57.0f, 58.0f, 59.0f, 60.0f,
+
+ 61.0f, 62.0f, 63.0f, 64.0f, 65.0f,
+ 66.0f, 67.0f, 68.0f, 69.0f, 70.0f,
+ 71.0f, 72.0f, 73.0f, 74.0f, 75.0f,
+ 76.0f, 77.0f, 78.0f, 79.0f, 80.0f,
+ 81.0f, 82.0f, 83.0f, 84.0f, 85.0f,
+ 86.0f, 87.0f, 88.0f, 89.0f, 90.0f,
+ }));
+
+ std::vector<unsigned int> origin = { 0, 0, 0 };
+ armnn::SplitterQueueDescriptor::ViewOrigin window(origin);
+
+ const bool subTensorsSupported = workloadFactory.SupportsSubTensors();
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = workloadFactory.CreateTensorHandle(tensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle =
+ subTensorsSupported ?
+ workloadFactory.CreateSubTensorHandle(*inputHandle, tensorInfo.GetShape(), origin.data()) :
+ workloadFactory.CreateTensorHandle(tensorInfo);
+
+ armnn::SplitterQueueDescriptor data;
+ armnn::WorkloadInfo info;
+ AddInputToWorkload(data, info, tensorInfo, inputHandle.get());
+ AddOutputToWorkload(data, info, tensorInfo, outputHandle.get());
+
+ data.m_ViewOrigins.push_back(window);
+
+ std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateSplitter(data, info);
+
+ inputHandle->Allocate();
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), &input[0][0][0]);
+
+ workload->Execute();
+
+ LayerTestResult<T, 3> ret(tensorInfo);
+ CopyDataFromITensorHandle(&ret.output[0][0][0], outputHandle.get());
+ ret.outputExpected = input;
+
+ return ret;
+}
diff --git a/src/backends/backendsCommon/test/TensorCopyUtils.cpp b/src/backends/backendsCommon/test/TensorCopyUtils.cpp
new file mode 100644
index 0000000000..acc28c9c03
--- /dev/null
+++ b/src/backends/backendsCommon/test/TensorCopyUtils.cpp
@@ -0,0 +1,161 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include "TensorCopyUtils.hpp"
+
+#include <Half.hpp>
+
+#ifdef ARMCOMPUTECL_ENABLED
+#include <cl/ClTensorHandle.hpp>
+#endif
+
+#if ARMCOMPUTENEON_ENABLED
+#include <neon/NeonTensorHandle.hpp>
+#endif
+
+#if ARMCOMPUTECLENABLED || ARMCOMPUTENEON_ENABLED
+#include <aclCommon/ArmComputeTensorUtils.hpp>
+#endif
+
+#include <backendsCommon/CpuTensorHandle.hpp>
+
+#include <boost/cast.hpp>
+
+#include <algorithm>
+#include <cstring>
+
+void CopyDataToITensorHandle(armnn::ITensorHandle* tensorHandle, const void* mem)
+{
+ switch (tensorHandle->GetType())
+ {
+ case armnn::ITensorHandle::Cpu:
+ {
+ auto handle = boost::polymorphic_downcast<armnn::ScopedCpuTensorHandle*>(tensorHandle);
+ memcpy(handle->GetTensor<void>(), mem, handle->GetTensorInfo().GetNumBytes());
+ break;
+ }
+#ifdef ARMCOMPUTECL_ENABLED
+ case armnn::ITensorHandle::CL:
+ {
+ using armnn::armcomputetensorutils::CopyArmComputeITensorData;
+ auto handle = boost::polymorphic_downcast<armnn::IClTensorHandle*>(tensorHandle);
+ handle->Map(true);
+ switch(handle->GetDataType())
+ {
+ case arm_compute::DataType::F32:
+ CopyArmComputeITensorData(static_cast<const float*>(mem), handle->GetTensor());
+ break;
+ case arm_compute::DataType::QASYMM8:
+ CopyArmComputeITensorData(static_cast<const uint8_t*>(mem), handle->GetTensor());
+ break;
+ case arm_compute::DataType::F16:
+ CopyArmComputeITensorData(static_cast<const armnn::Half*>(mem), handle->GetTensor());
+ break;
+ default:
+ {
+ throw armnn::UnimplementedException();
+ }
+ }
+ handle->Unmap();
+ break;
+ }
+#endif
+#if ARMCOMPUTENEON_ENABLED
+ case armnn::ITensorHandle::Neon:
+ {
+ using armnn::armcomputetensorutils::CopyArmComputeITensorData;
+ auto handle = boost::polymorphic_downcast<armnn::INeonTensorHandle*>(tensorHandle);
+ switch (handle->GetDataType())
+ {
+ case arm_compute::DataType::F32:
+ CopyArmComputeITensorData(static_cast<const float*>(mem), handle->GetTensor());
+ break;
+ case arm_compute::DataType::QASYMM8:
+ CopyArmComputeITensorData(static_cast<const uint8_t*>(mem), handle->GetTensor());
+ break;
+ default:
+ {
+ throw armnn::UnimplementedException();
+ }
+ }
+ break;
+ }
+#endif
+ default:
+ {
+ throw armnn::UnimplementedException();
+ }
+ }
+}
+
+void CopyDataFromITensorHandle(void* mem, const armnn::ITensorHandle* tensorHandle)
+{
+ switch (tensorHandle->GetType())
+ {
+ case armnn::ITensorHandle::Cpu:
+ {
+ auto handle = boost::polymorphic_downcast<const armnn::ScopedCpuTensorHandle*>(tensorHandle);
+ memcpy(mem, handle->GetTensor<void>(), handle->GetTensorInfo().GetNumBytes());
+ break;
+ }
+#ifdef ARMCOMPUTECL_ENABLED
+ case armnn::ITensorHandle::CL:
+ {
+ using armnn::armcomputetensorutils::CopyArmComputeITensorData;
+ auto handle = boost::polymorphic_downcast<const armnn::IClTensorHandle*>(tensorHandle);
+ const_cast<armnn::IClTensorHandle*>(handle)->Map(true);
+ switch(handle->GetDataType())
+ {
+ case arm_compute::DataType::F32:
+ CopyArmComputeITensorData(handle->GetTensor(), static_cast<float*>(mem));
+ break;
+ case arm_compute::DataType::QASYMM8:
+ CopyArmComputeITensorData(handle->GetTensor(), static_cast<uint8_t*>(mem));
+ break;
+ case arm_compute::DataType::F16:
+ CopyArmComputeITensorData(handle->GetTensor(), static_cast<armnn::Half*>(mem));
+ break;
+ default:
+ {
+ throw armnn::UnimplementedException();
+ }
+ }
+ const_cast<armnn::IClTensorHandle*>(handle)->Unmap();
+ break;
+ }
+#endif
+#if ARMCOMPUTENEON_ENABLED
+ case armnn::ITensorHandle::Neon:
+ {
+ using armnn::armcomputetensorutils::CopyArmComputeITensorData;
+ auto handle = boost::polymorphic_downcast<const armnn::INeonTensorHandle*>(tensorHandle);
+ switch (handle->GetDataType())
+ {
+ case arm_compute::DataType::F32:
+ CopyArmComputeITensorData(handle->GetTensor(), static_cast<float*>(mem));
+ break;
+ case arm_compute::DataType::QASYMM8:
+ CopyArmComputeITensorData(handle->GetTensor(), static_cast<uint8_t*>(mem));
+ break;
+ default:
+ {
+ throw armnn::UnimplementedException();
+ }
+ }
+ break;
+ }
+#endif
+ default:
+ {
+ throw armnn::UnimplementedException();
+ }
+ }
+}
+
+void AllocateAndCopyDataToITensorHandle(armnn::ITensorHandle* tensorHandle, const void* mem)
+{
+ tensorHandle->Allocate();
+ CopyDataToITensorHandle(tensorHandle, mem);
+}
diff --git a/src/backends/backendsCommon/test/TensorCopyUtils.hpp b/src/backends/backendsCommon/test/TensorCopyUtils.hpp
new file mode 100644
index 0000000000..2187523edb
--- /dev/null
+++ b/src/backends/backendsCommon/test/TensorCopyUtils.hpp
@@ -0,0 +1,15 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/Tensor.hpp>
+
+#include <backendsCommon/ITensorHandle.hpp>
+
+void CopyDataToITensorHandle(armnn::ITensorHandle* tensorHandle, const void* mem);
+
+void CopyDataFromITensorHandle(void* mem, const armnn::ITensorHandle* tensorHandle);
+
+void AllocateAndCopyDataToITensorHandle(armnn::ITensorHandle* tensorHandle, const void* mem); \ No newline at end of file
diff --git a/src/backends/backendsCommon/test/WorkloadDataValidation.cpp b/src/backends/backendsCommon/test/WorkloadDataValidation.cpp
new file mode 100644
index 0000000000..3664d56c28
--- /dev/null
+++ b/src/backends/backendsCommon/test/WorkloadDataValidation.cpp
@@ -0,0 +1,474 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include "WorkloadTestUtils.hpp"
+
+#include <armnn/Exceptions.hpp>
+
+#include <backendsCommon/CpuTensorHandle.hpp>
+#include <backendsCommon/Workload.hpp>
+
+#include <reference/workloads/RefWorkloads.hpp>
+#include <reference/RefWorkloadFactory.hpp>
+
+#include <boost/test/unit_test.hpp>
+
+using namespace armnn;
+
+BOOST_AUTO_TEST_SUITE(WorkloadInfoValidation)
+
+
+
+BOOST_AUTO_TEST_CASE(QueueDescriptor_Validate_WrongNumOfInputsOutputs)
+{
+ InputQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+ //Invalid argument exception is expected, because no inputs and no outputs were defined.
+ BOOST_CHECK_THROW(RefWorkloadFactory().CreateInput(invalidData, invalidInfo), armnn::InvalidArgumentException);
+}
+
+BOOST_AUTO_TEST_CASE(RefPooling2dFloat32Workload_Validate_WrongDimTensor)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = {2, 3, 4}; // <- Invalid - input tensor has to be 4D.
+ unsigned int outputShape[] = {2, 3, 4, 5};
+
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+ inputTensorInfo = armnn::TensorInfo(3, inputShape, armnn::DataType::Float32);
+
+ Pooling2dQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+ AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
+
+ // Invalid argument exception is expected, input tensor has to be 4D.
+ BOOST_CHECK_THROW(RefPooling2dFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+}
+
+BOOST_AUTO_TEST_CASE(SoftmaxQueueDescriptor_Validate_WrongInputHeight)
+{
+ unsigned int inputHeight = 1;
+ unsigned int inputWidth = 1;
+ unsigned int inputChannels = 4;
+ unsigned int inputNum = 2;
+
+ unsigned int outputChannels = inputChannels;
+ unsigned int outputHeight = inputHeight + 1; //Makes data invalid - Softmax expects height and width to be 1.
+ unsigned int outputWidth = inputWidth;
+ unsigned int outputNum = inputNum;
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { inputNum, inputChannels, inputHeight, inputWidth };
+ unsigned int outputShape[] = { outputNum, outputChannels, outputHeight, outputWidth };
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ SoftmaxQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+
+ //Invalid argument exception is expected, because height != 1.
+ BOOST_CHECK_THROW(RefSoftmaxFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+}
+
+BOOST_AUTO_TEST_CASE(FullyConnectedQueueDescriptor_Validate_RequiredDataMissing)
+{
+ unsigned int inputWidth = 1;
+ unsigned int inputHeight = 1;
+ unsigned int inputChannels = 5;
+ unsigned int inputNum = 2;
+
+ unsigned int outputWidth = 1;
+ unsigned int outputHeight = 1;
+ unsigned int outputChannels = 3;
+ unsigned int outputNum = 2;
+
+ // Define the tensor descriptors.
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+ armnn::TensorInfo weightsDesc;
+ armnn::TensorInfo biasesDesc;
+
+ unsigned int inputShape[] = { inputNum, inputChannels, inputHeight, inputWidth };
+ unsigned int outputShape[] = { outputNum, outputChannels, outputHeight, outputWidth };
+ unsigned int weightsShape[] = { 1, 1, inputChannels, outputChannels };
+ unsigned int biasShape[] = { 1, outputChannels, outputHeight, outputWidth };
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+ weightsDesc = armnn::TensorInfo(4, weightsShape, armnn::DataType::Float32);
+ biasesDesc = armnn::TensorInfo(4, biasShape, armnn::DataType::Float32);
+
+ FullyConnectedQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ ScopedCpuTensorHandle weightTensor(weightsDesc);
+ ScopedCpuTensorHandle biasTensor(biasesDesc);
+
+ AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+ invalidData.m_Weight = &weightTensor;
+ invalidData.m_Bias = &biasTensor;
+ invalidData.m_Parameters.m_BiasEnabled = true;
+ invalidData.m_Parameters.m_TransposeWeightMatrix = false;
+
+
+ //Invalid argument exception is expected, because not all required fields have been provided.
+ //In particular inputsData[0], outputsData[0] and weightsData can not be null.
+ BOOST_CHECK_THROW(RefFullyConnectedFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+}
+
+
+BOOST_AUTO_TEST_CASE(NormalizationQueueDescriptor_Validate_WrongInputHeight)
+{
+ constexpr unsigned int inputNum = 5;
+ constexpr unsigned int inputHeight = 32;
+ constexpr unsigned int inputWidth = 24;
+ constexpr unsigned int inputChannels = 3;
+
+ constexpr unsigned int outputNum = inputNum;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputHeight = inputHeight + 1; //Makes data invalid - normalization requires.
+ //Input and output to have the same dimensions.
+ constexpr unsigned int outputWidth = inputWidth;
+
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = {inputNum, inputChannels, inputHeight, inputWidth};
+ unsigned int outputShape[] = {outputNum, outputChannels, outputHeight, outputWidth};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+
+ armnn::NormalizationAlgorithmMethod normMethod = armnn::NormalizationAlgorithmMethod::LocalBrightness;
+ armnn::NormalizationAlgorithmChannel normChannel = armnn::NormalizationAlgorithmChannel::Across;
+ float alpha = 1.f;
+ float beta = 1.f;
+ float kappa = 1.f;
+ uint32_t normSize = 5;
+
+ NormalizationQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+ invalidData.m_Parameters.m_NormChannelType = normChannel;
+ invalidData.m_Parameters.m_NormMethodType = normMethod;
+ invalidData.m_Parameters.m_NormSize = normSize;
+ invalidData.m_Parameters.m_Alpha = alpha;
+ invalidData.m_Parameters.m_Beta = beta;
+ invalidData.m_Parameters.m_K = kappa;
+
+ //Invalid argument exception is expected, because input height != output height.
+ BOOST_CHECK_THROW(RefNormalizationFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+}
+
+BOOST_AUTO_TEST_CASE(SplitterQueueDescriptor_Validate_WrongWindow)
+{
+ constexpr unsigned int inputNum = 1;
+ constexpr unsigned int inputHeight = 32;
+ constexpr unsigned int inputWidth = 24;
+ constexpr unsigned int inputChannels = 3;
+
+ constexpr unsigned int outputNum = inputNum;
+ constexpr unsigned int outputChannels = inputChannels;
+ constexpr unsigned int outputHeight = 18;
+ constexpr unsigned int outputWidth = inputWidth;
+
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = {inputNum, inputChannels, inputHeight, inputWidth};
+ unsigned int outputShape[] = {outputNum, outputChannels, outputHeight, outputWidth};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ SplitterQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+
+ // Invalid, since it has only 3 dimensions while the input tensor is 4d.
+ std::vector<unsigned int> wOrigin = {0, 0, 0};
+ armnn::SplitterQueueDescriptor::ViewOrigin window(wOrigin);
+ invalidData.m_ViewOrigins.push_back(window);
+
+ BOOST_TEST_INFO("Invalid argument exception is expected, because split window dimensionality does not "
+ "match input.");
+ BOOST_CHECK_THROW(RefSplitterFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+
+ // Invalid, since window extends past the boundary of input tensor.
+ std::vector<unsigned int> wOrigin3 = {0, 0, 15, 0};
+ armnn::SplitterQueueDescriptor::ViewOrigin window3(wOrigin3);
+ invalidData.m_ViewOrigins[0] = window3;
+ BOOST_TEST_INFO("Invalid argument exception is expected (wOrigin3[2]+ outputHeight > inputHeight");
+ BOOST_CHECK_THROW(RefSplitterFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+
+
+ std::vector<unsigned int> wOrigin4 = {0, 0, 0, 0};
+ armnn::SplitterQueueDescriptor::ViewOrigin window4(wOrigin4);
+ invalidData.m_ViewOrigins[0] = window4;
+
+ std::vector<unsigned int> wOrigin5 = {1, 16, 20, 2};
+ armnn::SplitterQueueDescriptor::ViewOrigin window5(wOrigin4);
+ invalidData.m_ViewOrigins.push_back(window5);
+
+ BOOST_TEST_INFO("Invalid exception due to number of split windows not matching number of outputs.");
+ BOOST_CHECK_THROW(RefSplitterFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+}
+
+
+BOOST_AUTO_TEST_CASE(MergerQueueDescriptor_Validate_WrongWindow)
+{
+ constexpr unsigned int inputNum = 1;
+ constexpr unsigned int inputChannels = 3;
+ constexpr unsigned int inputHeight = 32;
+ constexpr unsigned int inputWidth = 24;
+
+ constexpr unsigned int outputNum = 1;
+ constexpr unsigned int outputChannels = 3;
+ constexpr unsigned int outputHeight = 32;
+ constexpr unsigned int outputWidth = 24;
+
+
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = {inputNum, inputChannels, inputHeight, inputWidth};
+ unsigned int outputShape[] = {outputNum, outputChannels, outputHeight, outputWidth};
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ MergerQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+
+ // Invalid, since it has only 3 dimensions while the input tensor is 4d.
+ std::vector<unsigned int> wOrigin = {0, 0, 0};
+ armnn::MergerQueueDescriptor::ViewOrigin window(wOrigin);
+ invalidData.m_ViewOrigins.push_back(window);
+
+ BOOST_TEST_INFO("Invalid argument exception is expected, because merge window dimensionality does not "
+ "match input.");
+ BOOST_CHECK_THROW(RefMergerFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+
+ // Invalid, since window extends past the boundary of output tensor.
+ std::vector<unsigned int> wOrigin3 = {0, 0, 15, 0};
+ armnn::MergerQueueDescriptor::ViewOrigin window3(wOrigin3);
+ invalidData.m_ViewOrigins[0] = window3;
+ BOOST_TEST_INFO("Invalid argument exception is expected (wOrigin3[2]+ inputHeight > outputHeight");
+ BOOST_CHECK_THROW(RefMergerFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+
+
+ std::vector<unsigned int> wOrigin4 = {0, 0, 0, 0};
+ armnn::MergerQueueDescriptor::ViewOrigin window4(wOrigin4);
+ invalidData.m_ViewOrigins[0] = window4;
+
+ std::vector<unsigned int> wOrigin5 = {1, 16, 20, 2};
+ armnn::MergerQueueDescriptor::ViewOrigin window5(wOrigin4);
+ invalidData.m_ViewOrigins.push_back(window5);
+
+ BOOST_TEST_INFO("Invalid exception due to number of merge windows not matching number of inputs.");
+ BOOST_CHECK_THROW(RefMergerFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+}
+
+BOOST_AUTO_TEST_CASE(AdditionQueueDescriptor_Validate_InputNumbers)
+{
+ armnn::TensorInfo input1TensorInfo;
+ armnn::TensorInfo input2TensorInfo;
+ armnn::TensorInfo input3TensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int shape[] = {1, 1, 1, 1};
+
+ input1TensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ input2TensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ input3TensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, shape, armnn::DataType::Float32);
+
+ AdditionQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, input1TensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+
+ // Too few inputs.
+ BOOST_CHECK_THROW(RefAdditionFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+
+ AddInputToWorkload(invalidData, invalidInfo, input2TensorInfo, nullptr);
+
+ // Correct.
+ BOOST_CHECK_NO_THROW(RefAdditionFloat32Workload(invalidData, invalidInfo));
+
+ AddInputToWorkload(invalidData, invalidInfo, input3TensorInfo, nullptr);
+
+ // Too many inputs.
+ BOOST_CHECK_THROW(RefAdditionFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+}
+
+BOOST_AUTO_TEST_CASE(AdditionQueueDescriptor_Validate_InputShapes)
+{
+ armnn::TensorInfo input1TensorInfo;
+ armnn::TensorInfo input2TensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int shape1[] = {1, 1, 2, 1};
+ unsigned int shape2[] = {1, 1, 3, 2};
+
+ // Incompatible shapes even with broadcasting.
+ {
+ input1TensorInfo = armnn::TensorInfo(4, shape1, armnn::DataType::Float32);
+ input2TensorInfo = armnn::TensorInfo(4, shape2, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, shape1, armnn::DataType::Float32);
+
+ AdditionQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, input1TensorInfo, nullptr);
+ AddInputToWorkload(invalidData, invalidInfo, input2TensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+
+ BOOST_CHECK_THROW(RefAdditionFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+ }
+
+ // Output size not compatible with input sizes.
+ {
+ input1TensorInfo = armnn::TensorInfo(4, shape1, armnn::DataType::Float32);
+ input2TensorInfo = armnn::TensorInfo(4, shape1, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, shape2, armnn::DataType::Float32);
+
+ AdditionQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, input1TensorInfo, nullptr);
+ AddInputToWorkload(invalidData, invalidInfo, input2TensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+
+ // Output differs.
+ BOOST_CHECK_THROW(RefAdditionFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+ }
+}
+
+BOOST_AUTO_TEST_CASE(MultiplicationQueueDescriptor_Validate_InputTensorDimensionMismatch)
+{
+ armnn::TensorInfo input0TensorInfo;
+ armnn::TensorInfo input1TensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ constexpr unsigned int input0Shape[] = { 2, 2, 4, 4 };
+ constexpr std::size_t dimensionCount = std::extent<decltype(input0Shape)>::value;
+
+ // Checks dimension consistency for input tensors.
+ for (unsigned int dimIndex = 0; dimIndex < dimensionCount; ++dimIndex)
+ {
+ unsigned int input1Shape[dimensionCount];
+ for (unsigned int i = 0; i < dimensionCount; ++i)
+ {
+ input1Shape[i] = input0Shape[i];
+ }
+
+ ++input1Shape[dimIndex];
+
+ input0TensorInfo = armnn::TensorInfo(dimensionCount, input0Shape, armnn::DataType::Float32);
+ input1TensorInfo = armnn::TensorInfo(dimensionCount, input1Shape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(dimensionCount, input0Shape, armnn::DataType::Float32);
+
+ MultiplicationQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+ AddInputToWorkload(invalidData, invalidInfo, input0TensorInfo, nullptr);
+ AddInputToWorkload(invalidData, invalidInfo, input1TensorInfo, nullptr);
+
+ BOOST_CHECK_THROW(RefMultiplicationFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+ }
+
+ // Checks dimension consistency for input and output tensors.
+ for (unsigned int dimIndex = 0; dimIndex < dimensionCount; ++dimIndex)
+ {
+ unsigned int outputShape[dimensionCount];
+ for (unsigned int i = 0; i < dimensionCount; ++i)
+ {
+ outputShape[i] = input0Shape[i];
+ }
+
+ ++outputShape[dimIndex];
+
+ input0TensorInfo = armnn::TensorInfo(dimensionCount, input0Shape, armnn::DataType::Float32);
+ input1TensorInfo = armnn::TensorInfo(dimensionCount, input0Shape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(dimensionCount, outputShape, armnn::DataType::Float32);
+
+ MultiplicationQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+ AddInputToWorkload(invalidData, invalidInfo, input0TensorInfo, nullptr);
+ AddInputToWorkload(invalidData, invalidInfo, input1TensorInfo, nullptr);
+
+ BOOST_CHECK_THROW(RefMultiplicationFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+ }
+}
+
+BOOST_AUTO_TEST_CASE(ReshapeQueueDescriptor_Validate_MismatchingNumElements)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ // The input and output shapes should have the same number of elements, but these don't.
+ unsigned int inputShape[] = { 1, 1, 2, 3 };
+ unsigned int outputShape[] = { 1, 1, 1, 2 };
+
+ inputTensorInfo = armnn::TensorInfo(4, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(4, outputShape, armnn::DataType::Float32);
+
+ ReshapeQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+
+ // InvalidArgumentException is expected, because the number of elements don't match.
+ BOOST_CHECK_THROW(RefReshapeFloat32Workload(invalidData, invalidInfo), armnn::InvalidArgumentException);
+}
+
+
+BOOST_AUTO_TEST_CASE(LstmQueueDescriptor_Validate)
+{
+ armnn::TensorInfo inputTensorInfo;
+ armnn::TensorInfo outputTensorInfo;
+
+ unsigned int inputShape[] = { 1, 2 };
+ unsigned int outputShape[] = { 1 };
+
+ inputTensorInfo = armnn::TensorInfo(2, inputShape, armnn::DataType::Float32);
+ outputTensorInfo = armnn::TensorInfo(1, outputShape, armnn::DataType::Float32);
+
+ LstmQueueDescriptor invalidData;
+ WorkloadInfo invalidInfo;
+
+ AddInputToWorkload(invalidData, invalidInfo, inputTensorInfo, nullptr);
+ AddOutputToWorkload(invalidData, invalidInfo, outputTensorInfo, nullptr);
+
+ BOOST_CHECK_THROW(invalidData.Validate(invalidInfo), armnn::InvalidArgumentException);
+}
+
+BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/backends/backendsCommon/test/WorkloadTestUtils.hpp b/src/backends/backendsCommon/test/WorkloadTestUtils.hpp
new file mode 100644
index 0000000000..05f6dde35f
--- /dev/null
+++ b/src/backends/backendsCommon/test/WorkloadTestUtils.hpp
@@ -0,0 +1,56 @@
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+#pragma once
+
+#include <armnn/Tensor.hpp>
+
+#include <backendsCommon/WorkloadInfo.hpp>
+
+namespace armnn
+{
+class ITensorHandle;
+}
+
+template <typename QueueDescriptor>
+void AddInputToWorkload(QueueDescriptor& descriptor,
+ armnn::WorkloadInfo& info,
+ const armnn::TensorInfo& tensorInfo,
+ armnn::ITensorHandle* tensorHandle)
+{
+ descriptor.m_Inputs.push_back(tensorHandle);
+ info.m_InputTensorInfos.push_back(tensorInfo);
+}
+
+template <typename QueueDescriptor>
+void AddOutputToWorkload(QueueDescriptor& descriptor,
+ armnn::WorkloadInfo& info,
+ const armnn::TensorInfo& tensorInfo,
+ armnn::ITensorHandle* tensorHandle)
+{
+ descriptor.m_Outputs.push_back(tensorHandle);
+ info.m_OutputTensorInfos.push_back(tensorInfo);
+}
+
+template <typename QueueDescriptor>
+void SetWorkloadInput(QueueDescriptor& descriptor,
+ armnn::WorkloadInfo& info,
+ unsigned int index,
+ const armnn::TensorInfo& tensorInfo,
+ armnn::ITensorHandle* tensorHandle)
+{
+ descriptor.m_Inputs[index] = tensorHandle;
+ info.m_InputTensorInfos[index] = tensorInfo;
+}
+
+template <typename QueueDescriptor>
+void SetWorkloadOutput(QueueDescriptor& descriptor,
+ armnn::WorkloadInfo& info,
+ unsigned int index,
+ const armnn::TensorInfo& tensorInfo,
+ armnn::ITensorHandle* tensorHandle)
+{
+ descriptor.m_Outputs[index] = tensorHandle;
+ info.m_OutputTensorInfos[index] = tensorInfo;
+} \ No newline at end of file