aboutsummaryrefslogtreecommitdiff
path: root/python/pyarmnn/examples/speech_recognition/preprocess.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/pyarmnn/examples/speech_recognition/preprocess.py')
-rw-r--r--python/pyarmnn/examples/speech_recognition/preprocess.py260
1 files changed, 0 insertions, 260 deletions
diff --git a/python/pyarmnn/examples/speech_recognition/preprocess.py b/python/pyarmnn/examples/speech_recognition/preprocess.py
deleted file mode 100644
index 553ddba5de..0000000000
--- a/python/pyarmnn/examples/speech_recognition/preprocess.py
+++ /dev/null
@@ -1,260 +0,0 @@
-# Copyright © 2020 Arm Ltd and Contributors. All rights reserved.
-# SPDX-License-Identifier: MIT
-
-"""Class used to extract the Mel-frequency cepstral coefficients from a given audio frame."""
-
-import numpy as np
-
-
-class MFCCParams:
- def __init__(self, sampling_freq, num_fbank_bins,
- mel_lo_freq, mel_hi_freq, num_mfcc_feats, frame_len, use_htk_method, n_FFT):
- self.sampling_freq = sampling_freq
- self.num_fbank_bins = num_fbank_bins
- self.mel_lo_freq = mel_lo_freq
- self.mel_hi_freq = mel_hi_freq
- self.num_mfcc_feats = num_mfcc_feats
- self.frame_len = frame_len
- self.use_htk_method = use_htk_method
- self.n_FFT = n_FFT
-
-
-class MFCC:
-
- def __init__(self, mfcc_params):
- self.mfcc_params = mfcc_params
- self.FREQ_STEP = 200.0 / 3
- self.MIN_LOG_HZ = 1000.0
- self.MIN_LOG_MEL = self.MIN_LOG_HZ / self.FREQ_STEP
- self.LOG_STEP = 1.8562979903656 / 27.0
- self.__frame_len_padded = int(2 ** (np.ceil((np.log(self.mfcc_params.frame_len) / np.log(2.0)))))
- self.__filter_bank_initialised = False
- self.__frame = np.zeros(self.__frame_len_padded)
- self.__buffer = np.zeros(self.__frame_len_padded)
- self.__filter_bank_filter_first = np.zeros(self.mfcc_params.num_fbank_bins)
- self.__filter_bank_filter_last = np.zeros(self.mfcc_params.num_fbank_bins)
- self.__mel_energies = np.zeros(self.mfcc_params.num_fbank_bins)
- self.__dct_matrix = self.create_dct_matrix(self.mfcc_params.num_fbank_bins, self.mfcc_params.num_mfcc_feats)
- self.__mel_filter_bank = self.create_mel_filter_bank()
- self.__np_mel_bank = np.zeros([self.mfcc_params.num_fbank_bins, int(self.mfcc_params.n_FFT / 2) + 1])
-
- for i in range(self.mfcc_params.num_fbank_bins):
- k = 0
- for j in range(int(self.__filter_bank_filter_first[i]), int(self.__filter_bank_filter_last[i]) + 1):
- self.__np_mel_bank[i, j] = self.__mel_filter_bank[i][k]
- k += 1
-
- def mel_scale(self, freq, use_htk_method):
- """
- Gets the mel scale for a particular sample frequency.
-
- Args:
- freq: The sampling frequency.
- use_htk_method: Boolean to set whether to use HTK method or not.
-
- Returns:
- the mel scale
- """
- if use_htk_method:
- return 1127.0 * np.log(1.0 + freq / 700.0)
- else:
- mel = freq / self.FREQ_STEP
-
- if freq >= self.MIN_LOG_HZ:
- mel = self.MIN_LOG_MEL + np.log(freq / self.MIN_LOG_HZ) / self.LOG_STEP
- return mel
-
- def inv_mel_scale(self, mel_freq, use_htk_method):
- """
- Gets the sample frequency for a particular mel.
-
- Args:
- mel_freq: The mel frequency.
- use_htk_method: Boolean to set whether to use HTK method or not.
-
- Returns:
- the sample frequency
- """
- if use_htk_method:
- return 700.0 * (np.exp(mel_freq / 1127.0) - 1.0)
- else:
- freq = self.FREQ_STEP * mel_freq
-
- if mel_freq >= self.MIN_LOG_MEL:
- freq = self.MIN_LOG_HZ * np.exp(self.LOG_STEP * (mel_freq - self.MIN_LOG_MEL))
- return freq
-
- def mfcc_compute(self, audio_data):
- """
- Extracts the MFCC for a single frame.
-
- Args:
- audio_data: The audio data to process.
-
- Returns:
- the MFCC features
- """
- if len(audio_data) != self.mfcc_params.frame_len:
- raise ValueError(
- f"audio_data buffer size {len(audio_data)} does not match the frame length {self.mfcc_params.frame_len}")
-
- audio_data = np.array(audio_data)
- spec = np.abs(np.fft.rfft(np.hanning(self.mfcc_params.n_FFT + 1)[0:self.mfcc_params.n_FFT] * audio_data,
- self.mfcc_params.n_FFT)) ** 2
- mel_energy = np.dot(self.__np_mel_bank.astype(np.float32),
- np.transpose(spec).astype(np.float32))
-
- mel_energy += 1e-10
- log_mel_energy = 10.0 * np.log10(mel_energy)
- top_db = 80.0
-
- log_mel_energy = np.maximum(log_mel_energy, log_mel_energy.max() - top_db)
-
- mfcc_feats = np.dot(self.__dct_matrix, log_mel_energy)
-
- return mfcc_feats
-
- def create_dct_matrix(self, num_fbank_bins, num_mfcc_feats):
- """
- Creates the Discrete Cosine Transform matrix to be used in the compute function.
-
- Args:
- num_fbank_bins: The number of filter bank bins
- num_mfcc_feats: the number of MFCC features
-
- Returns:
- the DCT matrix
- """
- dct_m = np.zeros(num_fbank_bins * num_mfcc_feats)
- for k in range(num_mfcc_feats):
- for n in range(num_fbank_bins):
- if k == 0:
- dct_m[(k * num_fbank_bins) + n] = 2 * np.sqrt(1 / (4 * num_fbank_bins)) * np.cos(
- (np.pi / num_fbank_bins) * (n + 0.5) * k)
- else:
- dct_m[(k * num_fbank_bins) + n] = 2 * np.sqrt(1 / (2 * num_fbank_bins)) * np.cos(
- (np.pi / num_fbank_bins) * (n + 0.5) * k)
-
- dct_m = np.reshape(dct_m, [self.mfcc_params.num_mfcc_feats, self.mfcc_params.num_fbank_bins])
- return dct_m
-
- def create_mel_filter_bank(self):
- """
- Creates the Mel filter bank.
-
- Returns:
- the mel filter bank
- """
- num_fft_bins = int(self.__frame_len_padded / 2)
- fft_bin_width = self.mfcc_params.sampling_freq / self.__frame_len_padded
-
- mel_low_freq = self.mel_scale(self.mfcc_params.mel_lo_freq, False)
- mel_high_freq = self.mel_scale(self.mfcc_params.mel_hi_freq, False)
- mel_freq_delta = (mel_high_freq - mel_low_freq) / (self.mfcc_params.num_fbank_bins + 1)
-
- this_bin = np.zeros(num_fft_bins)
- mel_fbank = [0] * self.mfcc_params.num_fbank_bins
-
- for bin_num in range(self.mfcc_params.num_fbank_bins):
- left_mel = mel_low_freq + bin_num * mel_freq_delta
- center_mel = mel_low_freq + (bin_num + 1) * mel_freq_delta
- right_mel = mel_low_freq + (bin_num + 2) * mel_freq_delta
- first_index = last_index = -1
-
- for i in range(num_fft_bins):
- freq = (fft_bin_width * i)
- mel = self.mel_scale(freq, False)
- this_bin[i] = 0.0
-
- if (mel > left_mel) and (mel < right_mel):
- if mel <= center_mel:
- weight = (mel - left_mel) / (center_mel - left_mel)
- else:
- weight = (right_mel - mel) / (right_mel - center_mel)
-
- enorm = 2.0 / (self.inv_mel_scale(right_mel, False) - self.inv_mel_scale(left_mel, False))
- weight *= enorm
- this_bin[i] = weight
-
- if first_index == -1:
- first_index = i
- last_index = i
-
- self.__filter_bank_filter_first[bin_num] = first_index
- self.__filter_bank_filter_last[bin_num] = last_index
- mel_fbank[bin_num] = np.zeros(last_index - first_index + 1)
- j = 0
-
- for i in range(first_index, last_index + 1):
- mel_fbank[bin_num][j] = this_bin[i]
- j += 1
-
- return mel_fbank
-
-
-class Preprocessor:
-
- def __init__(self, mfcc, model_input_size, stride):
- self.model_input_size = model_input_size
- self.stride = stride
-
- # Savitzky - Golay differential filters
- self.__savgol_order1_coeffs = np.array([6.66666667e-02, 5.00000000e-02, 3.33333333e-02,
- 1.66666667e-02, -3.46944695e-18, -1.66666667e-02,
- -3.33333333e-02, -5.00000000e-02, -6.66666667e-02])
-
- self.savgol_order2_coeffs = np.array([0.06060606, 0.01515152, -0.01731602,
- -0.03679654, -0.04329004, -0.03679654,
- -0.01731602, 0.01515152, 0.06060606])
-
- self.__mfcc_calc = mfcc
-
- def __normalize(self, values):
- """
- Normalize values to mean 0 and std 1
- """
- ret_val = (values - np.mean(values)) / np.std(values)
- return ret_val
-
- def __get_features(self, features, mfcc_instance, audio_data):
- idx = 0
- while len(features) < self.model_input_size * mfcc_instance.mfcc_params.num_mfcc_feats:
- features.extend(mfcc_instance.mfcc_compute(audio_data[idx:idx + int(mfcc_instance.mfcc_params.frame_len)]))
- idx += self.stride
-
- def extract_features(self, audio_data):
- """
- Extracts the MFCC features, and calculates each features first and second order derivative.
- The matrix returned should be sized appropriately for input to the model, based
- on the model info specified in the MFCC instance.
-
- Args:
- mfcc_instance: The instance of MFCC used for this calculation
- audio_data: the audio data to be used for this calculation
- Returns:
- the derived MFCC feature vector, sized appropriately for inference
- """
-
- num_samples_per_inference = ((self.model_input_size - 1)
- * self.stride) + self.__mfcc_calc.mfcc_params.frame_len
- if len(audio_data) < num_samples_per_inference:
- raise ValueError("audio_data size for feature extraction is smaller than "
- "the expected number of samples needed for inference")
-
- features = []
- self.__get_features(features, self.__mfcc_calc, np.asarray(audio_data))
- features = np.reshape(np.array(features), (self.model_input_size, self.__mfcc_calc.mfcc_params.num_mfcc_feats))
-
- mfcc_delta_np = np.zeros_like(features)
- mfcc_delta2_np = np.zeros_like(features)
-
- for i in range(features.shape[1]):
- idelta = np.convolve(features[:, i], self.__savgol_order1_coeffs, 'same')
- mfcc_delta_np[:, i] = (idelta)
- ideltadelta = np.convolve(features[:, i], self.savgol_order2_coeffs, 'same')
- mfcc_delta2_np[:, i] = (ideltadelta)
-
- features = np.concatenate((self.__normalize(features), self.__normalize(mfcc_delta_np),
- self.__normalize(mfcc_delta2_np)), axis=1)
-
- return np.float32(features)