aboutsummaryrefslogtreecommitdiff
path: root/delegate/classic/src/Redefine.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'delegate/classic/src/Redefine.hpp')
-rw-r--r--delegate/classic/src/Redefine.hpp289
1 files changed, 289 insertions, 0 deletions
diff --git a/delegate/classic/src/Redefine.hpp b/delegate/classic/src/Redefine.hpp
new file mode 100644
index 0000000000..83c42d046e
--- /dev/null
+++ b/delegate/classic/src/Redefine.hpp
@@ -0,0 +1,289 @@
+//
+// Copyright © 2022-2023 Arm Ltd and Contributors. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#pragma once
+
+#include <armnn/utility/IgnoreUnused.hpp>
+
+#include <DelegateUtils.hpp>
+
+#include <tensorflow/lite/builtin_ops.h>
+#include <tensorflow/lite/c/builtin_op_data.h>
+#include <tensorflow/lite/c/common.h>
+#include <tensorflow/lite/minimal_logging.h>
+#include <numeric>
+
+namespace armnnDelegate
+{
+
+TfLiteStatus VisitCastOperator(DelegateData& delegateData,
+ TfLiteContext* tfLiteContext,
+ TfLiteNode* tfLiteNode,
+ int nodeIndex,
+ int32_t operatorCode)
+{
+ TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
+ TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
+
+ const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
+ const TfLiteTensor& tfLiteInputTensor = tfLiteTensors[tfLiteNode->inputs->data[0]];
+ if (!IsValid(tfLiteContext, tfLiteInputTensor, operatorCode, nodeIndex))
+ {
+ return kTfLiteError;
+ }
+
+ const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]];
+ if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex))
+ {
+ return kTfLiteError;
+ }
+
+ const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor);
+ const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor, true);
+
+ bool isSupported = false;
+ armnn::BackendId setBackend;
+ auto validateFunc = [&](const armnn::TensorInfo& outInfo, bool& isSupported)
+ {
+ FORWARD_LAYER_SUPPORT_FUNC("CAST",
+ tfLiteContext,
+ IsCastSupported,
+ delegateData.m_Backends,
+ isSupported,
+ setBackend,
+ inputTensorInfo,
+ outInfo);
+ };
+
+ // If the m_Network is a nullptr, this signals that a prerequisite TfLite callback is required to clarify the
+ // support for the operator
+ // If supported, VisitCastOperator will be called again to add the layer to the network as seen further below
+ if (!delegateData.m_Network)
+ {
+ validateFunc(outputTensorInfo, isSupported);
+ return isSupported ? kTfLiteOk : kTfLiteError;
+ }
+
+ // Add a Cast layer
+ armnn::IConnectableLayer* layer = delegateData.m_Network->AddCastLayer();
+ layer->SetBackendId(setBackend);
+ ARMNN_ASSERT(layer != nullptr);
+
+ armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0);
+ outputSlot.SetTensorInfo(outputTensorInfo);
+
+ // try to connect the Constant Inputs if there are any
+ if(ProcessInputs(layer,delegateData, tfLiteContext, tfLiteNode) != kTfLiteOk )
+ {
+ return kTfLiteError;
+ }
+
+ // Connect
+ return Connect(layer, tfLiteNode, delegateData);
+}
+
+
+TfLiteStatus CreateOutputTensorShape(const armnn::TensorInfo& inputTensorInfo,
+ const std::vector<int32_t>& targetShape,
+ armnn::ReshapeDescriptor& reshapeDesc)
+{
+ std::vector<unsigned int> outputDims(targetShape.begin(), targetShape.end());
+ const auto stretchDim = std::find(targetShape.begin(), targetShape.end(), -1);
+
+ if (stretchDim != targetShape.end())
+ {
+ if (std::find(std::next(stretchDim), targetShape.end(), -1) != targetShape.end())
+ {
+ // Return kTfLiteError and log the error after returning
+ return kTfLiteError;
+ }
+
+ auto targetNumElements =
+ armnn::numeric_cast<unsigned int>(
+ std::accumulate(targetShape.begin(), targetShape.end(), -1, std::multiplies<int32_t>()));
+
+ auto stretchIndex = static_cast<size_t>(std::distance(targetShape.begin(), stretchDim));
+ outputDims[stretchIndex] = inputTensorInfo.GetNumElements() / targetNumElements;
+ }
+
+ armnn::TensorShape outputShape = armnn::TensorShape(static_cast<unsigned int>(outputDims.size()),
+ outputDims.data());
+ reshapeDesc.m_TargetShape = outputShape;
+ return kTfLiteOk;
+}
+
+TfLiteStatus VisitReshapeOperator(DelegateData& delegateData,
+ TfLiteContext* tfLiteContext,
+ TfLiteNode* tfLiteNode,
+ int nodeIndex,
+ int32_t operatorCode)
+{
+ auto numInputs = tfLiteNode->inputs->size;
+
+ if (numInputs == 2)
+ {
+ TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 2, nodeIndex));
+ }
+ else
+ {
+ TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
+ }
+ TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
+
+ const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
+ const TfLiteTensor& tfLiteInputTensor0 = tfLiteTensors[tfLiteNode->inputs->data[0]];
+ if (!IsValid(tfLiteContext, tfLiteInputTensor0, operatorCode, nodeIndex))
+ {
+ return kTfLiteError;
+ }
+
+ const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]];
+ if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex))
+ {
+ return kTfLiteError;
+ }
+
+ const armnn::TensorInfo& inputTensorInfo0 = GetTensorInfoForTfLiteTensor(tfLiteInputTensor0);
+ const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor, true);
+
+ armnn::ReshapeDescriptor reshapeDesc;
+ std::vector<int32_t> targetShape;
+
+ TfLiteReshapeParams* reshapeOptions = reinterpret_cast<TfLiteReshapeParams*>(tfLiteNode->builtin_data);
+
+ // The new shape can be defined by either a second input tensor or by a builtin option, we need to check for both.
+ // Options might be set without valid data. we need to check the dimensions are in a valid range.
+ if (reshapeOptions && reshapeOptions->num_dimensions > 0 && reshapeOptions->num_dimensions <= 8)
+ {
+ for (int i=0; i < reshapeOptions->num_dimensions; ++i)
+ {
+ targetShape.push_back(reshapeOptions->shape[i]);
+ }
+ }
+ else if (numInputs == 2)
+ {
+ // Get shape from the second input tensor
+ const TfLiteTensor& tfLiteShapeInputTensor = tfLiteTensors[tfLiteNode->inputs->data[1]];
+ if (!IsValid(tfLiteContext, tfLiteShapeInputTensor, operatorCode, nodeIndex))
+ {
+ return kTfLiteError;
+ }
+
+ if (tfLiteShapeInputTensor.dims->size != 1)
+ {
+ TF_LITE_MAYBE_KERNEL_LOG(tfLiteContext,
+ "TfLiteArmnnDelegate: Target 'shape' input is not a 1D tensor in "
+ "operator #%d node #%d: Falling back to TfLiteOptions.",
+ operatorCode, nodeIndex);
+ }
+ else
+ {
+ // Get the shape data out of the input tensor
+ auto* shapeTensorDataPtr = tflite::GetTensorData<int32_t>(&tfLiteShapeInputTensor);
+ auto shapeTensorNumValues = tfLiteShapeInputTensor.dims->data[0];
+ for (auto i=0; i < shapeTensorNumValues; ++i)
+ {
+ targetShape.push_back(*(shapeTensorDataPtr+i));
+ }
+ }
+ }
+ else
+ {
+ TF_LITE_MAYBE_KERNEL_LOG(tfLiteContext,
+ "Target shape not defined in reshape parameters or input tensor. "
+ "At least one method required in operator #%d node #%d: ",
+ operatorCode, nodeIndex);
+ return kTfLiteError;
+ }
+
+ // Use the data to create the required tensor shape.
+ if (CreateOutputTensorShape(inputTensorInfo0, targetShape, reshapeDesc) != kTfLiteOk)
+ {
+ TF_LITE_MAYBE_KERNEL_LOG(tfLiteContext,
+ "TfLiteArmnnDelegate: At most one component of shape can be -1 in: "
+ "operator #%d node #%d: ",
+ operatorCode, nodeIndex);
+ return kTfLiteError;
+ }
+
+ if (reshapeDesc.m_TargetShape.GetNumElements() != inputTensorInfo0.GetNumElements())
+ {
+ TF_LITE_MAYBE_KERNEL_LOG(
+ tfLiteContext,
+ "TfLiteArmnnDelegate: Reshape, number of elements in output shape does not match input "
+ "operator #%d node #%d: ",
+ operatorCode, nodeIndex);
+ return kTfLiteError;
+ }
+
+ bool isSupported = false;
+ armnn::BackendId setBackend;
+ auto validateFunc = [&](const armnn::TensorInfo& outInfo, bool& isSupported)
+ {
+ FORWARD_LAYER_SUPPORT_FUNC("RESHAPE",
+ tfLiteContext,
+ IsReshapeSupported,
+ delegateData.m_Backends,
+ isSupported,
+ setBackend,
+ inputTensorInfo0,
+ outInfo,
+ reshapeDesc);
+ };
+
+ if (!delegateData.m_Network)
+ {
+ validateFunc(outputTensorInfo, isSupported);
+ return isSupported ? kTfLiteOk : kTfLiteError;
+ }
+
+ armnn::IConnectableLayer* layer = delegateData.m_Network->AddReshapeLayer(reshapeDesc);
+ layer->SetBackendId(setBackend);
+ ARMNN_ASSERT(layer != nullptr);
+
+ armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0);
+ outputSlot.SetTensorInfo(outputTensorInfo);
+
+ // try to connect the Constant Inputs if there are any
+ if(ProcessInputs(layer,delegateData, tfLiteContext, tfLiteNode) != kTfLiteOk )
+ {
+ return kTfLiteError;
+ }
+
+ // Connect
+ return Connect(layer, tfLiteNode, delegateData);
+}
+
+TfLiteStatus VisitSqueezeOperator(DelegateData& delegateData,
+ TfLiteContext* tfLiteContext,
+ TfLiteNode* tfLiteNode,
+ int nodeIndex,
+ int32_t operatorCode)
+{
+ armnn::IgnoreUnused(delegateData,
+ tfLiteContext,
+ tfLiteNode,
+ nodeIndex,
+ operatorCode);
+
+ return kTfLiteError;
+}
+
+TfLiteStatus VisitExpandDimsOperator(DelegateData& delegateData,
+ TfLiteContext* tfLiteContext,
+ TfLiteNode* tfLiteNode,
+ int nodeIndex,
+ int32_t operatorCode)
+{
+ armnn::IgnoreUnused(delegateData,
+ tfLiteContext,
+ tfLiteNode,
+ nodeIndex,
+ operatorCode);
+
+ return kTfLiteError;
+}
+
+} // namespace armnnDelegate