aboutsummaryrefslogtreecommitdiff
path: root/delegate/classic/src/Pooling.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'delegate/classic/src/Pooling.hpp')
-rw-r--r--delegate/classic/src/Pooling.hpp327
1 files changed, 327 insertions, 0 deletions
diff --git a/delegate/classic/src/Pooling.hpp b/delegate/classic/src/Pooling.hpp
new file mode 100644
index 0000000000..2de40613fb
--- /dev/null
+++ b/delegate/classic/src/Pooling.hpp
@@ -0,0 +1,327 @@
+//
+// Copyright © 2022-2023 Arm Ltd and Contributors. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#pragma once
+
+#include <DelegateUtils.hpp>
+
+#include <tensorflow/lite/builtin_ops.h>
+#include <tensorflow/lite/c/builtin_op_data.h>
+#include <tensorflow/lite/c/common.h>
+#include <tensorflow/lite/minimal_logging.h>
+#include <flatbuffers/flexbuffers.h>
+
+namespace armnnDelegate
+{
+
+TfLiteStatus VisitPooling2dOperator(DelegateData& delegateData,
+ TfLiteContext* tfLiteContext,
+ TfLiteNode* tfLiteNode,
+ int nodeIndex,
+ int32_t tfLitePoolingOperatorCode)
+{
+ TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
+ TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
+
+ const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
+ const TfLiteTensor& tfLiteInputTensor = tfLiteTensors[tfLiteNode->inputs->data[0]];
+ if (IsDynamicTensor(tfLiteInputTensor))
+ {
+ TF_LITE_MAYBE_KERNEL_LOG(
+ tfLiteContext,
+ "TfLiteArmnnDelegate: Dynamic input tensors are not supported in operator #%d node #%d: ",
+ tfLitePoolingOperatorCode, nodeIndex);
+ return kTfLiteError;
+ }
+
+ const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]];
+ if (IsDynamicTensor(tfLiteOutputTensor))
+ {
+ TF_LITE_MAYBE_KERNEL_LOG(
+ tfLiteContext,
+ "TfLiteArmnnDelegate: Dynamic output tensors are not supported in operator #%d node #%d: ",
+ tfLitePoolingOperatorCode, nodeIndex);
+ return kTfLiteError;
+ }
+
+ const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor);
+ const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor, true);
+
+ auto* tfLiteNodeParameters = reinterpret_cast<TfLitePoolParams*>(tfLiteNode->builtin_data);
+ TfLiteFusedActivation activationType = kTfLiteActNone;
+ if (tfLiteNodeParameters)
+ {
+ activationType = tfLiteNodeParameters->activation;
+ TfLiteStatus activationStatus = ValidateFusedActivationOperator(delegateData, tfLiteContext, outputTensorInfo,
+ outputTensorInfo, activationType);
+ if(activationStatus != kTfLiteOk)
+ {
+ return kTfLiteError;
+ }
+
+ }
+
+ armnn::PoolingAlgorithm poolingAlgorithm;
+ switch(tfLitePoolingOperatorCode)
+ {
+ case kTfLiteBuiltinAveragePool2d:
+ poolingAlgorithm = armnn::PoolingAlgorithm::Average;
+ break;
+ case kTfLiteBuiltinL2Pool2d:
+ poolingAlgorithm = armnn::PoolingAlgorithm::L2;
+ break;
+ case kTfLiteBuiltinMaxPool2d:
+ poolingAlgorithm = armnn::PoolingAlgorithm::Max;
+ break;
+ default:
+ return kTfLiteError;
+ }
+
+ armnn::Pooling2dDescriptor descriptor;
+ descriptor.m_PoolType = poolingAlgorithm;
+
+ descriptor.m_PoolWidth = tfLiteNodeParameters->filter_width;
+ descriptor.m_PoolHeight = tfLiteNodeParameters->filter_height;
+ descriptor.m_StrideX = tfLiteNodeParameters->stride_width;
+ descriptor.m_StrideY = tfLiteNodeParameters->stride_height;
+ descriptor.m_DataLayout = armnn::DataLayout::NHWC;
+
+ unsigned int inputHeight = inputTensorInfo.GetShape()[1];
+ unsigned int inputWidth = inputTensorInfo.GetShape()[2];
+
+ CalcPadding(inputHeight, descriptor.m_PoolHeight, descriptor.m_StrideY, 1u,
+ descriptor.m_PadTop, descriptor.m_PadBottom, tfLiteNodeParameters->padding);
+ CalcPadding(inputWidth, descriptor.m_PoolWidth, descriptor.m_StrideX, 1u,
+ descriptor.m_PadLeft, descriptor.m_PadRight, tfLiteNodeParameters->padding);
+
+ bool isSupported = false;
+ armnn::BackendId setBackend;
+ auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported)
+ {
+ FORWARD_LAYER_SUPPORT_FUNC("POOLING_2D",
+ tfLiteContext,
+ IsPooling2dSupported,
+ delegateData.m_Backends,
+ isSupported,
+ setBackend,
+ inputTensorInfo,
+ outputTensorInfo,
+ descriptor);
+ };
+
+ if (!delegateData.m_Network)
+ {
+ validateFunc(outputTensorInfo, isSupported);
+ return isSupported ? kTfLiteOk : kTfLiteError;
+ }
+
+ armnn::IConnectableLayer* poolingLayer = delegateData.m_Network->AddPooling2dLayer(descriptor);
+ poolingLayer->SetBackendId(setBackend);
+ ARMNN_ASSERT(poolingLayer != nullptr);
+
+ armnn::IOutputSlot& outputSlot = poolingLayer->GetOutputSlot(0);
+ outputSlot.SetTensorInfo(outputTensorInfo);
+
+ // try to connect the Constant Inputs if there are any
+ if(ProcessInputs(poolingLayer,delegateData, tfLiteContext, tfLiteNode) != kTfLiteOk )
+ {
+ return kTfLiteError;
+ }
+
+ if(Connect(poolingLayer, tfLiteNode, delegateData) != kTfLiteOk)
+ {
+ return kTfLiteError;
+ }
+
+ // Check and create activation
+ return FusedActivation(tfLiteContext, tfLiteNode, activationType, poolingLayer, 0, delegateData);
+}
+
+TfLiteStatus VisitPooling3dOperator(DelegateData& delegateData,
+ TfLiteContext* tfLiteContext,
+ TfLiteNode* tfLiteNode,
+ int nodeIndex,
+ std::string customOperatorName)
+{
+ TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
+ TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
+
+ const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
+ const TfLiteTensor& tfLiteInputTensor = tfLiteTensors[tfLiteNode->inputs->data[0]];
+ if (IsDynamicTensor(tfLiteInputTensor))
+ {
+ TF_LITE_MAYBE_KERNEL_LOG(
+ tfLiteContext,
+ "TfLiteArmnnDelegate: Dynamic input tensors are not supported in operator #%d node #%d: ",
+ customOperatorName.c_str(), nodeIndex);
+ return kTfLiteError;
+ }
+
+ const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]];
+ if (IsDynamicTensor(tfLiteOutputTensor))
+ {
+ TF_LITE_MAYBE_KERNEL_LOG(
+ tfLiteContext,
+ "TfLiteArmnnDelegate: Dynamic output tensors are not supported in operator #%d node #%d: ",
+ customOperatorName.c_str(), nodeIndex);
+ return kTfLiteError;
+ }
+ // Set the input and output info
+ const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor);
+ const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor, true);
+
+ // Custom Operators are defined by the name string associated to the operator. Use this to determine
+ // which pooling algorithm to create the armnn operator with. L2 Pooling3D is unsupported in TfLite.
+ armnn::PoolingAlgorithm poolingAlgorithm;
+ if (customOperatorName == "MaxPool3D")
+ {
+ poolingAlgorithm = armnn::PoolingAlgorithm::Max;
+ }
+ else if (customOperatorName == "AveragePool3D")
+ {
+ poolingAlgorithm = armnn::PoolingAlgorithm::Average;
+ }
+ else
+ {
+ return kTfLiteError;
+ }
+ // Create the armnn pool3d descriptor and set the algorithm parsed above.
+ armnn::Pooling3dDescriptor descriptor;
+ descriptor.m_PoolType = poolingAlgorithm;
+
+ // custom_initial_data and custom_initial_data_size are void* variables defined in the tflite registration
+ // used to access the custom option buffer for the operator.
+ auto custom_data = tfLiteNode->custom_initial_data;
+ auto custom_data_size = tfLiteNode->custom_initial_data_size;
+ // Reinterpret the void* to a byte buffer to access the options data in the flexbuffers map.
+ const flexbuffers::Map& m = flexbuffers::GetRoot(reinterpret_cast<const uint8_t*>(custom_data),
+ custom_data_size).AsMap();
+ // poolDims is a vector of [ 1, Depth, Height, Width, 1 ]
+ const auto poolDims = m["ksize"].AsTypedVector();
+ descriptor.m_PoolWidth = poolDims[3].AsInt32();
+ descriptor.m_PoolHeight = poolDims[2].AsInt32();
+ descriptor.m_PoolDepth = poolDims[1].AsInt32();
+
+ // strideDimes is a vector of [ 1, Z, Y, X, 1]
+ const auto strideDims = m["strides"].AsTypedVector();
+ descriptor.m_StrideX = strideDims[3].AsInt32();
+ descriptor.m_StrideY = strideDims[2].AsInt32();
+ descriptor.m_StrideZ = strideDims[1].AsInt32();
+ descriptor.m_DataLayout = armnn::DataLayout::NDHWC;
+
+ unsigned int inputDepth = inputTensorInfo.GetShape()[1];
+ unsigned int inputHeight = inputTensorInfo.GetShape()[2];
+ unsigned int inputWidth = inputTensorInfo.GetShape()[3];
+
+ // CalcPadding expects a TfLitePadding type. Parse flexbuffers to extract padding string and create TfLitePadding.
+ std::string paddingStr = m["padding"].AsString().str();
+ TfLitePadding padding;
+ if (paddingStr == "VALID")
+ {
+ padding = kTfLitePaddingValid;
+ }
+ else if (paddingStr == "SAME")
+ {
+ padding = kTfLitePaddingSame;
+ }
+ else
+ {
+ padding = kTfLitePaddingUnknown;
+ }
+ // Calculates padding for each pooling dimension separately
+ CalcPadding(inputHeight, descriptor.m_PoolHeight, descriptor.m_StrideY, 1u,
+ descriptor.m_PadTop, descriptor.m_PadBottom, padding);
+ CalcPadding(inputWidth, descriptor.m_PoolWidth, descriptor.m_StrideX, 1u,
+ descriptor.m_PadLeft, descriptor.m_PadRight, padding);
+ CalcPadding(inputDepth, descriptor.m_PoolDepth, descriptor.m_StrideZ, 1u,
+ descriptor.m_PadFront, descriptor.m_PadBack, padding);
+
+
+ // Check activation by parsing the string from the flexbuffer map
+ std::string activationTypeStr = m["activation"].AsString().str();
+ TfLiteFusedActivation activationType = kTfLiteActNone;
+
+ if (activationTypeStr == "kTfLiteActRelu")
+ {
+ activationType = kTfLiteActRelu;
+ }
+ else if (activationTypeStr == "kTfLiteActReluN1To1")
+ {
+ activationType = kTfLiteActReluN1To1;
+ }
+ else if (activationTypeStr == "kTfLiteActRelu6")
+ {
+ activationType = kTfLiteActRelu6;
+ }
+ else if (activationTypeStr == "kTfLiteActTanh")
+ {
+ activationType = kTfLiteActTanh;
+ }
+ else if (activationTypeStr == "kTfLiteActSignBit")
+ {
+ activationType = kTfLiteActSignBit;
+ }
+ else if (activationTypeStr == "kTfLiteActSigmoid")
+ {
+ activationType = kTfLiteActSigmoid;
+ }
+ else
+ {
+ activationType = kTfLiteActNone;
+ }
+
+ TfLiteStatus activationStatus = ValidateFusedActivationOperator(delegateData, tfLiteContext, outputTensorInfo,
+ outputTensorInfo, activationType);
+ if(activationStatus != kTfLiteOk)
+ {
+ return kTfLiteError;
+ }
+
+
+ // Validate the output info.
+ bool isSupported = false;
+ armnn::BackendId setBackend;
+ auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported) {
+ FORWARD_LAYER_SUPPORT_FUNC("POOLING_3D",
+ tfLiteContext,
+ IsPooling3dSupported,
+ delegateData.m_Backends,
+ isSupported,
+ setBackend,
+ inputTensorInfo,
+ outputTensorInfo,
+ descriptor);
+ };
+
+ if (!delegateData.m_Network)
+ {
+ validateFunc(outputTensorInfo, isSupported);
+ return isSupported ? kTfLiteOk : kTfLiteError;
+ }
+
+ // Create the Layer
+ armnn::IConnectableLayer* poolingLayer = delegateData.m_Network->AddPooling3dLayer(descriptor);
+ poolingLayer->SetBackendId(setBackend);
+ ARMNN_ASSERT(poolingLayer != nullptr);
+
+ // Create and set output slots
+ armnn::IOutputSlot& outputSlot = poolingLayer->GetOutputSlot(0);
+ outputSlot.SetTensorInfo(outputTensorInfo);
+
+ // try to connect the Constant Inputs if there are any
+ if(ProcessInputs(poolingLayer,delegateData, tfLiteContext, tfLiteNode) != kTfLiteOk )
+ {
+ return kTfLiteError;
+ }
+
+ if(Connect(poolingLayer, tfLiteNode, delegateData) != kTfLiteOk)
+ {
+ return kTfLiteError;
+ }
+
+ return FusedActivation(tfLiteContext, tfLiteNode, activationType, poolingLayer, 0, delegateData);
+}
+
+} // namespace armnnDelegate