aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCathal Corbett <cathal.corbett@arm.com>2022-01-28 12:17:19 +0000
committerCathal Corbett <cathal.corbett@arm.com>2022-02-21 09:29:38 +0000
commitb0baff73b1574a198e57d46fcd704cedc43cea16 (patch)
tree0db88ad2d0f9e32dec916822d9a42d5d5ab81723
parent23a08cc51569077e057c57fdd2c2b99c0aa982e2 (diff)
downloadarmnn-b0baff73b1574a198e57d46fcd704cedc43cea16.tar.gz
IVGCVSW-6268 Add support of Unidirectional Sequence Lstm fp32/fp16 to Neon
!ComputeLibrary:7150 Signed-off-by: Cathal Corbett <cathal.corbett@arm.com> Change-Id: I3de48ffc8d08c95a22705e2b68d069791bddae73
-rw-r--r--docs/02_operator_list.dox14
-rw-r--r--src/backends/aclCommon/ArmComputeTensorUtils.cpp32
-rw-r--r--src/backends/aclCommon/ArmComputeTensorUtils.hpp3
-rw-r--r--src/backends/aclCommon/ArmComputeUtils.hpp24
-rw-r--r--src/backends/backendsCommon/test/layerTests/UnidirectionalSequenceLstmTestImpl.cpp218
-rw-r--r--src/backends/backendsCommon/test/layerTests/UnidirectionalSequenceLstmTestImpl.hpp10
-rw-r--r--src/backends/cl/workloads/ClLstmFloatWorkload.cpp71
-rw-r--r--src/backends/neon/NeonLayerSupport.cpp34
-rw-r--r--src/backends/neon/NeonLayerSupport.hpp10
-rw-r--r--src/backends/neon/NeonWorkloadFactory.cpp5
-rw-r--r--src/backends/neon/backend.mk3
-rw-r--r--src/backends/neon/test/NeonLayerTests.cpp16
-rw-r--r--src/backends/neon/workloads/CMakeLists.txt2
-rw-r--r--src/backends/neon/workloads/NeonLstmFloatWorkload.cpp68
-rw-r--r--src/backends/neon/workloads/NeonUnidirectionalSequenceLstmFloatWorkload.cpp911
-rw-r--r--src/backends/neon/workloads/NeonUnidirectionalSequenceLstmFloatWorkload.hpp92
-rw-r--r--src/backends/neon/workloads/NeonWorkloads.hpp1
-rw-r--r--src/backends/reference/test/RefLayerTests.cpp4
18 files changed, 1396 insertions, 122 deletions
diff --git a/docs/02_operator_list.dox b/docs/02_operator_list.dox
index e1eec58e4e..b51ba5775e 100644
--- a/docs/02_operator_list.dox
+++ b/docs/02_operator_list.dox
@@ -3323,6 +3323,20 @@ where N = batches, C = channels, H = height, W = width
<tr><td>FLOAT32
<tr><td>QASYMMS8
</table>
+ <td>CpuAcc
+ <td>
+ <ul>
+ <li>All
+ </ul>
+ <td>
+ <table>
+ <tr><th>Input Types
+ <tr><td>FLOAT32
+ </table>
+ <table>
+ <tr><th>Weight Types
+ <tr><td>FLOAT32
+ </table>
<tr>
<td rowspan="3">UnmapLayer
<td rowspan="3" style="width:200px;"> Layer to perform unmap operation on tensor.
diff --git a/src/backends/aclCommon/ArmComputeTensorUtils.cpp b/src/backends/aclCommon/ArmComputeTensorUtils.cpp
index 9ed7b7b437..2dc6d2a2b2 100644
--- a/src/backends/aclCommon/ArmComputeTensorUtils.cpp
+++ b/src/backends/aclCommon/ArmComputeTensorUtils.cpp
@@ -45,6 +45,38 @@ arm_compute::DataType GetArmComputeDataType(armnn::DataType dataType, bool multi
}
}
+armnn::DataType GetArmNNDataType(arm_compute::DataType dataType)
+{
+ switch(dataType)
+ {
+ case arm_compute::DataType::BFLOAT16:
+ return armnn::DataType::BFloat16;
+ case arm_compute::DataType::U8:
+ return armnn::DataType::Boolean;
+ case arm_compute::DataType::F16:
+ return armnn::DataType::Float16;
+ case arm_compute::DataType::F32:
+ return armnn::DataType::Float32;
+ case arm_compute::DataType::QASYMM8_SIGNED:
+ return armnn::DataType::QAsymmS8;
+ case arm_compute::DataType::QASYMM8:
+ return armnn::DataType::QAsymmU8;
+ case arm_compute::DataType::QSYMM16:
+ return armnn::DataType::QSymmS16;
+ case arm_compute::DataType::S64:
+ return armnn::DataType::Signed64;
+ case arm_compute::DataType::QSYMM8_PER_CHANNEL:
+ return armnn::DataType::QSymmS8;
+ case arm_compute::DataType::QSYMM8:
+ return armnn::DataType::QSymmS8;
+ case arm_compute::DataType::S32:
+ return armnn::DataType::Signed32;
+ default:
+ ARMNN_ASSERT_MSG(false, "Unknown data type");
+ return armnn::DataType::Float32;
+ }
+}
+
arm_compute::Coordinates BuildArmComputeReductionCoordinates(size_t inputDimensions,
unsigned int originalInputRank,
const std::vector<unsigned int>& armnnAxes)
diff --git a/src/backends/aclCommon/ArmComputeTensorUtils.hpp b/src/backends/aclCommon/ArmComputeTensorUtils.hpp
index 30df31b79d..ba6ef6a3fe 100644
--- a/src/backends/aclCommon/ArmComputeTensorUtils.hpp
+++ b/src/backends/aclCommon/ArmComputeTensorUtils.hpp
@@ -25,6 +25,9 @@ namespace armcomputetensorutils
/// Utility function to map an armnn::DataType to corresponding arm_compute::DataType.
arm_compute::DataType GetArmComputeDataType(armnn::DataType dataType, bool multiScales);
+/// Utility function to map an arm_compute::DataType to corresponding armnn::DataType.
+armnn::DataType GetArmNNDataType(arm_compute::DataType datatype);
+
/// Utility function used to set up an arm_compute::Coordinates from a vector of ArmNN Axes for reduction functions
arm_compute::Coordinates BuildArmComputeReductionCoordinates(size_t inputDimensions,
unsigned int originalInputRank,
diff --git a/src/backends/aclCommon/ArmComputeUtils.hpp b/src/backends/aclCommon/ArmComputeUtils.hpp
index e76af02765..fab52ffb0f 100644
--- a/src/backends/aclCommon/ArmComputeUtils.hpp
+++ b/src/backends/aclCommon/ArmComputeUtils.hpp
@@ -112,6 +112,30 @@ ConvertAdditionalInfoToAclActivationLayerInfo(const QueueDescriptor& queueDescri
return arm_compute::ActivationLayerInfo();
}
+inline arm_compute::ActivationLayerInfo
+ConvertLstmActivationFuncToAclLayerInfo(uint32_t activationFunction)
+{
+ // For preparing the object for the class ActivationLayerInfo, we need to consider 5 situations.
+ switch (activationFunction)
+ {
+ case 0:
+ return arm_compute::ActivationLayerInfo(); // no activation, do nothing
+ case 1:
+ return arm_compute::ActivationLayerInfo(arm_compute::ActivationLayerInfo::ActivationFunction::RELU);
+ case 3:
+ return arm_compute::ActivationLayerInfo(
+ arm_compute::ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.0);
+ case 4:
+ return arm_compute::ActivationLayerInfo(
+ arm_compute::ActivationLayerInfo::ActivationFunction::TANH, 1.0, 1.0);
+ case 6:
+ return arm_compute::ActivationLayerInfo(
+ arm_compute::ActivationLayerInfo::ActivationFunction::LOGISTIC);
+ default:
+ throw armnn::Exception("Wrong Type of Activation Function!");
+ }
+}
+
inline arm_compute::ComparisonOperation ConvertComparisonOperationToAcl(const ComparisonDescriptor& descriptor)
{
switch (descriptor.m_Operation)
diff --git a/src/backends/backendsCommon/test/layerTests/UnidirectionalSequenceLstmTestImpl.cpp b/src/backends/backendsCommon/test/layerTests/UnidirectionalSequenceLstmTestImpl.cpp
index 66a26cc41d..c719472711 100644
--- a/src/backends/backendsCommon/test/layerTests/UnidirectionalSequenceLstmTestImpl.cpp
+++ b/src/backends/backendsCommon/test/layerTests/UnidirectionalSequenceLstmTestImpl.cpp
@@ -17,6 +17,190 @@
namespace {
template<armnn::DataType ArmnnType, typename T = armnn::ResolveType<ArmnnType>>
+LayerTestResult<T, 3>
+UnidirectionalSequenceLstmTimeMajorSingleBatchTestImpl(
+ armnn::IWorkloadFactory& workloadFactory,
+ const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
+ const armnn::ITensorHandleFactory& tensorHandleFactory,
+ const std::vector<T>& input,
+ const std::vector<T>& outputExpected,
+ const armnn::TensorShape& inputShape,
+ const armnn::TensorShape& outputExpectedShape,
+ float qScale = 0.0f,
+ int32_t qOffset = 0,
+ armnn::DataType constantDataType = armnn::DataType::Float32)
+{
+ IgnoreUnused(memoryManager);
+ unsigned int batchSize = armnn::numeric_cast<unsigned int>(inputShape[1]);
+ unsigned int inputSize = armnn::numeric_cast<unsigned int>(inputShape[2]);
+ unsigned int outputSize = armnn::numeric_cast<unsigned int>(outputExpectedShape[2]);
+ unsigned numUnits = outputSize;
+
+ armnn::TensorInfo inputTensorInfo({1, batchSize , inputSize}, ArmnnType, qScale, qOffset );
+ armnn::TensorInfo cellStateInTensorInfo({batchSize , numUnits}, ArmnnType, qScale, qOffset);
+ armnn::TensorInfo outputStateInTensorInfo({batchSize , outputSize}, ArmnnType, qScale, qOffset);
+
+ armnn::TensorInfo outputTensorInfo({1, batchSize, outputSize}, ArmnnType, qScale, qOffset);
+
+ std::vector<T> inputVector;
+ inputVector.assign(input.data(), input.data() + (batchSize * inputSize));
+
+ std::vector<T> cellStateInVector(batchSize * numUnits, T());
+ std::vector<T> outputStateInVector(batchSize * outputSize, T());
+
+ std::vector<T> actualOutput(outputTensorInfo.GetNumElements());
+
+ std::vector<T> outputVector;
+ outputVector.assign(outputExpected.data(), outputExpected.data() + (batchSize * outputSize));
+
+ std::unique_ptr<armnn::ITensorHandle> inputHandle = tensorHandleFactory.CreateTensorHandle(inputTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> cellStateInHandle =
+ tensorHandleFactory.CreateTensorHandle(cellStateInTensorInfo);
+ std::unique_ptr<armnn::ITensorHandle> outputStateInHandle =
+ tensorHandleFactory.CreateTensorHandle(outputStateInTensorInfo);
+
+ std::unique_ptr<armnn::ITensorHandle> outputHandle = tensorHandleFactory.CreateTensorHandle(outputTensorInfo);
+
+ armnn::UnidirectionalSequenceLstmQueueDescriptor data;
+ armnn::WorkloadInfo info;
+
+ AddInputToWorkload(data, info, inputTensorInfo, inputHandle.get());
+ AddInputToWorkload(data, info, outputStateInTensorInfo, outputStateInHandle.get());
+ AddInputToWorkload(data, info, cellStateInTensorInfo, cellStateInHandle.get());
+
+ AddOutputToWorkload(data, info, outputTensorInfo, outputHandle.get());
+
+ armnn::TensorInfo tensorInfo4({numUnits}, constantDataType , qScale, qOffset);
+ armnn::TensorInfo tensorInfo8({numUnits, 2}, constantDataType, qScale, qOffset);
+ armnn::TensorInfo tensorInfo16({numUnits, 4}, constantDataType, qScale, qOffset);
+
+ std::vector<float> inputToInputWeights = {-0.45018822f, -0.02338299f, -0.0870589f,
+ -0.34550029f, 0.04266912f, -0.15680569f,
+ -0.34856534f, 0.43890524f};
+
+ std::vector<float> inputToForgetWeights = { 0.09701663f, 0.20334584f, -0.50592935f,
+ -0.31343272f, -0.40032279f, 0.44781327f,
+ 0.01387155f, -0.35593212f};
+
+ std::vector<float> inputToCellWeights = { -0.50013041f, 0.1370284f, 0.11810488f, 0.2013163f,
+ -0.20583314f, 0.44344562f, 0.22077113f,
+ -0.29909778f};
+
+ std::vector<float> inputToOutputWeights = { -0.25065863f, -0.28290087f, 0.04613829f,
+ 0.40525138f, 0.44272184f, 0.03897077f,
+ -0.1556896f, 0.19487578f};
+
+ std::vector<float> recurrentToInputWeights = {-0.0063535f, -0.2042388f, 0.31454784f,
+ -0.35746509f, 0.28902304f, 0.08183324f,
+ -0.16555229f, 0.02286911f, -0.13566875f,
+ 0.03034258f, 0.48091322f, -0.12528998f,
+ 0.24077177f, -0.51332325f, -0.33502164f,
+ 0.10629296f};
+
+ std::vector<float> recurrentToForgetWeights = { -0.48684245f, -0.06655136f, 0.42224967f,
+ 0.2112639f, 0.27654213f, 0.20864892f,
+ -0.07646349f, 0.45877004f, 0.00141793f,
+ -0.14609534f, 0.36447752f, 0.09196436f,
+ 0.28053468f, 0.01560611f, -0.20127171f,
+ -0.01140004f};
+
+ std::vector<float> recurrentToCellWeights = { -0.3407414f, 0.24443203f, -0.2078532f,
+ 0.26320225f, 0.05695659f, -0.00123841f,
+ -0.4744786f, -0.35869038f, -0.06418842f,
+ -0.13502428f, -0.501764f, 0.22830659f,
+ -0.46367589f, 0.26016325f, -0.03894562f,
+ -0.16368064f};
+
+ std::vector<float> recurrentToOutputWeights = { 0.43385774f, -0.17194885f, 0.2718237f,
+ 0.09215671f, 0.24107647f, -0.39835793f,
+ 0.18212086f, 0.01301402f, 0.48572797f,
+ -0.50656658f, 0.20047462f, -0.20607421f,
+ -0.51818722f, -0.15390486f, 0.0468148f,
+ 0.39922136f};
+
+ std::vector<float> cellToInputWeights = {0., 0., 0., 0.};
+
+ std::vector<float> inputGateBias = {0., 0., 0., 0.};
+
+ std::vector<float> forgetGateBias = {1., 1., 1., 1.};
+
+ std::vector<float> cellBias = {0., 0., 0., 0.};
+
+ std::vector<float> outputGateBias = {0., 0., 0., 0.};
+
+ armnn::ScopedTensorHandle inputToInputWeightsTensor(tensorInfo8);
+ armnn::ScopedTensorHandle inputToForgetWeightsTensor(tensorInfo8);
+ armnn::ScopedTensorHandle inputToCellWeightsTensor(tensorInfo8);
+ armnn::ScopedTensorHandle inputToOutputWeightsTensor(tensorInfo8);
+ armnn::ScopedTensorHandle recurrentToInputWeightsTensor(tensorInfo16);
+ armnn::ScopedTensorHandle recurrentToForgetWeightsTensor(tensorInfo16);
+ armnn::ScopedTensorHandle recurrentToCellWeightsTensor(tensorInfo16);
+ armnn::ScopedTensorHandle recurrentToOutputWeightsTensor(tensorInfo16);
+ armnn::ScopedTensorHandle cellToInputWeightsTensor(tensorInfo4);
+ armnn::ScopedTensorHandle inputGateBiasTensor(tensorInfo4);
+ armnn::ScopedTensorHandle forgetGateBiasTensor(tensorInfo4);
+ armnn::ScopedTensorHandle cellBiasTensor(tensorInfo4);
+ armnn::ScopedTensorHandle outputGateBiasTensor(tensorInfo4);
+
+ AllocateAndCopyDataToITensorHandle(&inputToInputWeightsTensor, inputToInputWeights.data());
+ AllocateAndCopyDataToITensorHandle(&inputToForgetWeightsTensor, inputToForgetWeights.data());
+ AllocateAndCopyDataToITensorHandle(&inputToCellWeightsTensor, inputToCellWeights.data());
+ AllocateAndCopyDataToITensorHandle(&inputToOutputWeightsTensor, inputToOutputWeights.data());
+ AllocateAndCopyDataToITensorHandle(&recurrentToInputWeightsTensor, recurrentToInputWeights.data());
+ AllocateAndCopyDataToITensorHandle(&recurrentToForgetWeightsTensor, recurrentToForgetWeights.data());
+ AllocateAndCopyDataToITensorHandle(&recurrentToCellWeightsTensor, recurrentToCellWeights.data());
+ AllocateAndCopyDataToITensorHandle(&recurrentToOutputWeightsTensor, recurrentToOutputWeights.data());
+ AllocateAndCopyDataToITensorHandle(&cellToInputWeightsTensor, cellToInputWeights.data());
+ AllocateAndCopyDataToITensorHandle(&inputGateBiasTensor, inputGateBias.data());
+ AllocateAndCopyDataToITensorHandle(&forgetGateBiasTensor, forgetGateBias.data());
+ AllocateAndCopyDataToITensorHandle(&cellBiasTensor, cellBias.data());
+ AllocateAndCopyDataToITensorHandle(&outputGateBiasTensor, outputGateBias.data());
+
+ data.m_InputToInputWeights = &inputToInputWeightsTensor;
+ data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
+ data.m_InputToCellWeights = &inputToCellWeightsTensor;
+ data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
+ data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
+ data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
+ data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
+ data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
+ data.m_InputGateBias = &inputGateBiasTensor;
+ data.m_ForgetGateBias = &forgetGateBiasTensor;
+ data.m_CellBias = &cellBiasTensor;
+ data.m_OutputGateBias = &outputGateBiasTensor;
+
+ // Flags to set test configuration
+ data.m_Parameters.m_ActivationFunc = 4;
+ data.m_Parameters.m_CifgEnabled = false;
+ data.m_Parameters.m_PeepholeEnabled = false;
+ data.m_Parameters.m_ProjectionEnabled = false;
+ data.m_Parameters.m_ClippingThresCell = 10;
+ data.m_Parameters.m_ClippingThresProj = 0;
+ data.m_Parameters.m_TimeMajor = true;
+
+ std::unique_ptr<armnn::IWorkload> workload
+ = workloadFactory.CreateWorkload(armnn::LayerType::UnidirectionalSequenceLstm, data, info);
+ inputHandle->Allocate();
+ outputStateInHandle->Allocate();
+ cellStateInHandle->Allocate();
+
+ outputHandle->Allocate();
+
+ CopyDataToITensorHandle(inputHandle.get(), inputVector.data());
+ CopyDataToITensorHandle(outputStateInHandle.get(), outputStateInVector.data());
+ CopyDataToITensorHandle(cellStateInHandle.get(), cellStateInVector.data());
+
+ workload->Execute();
+
+ CopyDataFromITensorHandle(actualOutput.data(), outputHandle.get());
+
+ return LayerTestResult<T, 3>(actualOutput,
+ outputVector,
+ outputHandle->GetShape(),
+ outputTensorInfo.GetShape());
+}
+
+template<armnn::DataType ArmnnType, typename T = armnn::ResolveType<ArmnnType>>
LayerTestResult<T, 3> UnidirectionalSequenceLstmLayerFloat32TestImpl(
armnn::IWorkloadFactory& workloadFactory,
const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
@@ -369,6 +553,40 @@ UnidirectionalSequenceLstmLayerFloat32TimeMajorTestImpl(
} // anonymous namespace
+LayerTestResult<float, 3> UnidirectionalSequenceLstmLayerFloat32TimeMajorSingleBatchTest(
+ armnn::IWorkloadFactory& workloadFactory,
+ const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
+ const armnn::ITensorHandleFactory& tensorHandleFactory)
+{
+ armnn::TensorInfo inputDesc({1, 2, 2}, armnn::DataType::Float32);
+ std::vector<float> input = {2., 3., 3., 4.};
+
+ armnn::TensorInfo outputDesc({1, 2, 4}, armnn::DataType::Float32);
+ std::vector<float> expectedOutput =
+ {-0.02973187f, 0.1229473f, 0.20885126f, -0.15358765f,
+ -0.0185422f, 0.11281417f, 0.24466537f, -0.1826292f};
+
+ return UnidirectionalSequenceLstmTimeMajorSingleBatchTestImpl<armnn::DataType::Float32>(
+ workloadFactory, memoryManager, tensorHandleFactory,
+ input, expectedOutput, inputDesc.GetShape(), outputDesc.GetShape());
+}
+
+LayerTestResult<float, 3> UnidirectionalSequenceLstmLayerFloat32BatchMajorSingleBatchTest(
+ armnn::IWorkloadFactory& workloadFactory,
+ const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
+ const armnn::ITensorHandleFactory& tensorHandleFactory) {
+ armnn::TensorInfo inputInfo({3, 1, 3}, armnn::DataType::Float32);
+ std::vector<float> input = { 1., 2., 3., 4., 5., 4., 3., 2., 1. };
+
+ armnn::TensorInfo outputInfo({3, 1, 4}, armnn::DataType::Float32);
+ std::vector<float> expectedOutput = { -0.0714901f, -0.162117f, -0.175168f, -0.0232934f,
+ -0.0424661f, -0.231802f, -0.513374f, -0.00680323f,
+ -0.0668735f, 0.204078f, -0.42765f, -0.0312321f };
+ return UnidirectionalSequenceLstmLayerFloat32TestImpl<armnn::DataType::Float32>(
+ workloadFactory, memoryManager, tensorHandleFactory,
+ input, expectedOutput, inputInfo.GetShape(), outputInfo.GetShape());
+}
+
LayerTestResult<float, 3> UnidirectionalSequenceLstmLayerFloat32Test(
armnn::IWorkloadFactory& workloadFactory,
const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
diff --git a/src/backends/backendsCommon/test/layerTests/UnidirectionalSequenceLstmTestImpl.hpp b/src/backends/backendsCommon/test/layerTests/UnidirectionalSequenceLstmTestImpl.hpp
index 3a1d178ccb..f303b28c10 100644
--- a/src/backends/backendsCommon/test/layerTests/UnidirectionalSequenceLstmTestImpl.hpp
+++ b/src/backends/backendsCommon/test/layerTests/UnidirectionalSequenceLstmTestImpl.hpp
@@ -10,6 +10,16 @@
#include <armnn/backends/IBackendInternal.hpp>
#include <armnn/backends/WorkloadFactory.hpp>
+LayerTestResult<float, 3> UnidirectionalSequenceLstmLayerFloat32TimeMajorSingleBatchTest(
+ armnn::IWorkloadFactory& workloadFactory,
+ const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
+ const armnn::ITensorHandleFactory& tensorHandleFactory);
+
+LayerTestResult<float, 3> UnidirectionalSequenceLstmLayerFloat32BatchMajorSingleBatchTest(
+ armnn::IWorkloadFactory& workloadFactory,
+ const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
+ const armnn::ITensorHandleFactory& tensorHandleFactory);
+
LayerTestResult<float, 3> UnidirectionalSequenceLstmLayerFloat32Test(
armnn::IWorkloadFactory& workloadFactory,
const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
diff --git a/src/backends/cl/workloads/ClLstmFloatWorkload.cpp b/src/backends/cl/workloads/ClLstmFloatWorkload.cpp
index 37dfab6a5f..e190f33bbc 100644
--- a/src/backends/cl/workloads/ClLstmFloatWorkload.cpp
+++ b/src/backends/cl/workloads/ClLstmFloatWorkload.cpp
@@ -7,6 +7,7 @@
#include <cl/ClTensorHandle.hpp>
#include <armnn/backends/TensorHandle.hpp>
#include <cl/ClLayerSupport.hpp>
+#include <aclCommon/ArmComputeUtils.hpp>
#include <aclCommon/ArmComputeTensorUtils.hpp>
#include <armnn/utility/NumericCast.hpp>
@@ -19,8 +20,8 @@ namespace armnn
{
using namespace armcomputetensorutils;
-ClLstmFloatWorkload::ClLstmFloatWorkload(const LstmQueueDescriptor &descriptor,
- const WorkloadInfo &info,
+ClLstmFloatWorkload::ClLstmFloatWorkload(const LstmQueueDescriptor& descriptor,
+ const WorkloadInfo& info,
const arm_compute::CLCompileContext& clCompileContext)
: FloatWorkload<LstmQueueDescriptor>(descriptor, info)
{
@@ -28,7 +29,7 @@ ClLstmFloatWorkload::ClLstmFloatWorkload(const LstmQueueDescriptor &descriptor,
ARMNN_REPORT_PROFILING_WORKLOAD_DESC("ClLstmFloatWorkload_Construct",
descriptor.m_Parameters,
info,
- this->GetGuid());
+ GetGuid());
arm_compute::LSTMParams<arm_compute::ICLTensor> lstm_param;
@@ -163,35 +164,8 @@ ClLstmFloatWorkload::ClLstmFloatWorkload(const LstmQueueDescriptor &descriptor,
float projection_threshold = m_Data.m_Parameters.m_ClippingThresProj;
// for preparing the object for the class ActivationLayerInfo, we need to consider 5 situations
- arm_compute::ActivationLayerInfo activationLayerInfo;
- if (m_Data.m_Parameters.m_ActivationFunc == 0)
- {
- // no activation, do nothing
- }
- else if (m_Data.m_Parameters.m_ActivationFunc == 1)
- {
- activationLayerInfo = arm_compute::ActivationLayerInfo(
- arm_compute::ActivationLayerInfo::ActivationFunction::RELU);
- }
- else if (m_Data.m_Parameters.m_ActivationFunc == 3)
- {
- activationLayerInfo = arm_compute::ActivationLayerInfo(
- arm_compute::ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.0);
- }
- else if (m_Data.m_Parameters.m_ActivationFunc == 4)
- {
- activationLayerInfo = arm_compute::ActivationLayerInfo(
- arm_compute::ActivationLayerInfo::ActivationFunction::TANH, 1.0, 1.0);
- }
- else if (m_Data.m_Parameters.m_ActivationFunc == 6)
- {
- activationLayerInfo = arm_compute::ActivationLayerInfo(
- arm_compute::ActivationLayerInfo::ActivationFunction::LOGISTIC);
- }
- else
- {
- throw armnn::Exception("Wrong Type of Activation Function!");
- }
+ arm_compute::ActivationLayerInfo activationLayerInfo =
+ ConvertLstmActivationFuncToAclLayerInfo(m_Data.m_Parameters.m_ActivationFunc);
{
ARMNN_SCOPED_PROFILING_EVENT(Compute::Undefined, "ClLstmFloatWorkload_configure");
@@ -263,7 +237,7 @@ ClLstmFloatWorkload::ClLstmFloatWorkload(const LstmQueueDescriptor &descriptor,
void ClLstmFloatWorkload::Execute() const
{
- ARMNN_SCOPED_PROFILING_EVENT_CL_GUID("ClLstmFloatWorkload_Execute", this->GetGuid());
+ ARMNN_SCOPED_PROFILING_EVENT_CL_GUID("ClLstmFloatWorkload_Execute", GetGuid());
RunClFunction(m_LstmLayer, CHECK_LOCATION());
}
@@ -354,35 +328,8 @@ arm_compute::Status ClLstmFloatWorkloadValidate(const TensorInfo& input, const T
float projection_threshold = descriptor.m_ClippingThresProj;
// for preparing the object for the class ActivationLayerInfo, we need to consider 5 situations
- arm_compute::ActivationLayerInfo activationLayerInfo;
- if (descriptor.m_ActivationFunc == 0)
- {
- // no activation, do nothing
- }
- else if (descriptor.m_ActivationFunc == 1)
- {
- activationLayerInfo = arm_compute::ActivationLayerInfo(
- arm_compute::ActivationLayerInfo::ActivationFunction::RELU);
- }
- else if (descriptor.m_ActivationFunc == 3)
- {
- activationLayerInfo = arm_compute::ActivationLayerInfo(
- arm_compute::ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.0);
- }
- else if (descriptor.m_ActivationFunc == 4)
- {
- activationLayerInfo = arm_compute::ActivationLayerInfo(
- arm_compute::ActivationLayerInfo::ActivationFunction::TANH, 1.0, 1.0);
- }
- else if (descriptor.m_ActivationFunc == 6)
- {
- activationLayerInfo = arm_compute::ActivationLayerInfo(
- arm_compute::ActivationLayerInfo::ActivationFunction::LOGISTIC);
- }
- else
- {
- throw armnn::Exception("Wrong Type of Activation Function!");
- }
+ arm_compute::ActivationLayerInfo activationLayerInfo =
+ ConvertLstmActivationFuncToAclLayerInfo(descriptor.m_ActivationFunc);
if (descriptor.m_LayerNormEnabled)
{
diff --git a/src/backends/neon/NeonLayerSupport.cpp b/src/backends/neon/NeonLayerSupport.cpp
index 2b2229a4de..8901e47a0a 100644
--- a/src/backends/neon/NeonLayerSupport.cpp
+++ b/src/backends/neon/NeonLayerSupport.cpp
@@ -76,6 +76,7 @@
#include "workloads/NeonSubtractionWorkload.hpp"
#include "workloads/NeonTransposeConvolution2dWorkload.hpp"
#include "workloads/NeonTransposeWorkload.hpp"
+#include "workloads/NeonUnidirectionalSequenceLstmFloatWorkload.hpp"
#endif
namespace armnn
@@ -344,6 +345,17 @@ bool NeonLayerSupport::IsLayerSupported(const LayerType& type,
*(PolymorphicDowncast<const QLstmDescriptor*>(&descriptor)),
lstmParamsInfo.value(),
reasonIfUnsupported);
+ case LayerType::UnidirectionalSequenceLstm:
+ return IsUnidirectionalSequenceLstmSupported(infos[0],
+ infos[1],
+ infos[2],
+ infos[3],
+ infos[4],
+ infos[5],
+ *(PolymorphicDowncast<const
+ UnidirectionalSequenceLstmDescriptor*>(&descriptor)),
+ lstmParamsInfo.value(),
+ reasonIfUnsupported);
case LayerType::Maximum:
return IsMaximumSupported(infos[0], infos[1], infos[2], reasonIfUnsupported);
case LayerType::Mean:
@@ -1421,4 +1433,26 @@ bool NeonLayerSupport::IsTransposeSupported(const TensorInfo& input,
FORWARD_WORKLOAD_VALIDATE_FUNC(NeonTransposeWorkloadValidate, reasonIfUnsupported, input, output, descriptor);
}
+bool NeonLayerSupport::IsUnidirectionalSequenceLstmSupported(const TensorInfo& input,
+ const TensorInfo& outputStateIn,
+ const TensorInfo& cellStateIn,
+ const TensorInfo& output,
+ const Optional<TensorInfo>& hiddenStateOutput,
+ const Optional<TensorInfo>& cellStateOutput,
+ const UnidirectionalSequenceLstmDescriptor& descriptor,
+ const LstmInputParamsInfo& paramsInfo,
+ Optional<std::string&> reasonIfUnsupported) const
+{
+ FORWARD_WORKLOAD_VALIDATE_FUNC(NeonUnidirectionalSequenceLstmFloatWorkloadValidate,
+ reasonIfUnsupported,
+ input,
+ outputStateIn,
+ cellStateIn,
+ output,
+ hiddenStateOutput,
+ cellStateOutput,
+ descriptor,
+ paramsInfo);
+}
+
} // namespace armnn
diff --git a/src/backends/neon/NeonLayerSupport.hpp b/src/backends/neon/NeonLayerSupport.hpp
index afa9b419e6..1eef41fda5 100644
--- a/src/backends/neon/NeonLayerSupport.hpp
+++ b/src/backends/neon/NeonLayerSupport.hpp
@@ -336,6 +336,16 @@ public:
const TransposeDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported = EmptyOptional()) const override;
+ bool IsUnidirectionalSequenceLstmSupported(const TensorInfo& input,
+ const TensorInfo& outputStateIn,
+ const TensorInfo& cellStateIn,
+ const TensorInfo& output,
+ const Optional<TensorInfo>& hiddenStateOutput,
+ const Optional<TensorInfo>& cellStateOutput,
+ const UnidirectionalSequenceLstmDescriptor& descriptor,
+ const LstmInputParamsInfo& paramsInfo,
+ Optional<std::string&> reasonIfUnsupported) const override;
+
private:
const IBackendInternal::IBackendSpecificModelContextPtr m_ModelContextPtr;
diff --git a/src/backends/neon/NeonWorkloadFactory.cpp b/src/backends/neon/NeonWorkloadFactory.cpp
index 19d322b75d..7d94dafc9a 100644
--- a/src/backends/neon/NeonWorkloadFactory.cpp
+++ b/src/backends/neon/NeonWorkloadFactory.cpp
@@ -555,6 +555,11 @@ std::unique_ptr<IWorkload> NeonWorkloadFactory::CreateWorkload(LayerType type,
info,
m_MemoryManager->GetIntraLayerManager());
}
+ case LayerType::UnidirectionalSequenceLstm :
+ {
+ auto desc = PolymorphicDowncast<const UnidirectionalSequenceLstmQueueDescriptor*>(&descriptor);
+ return MakeWorkloadHelper<NeonUnidirectionalSequenceLstmFloatWorkload, NullWorkload>(*desc, info);
+ }
default:
return nullptr;
}
diff --git a/src/backends/neon/backend.mk b/src/backends/neon/backend.mk
index 8ae50ac7e0..d43426f7f4 100644
--- a/src/backends/neon/backend.mk
+++ b/src/backends/neon/backend.mk
@@ -84,7 +84,8 @@ BACKEND_SOURCES := \
workloads/NeonStridedSliceWorkload.cpp \
workloads/NeonSubtractionWorkload.cpp \
workloads/NeonTransposeConvolution2dWorkload.cpp \
- workloads/NeonTransposeWorkload.cpp
+ workloads/NeonTransposeWorkload.cpp \
+ workloads/NeonUnidirectionalSequenceLstmFloatWorkload.cpp
else
diff --git a/src/backends/neon/test/NeonLayerTests.cpp b/src/backends/neon/test/NeonLayerTests.cpp
index 9648c1626a..231e2b0e7a 100644
--- a/src/backends/neon/test/NeonLayerTests.cpp
+++ b/src/backends/neon/test/NeonLayerTests.cpp
@@ -907,6 +907,22 @@ ARMNN_AUTO_TEST_CASE_WITH_THF(QLstm2, QLstmTest2)
// QuantizedLstm
ARMNN_AUTO_TEST_CASE_WITH_THF(QuantizedLstm, QuantizedLstmTest)
+// Unidirectional Sequence Lstm
+ARMNN_AUTO_TEST_CASE_WITH_THF(UnidirectionalSequenceLstmLayerFloat32TimeMajorSingleBatch,
+ UnidirectionalSequenceLstmLayerFloat32TimeMajorSingleBatchTest)
+ARMNN_AUTO_TEST_CASE_WITH_THF(UnidirectionalSequenceLstmLayerFloat32BatchMajorSingleBatch,
+ UnidirectionalSequenceLstmLayerFloat32BatchMajorSingleBatchTest)
+ARMNN_AUTO_TEST_CASE_WITH_THF(UnidirectionalSequenceLstmLayerFloat32,
+ UnidirectionalSequenceLstmLayerFloat32Test)
+ARMNN_AUTO_TEST_CASE_WITH_THF(UnidirectionalSequenceLstmLayerFloat32TimeMajor,
+ UnidirectionalSequenceLstmLayerFloat32TimeMajorTest)
+ARMNN_AUTO_TEST_CASE_WITH_THF(UnidirectionalSequenceLstmLayerNoCifgWithPeepholeWithProjection,
+ UnidirectionalSequenceLstmLayerNoCifgWithPeepholeWithProjectionTest)
+ARMNN_AUTO_TEST_CASE_WITH_THF(UnidirectionalSequenceLstmLayerNoCifgWithPeepholeWithProjectionWithLayerNorm,
+ UnidirectionalSequenceLstmLayerNoCifgWithPeepholeWithProjectionWithLayerNormTest)
+ARMNN_AUTO_TEST_CASE_WITH_THF(UnidirectionalSequenceLstmWithCifgWithPeepholeNoProjection,
+ UnidirectionalSequenceLstmWithCifgWithPeepholeNoProjectionTest)
+
// Mean
ARMNN_AUTO_TEST_CASE_WITH_THF(MeanSimpleFloat32, MeanSimpleTest<DataType::Float32>)
ARMNN_AUTO_TEST_CASE_WITH_THF(MeanSimpleAxisFloat32, MeanSimpleAxisTest<DataType::Float32>)
diff --git a/src/backends/neon/workloads/CMakeLists.txt b/src/backends/neon/workloads/CMakeLists.txt
index 0c64a19bf9..bae51b9c79 100644
--- a/src/backends/neon/workloads/CMakeLists.txt
+++ b/src/backends/neon/workloads/CMakeLists.txt
@@ -131,6 +131,8 @@ list(APPEND armnnNeonBackendWorkloads_sources
NeonTransposeConvolution2dWorkload.hpp
NeonTransposeWorkload.cpp
NeonTransposeWorkload.hpp
+ NeonUnidirectionalSequenceLstmFloatWorkload.cpp
+ NeonUnidirectionalSequenceLstmFloatWorkload.hpp
NeonWorkloads.hpp
NeonWorkloadUtils.hpp
)
diff --git a/src/backends/neon/workloads/NeonLstmFloatWorkload.cpp b/src/backends/neon/workloads/NeonLstmFloatWorkload.cpp
index 2f14ab9022..19c85f7f33 100644
--- a/src/backends/neon/workloads/NeonLstmFloatWorkload.cpp
+++ b/src/backends/neon/workloads/NeonLstmFloatWorkload.cpp
@@ -6,7 +6,8 @@
#include "NeonLstmFloatWorkload.hpp"
#include "NeonWorkloadUtils.hpp"
-#include "aclCommon/ArmComputeTensorUtils.hpp"
+#include <aclCommon/ArmComputeTensorUtils.hpp>
+#include <aclCommon/ArmComputeUtils.hpp>
#include <armnn/utility/NumericCast.hpp>
@@ -16,14 +17,14 @@ namespace armnn
{
using namespace armcomputetensorutils;
-NeonLstmFloatWorkload::NeonLstmFloatWorkload(const LstmQueueDescriptor &descriptor, const WorkloadInfo &info)
+NeonLstmFloatWorkload::NeonLstmFloatWorkload(const LstmQueueDescriptor& descriptor, const WorkloadInfo& info)
: FloatWorkload<LstmQueueDescriptor>(descriptor, info)
{
// Report Profiling Details
ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonLstmFloatWorkload_Construct",
descriptor.m_Parameters,
info,
- this->GetGuid());
+ GetGuid());
arm_compute::LSTMParams<arm_compute::ITensor> lstm_param;
@@ -160,36 +161,8 @@ NeonLstmFloatWorkload::NeonLstmFloatWorkload(const LstmQueueDescriptor &descript
float projection_threshold = m_Data.m_Parameters.m_ClippingThresProj;
// for preparing the object for the class ActivationLayerInfo, we need to consider 5 situations
- arm_compute::ActivationLayerInfo activationLayerInfo;
- if (m_Data.m_Parameters.m_ActivationFunc == 0)
- {
- // no activation, do nothing
- }
- else if (m_Data.m_Parameters.m_ActivationFunc == 1)
- {
- activationLayerInfo = arm_compute::ActivationLayerInfo(
- arm_compute::ActivationLayerInfo::ActivationFunction::RELU);
- }
- else if (m_Data.m_Parameters.m_ActivationFunc == 3)
- {
- activationLayerInfo = arm_compute::ActivationLayerInfo(
- arm_compute::ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.0);
- }
- else if (m_Data.m_Parameters.m_ActivationFunc == 4)
- {
- activationLayerInfo = arm_compute::ActivationLayerInfo(
- arm_compute::ActivationLayerInfo::ActivationFunction::TANH, 1.0, 1.0);
- }
- else if (m_Data.m_Parameters.m_ActivationFunc == 6)
- {
- activationLayerInfo = arm_compute::ActivationLayerInfo(
- arm_compute::ActivationLayerInfo::ActivationFunction::LOGISTIC);
- }
- else
- {
- throw armnn::Exception("Wrong Type of Activation Function!");
- }
-
+ arm_compute::ActivationLayerInfo activationLayerInfo =
+ ConvertLstmActivationFuncToAclLayerInfo(m_Data.m_Parameters.m_ActivationFunc);
m_LstmLayer.configure(&input, m_InputToForgetWeightsTensor.get(), m_InputToCellWeightsTensor.get(),
m_InputToOutputWeightsTensor.get(), m_RecurrentToForgetWeightsTensor.get(),
@@ -273,7 +246,7 @@ NeonLstmFloatWorkload::NeonLstmFloatWorkload(const LstmQueueDescriptor &descript
void NeonLstmFloatWorkload::Execute() const
{
- ARMNN_SCOPED_PROFILING_EVENT_NEON_GUID("NeonLstmFloatWorkload_Execute", this->GetGuid());
+ ARMNN_SCOPED_PROFILING_EVENT_NEON_GUID("NeonLstmFloatWorkload_Execute", GetGuid());
m_LstmLayer.run();
}
@@ -390,31 +363,8 @@ arm_compute::Status NeonLstmFloatWorkloadValidate(const TensorInfo& input,
float projection_threshold = descriptor.m_ClippingThresProj;
// for preparing the object for the class ActivationLayerInfo, we need to consider 5 situations
- arm_compute::ActivationLayerInfo activationLayerInfo;
- switch (descriptor.m_ActivationFunc)
- {
- case 0:
- // no activation, do nothing
- break;
- case 1:
- activationLayerInfo = arm_compute::ActivationLayerInfo(
- arm_compute::ActivationLayerInfo::ActivationFunction::RELU);
- break;
- case 3:
- activationLayerInfo = arm_compute::ActivationLayerInfo(
- arm_compute::ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.0);
- break;
- case 4:
- activationLayerInfo = arm_compute::ActivationLayerInfo(
- arm_compute::ActivationLayerInfo::ActivationFunction::TANH, 1.0, 1.0);
- break;
- case 6:
- activationLayerInfo = arm_compute::ActivationLayerInfo(
- arm_compute::ActivationLayerInfo::ActivationFunction::LOGISTIC);
- break;
- default:
- throw armnn::Exception("Wrong Type of Activation Function!");
- }
+ arm_compute::ActivationLayerInfo activationLayerInfo =
+ ConvertLstmActivationFuncToAclLayerInfo(descriptor.m_ActivationFunc);
return arm_compute::NELSTMLayer::validate(&aclInputInfo,
&aclInputToForgetWeightsInfo,
diff --git a/src/backends/neon/workloads/NeonUnidirectionalSequenceLstmFloatWorkload.cpp b/src/backends/neon/workloads/NeonUnidirectionalSequenceLstmFloatWorkload.cpp
new file mode 100644
index 0000000000..c911afb237
--- /dev/null
+++ b/src/backends/neon/workloads/NeonUnidirectionalSequenceLstmFloatWorkload.cpp
@@ -0,0 +1,911 @@
+//
+// Copyright © 2022 Arm Ltd and Contributors. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include "NeonUnidirectionalSequenceLstmFloatWorkload.hpp"
+#include "NeonWorkloadUtils.hpp"
+
+#include <aclCommon/ArmComputeUtils.hpp>
+#include <aclCommon/ArmComputeTensorUtils.hpp>
+
+#include <armnn/utility/NumericCast.hpp>
+#include <armnnUtils/Permute.hpp>
+#include <neon/test/NeonWorkloadFactoryHelper.hpp>
+#include <backendsCommon/WorkloadUtils.hpp>
+
+#include "neon/NeonTensorHandle.hpp"
+
+namespace
+{
+unsigned int CalcAclAxis(unsigned int numDimensions, unsigned int axis)
+{
+ return (numDimensions - axis) - 1;
+}
+} //namespace
+
+namespace armnn
+{
+using namespace armcomputetensorutils;
+
+NeonUnidirectionalSequenceLstmFloatWorkload::NeonUnidirectionalSequenceLstmFloatWorkload
+ (const UnidirectionalSequenceLstmQueueDescriptor& descriptor, const WorkloadInfo& info)
+ : FloatWorkload<UnidirectionalSequenceLstmQueueDescriptor>(descriptor, info)
+{
+ // Report Profiling Details
+ ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonUnidirectionalSequenceLstmFloatWorkload_Construct",
+ descriptor.m_Parameters,
+ info,
+ GetGuid());
+
+ const arm_compute::ITensor& input = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
+ arm_compute::ITensor& output = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
+
+ TensorInfo inputInfo = info.m_InputTensorInfos[0];
+ TensorInfo outputInfo = info.m_OutputTensorInfos[0];
+
+ arm_compute::DataType armComputeDataType = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetDataType();
+ armnn::DataType armnnDataType = GetArmNNDataType(armComputeDataType);
+
+ TensorShape inputLayerShape = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetShape();
+ TensorShape cellStateLayerShape = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[2])->GetShape();
+ TensorShape outputLayerShape = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[0])->GetShape();
+
+ unsigned int maxTime = m_Data.m_Parameters.m_TimeMajor ? inputLayerShape[0] : inputLayerShape[1];
+ unsigned int batchSize = m_Data.m_Parameters.m_TimeMajor ? inputLayerShape[1] : inputLayerShape[0];
+ unsigned int inputSize = inputLayerShape[2];
+ unsigned int outputSize = outputLayerShape[2];
+ unsigned int numUnits = cellStateLayerShape[1];
+
+ const TensorShape timeMajorShapeInput({maxTime, batchSize, inputSize});
+ const TensorShape timeMajorShapeOutput({maxTime, batchSize, outputSize});
+
+ //
+ // Permute: performed if Unidirectional Sequence Layer inputs/outputs are in batch major format.
+ //
+ if (!m_Data.m_Parameters.m_TimeMajor)
+ {
+ std::unique_ptr<arm_compute::NEPermute> layer(new arm_compute::NEPermute());
+
+ TensorInfo permuteOutInfo = inputInfo;
+ permuteOutInfo.SetShape(timeMajorShapeInput);
+ BuildArmComputeTensor(m_PermuteFirstOut, permuteOutInfo);
+ armcomputetensorutils::InitialiseArmComputeTensorEmpty(m_PermuteFirstOut);
+
+ // Permute to time major format.
+ layer->configure(&input, &m_PermuteFirstOut, arm_compute::PermutationVector(0U,2U,1U));
+ m_Permute1.reset(layer.release());
+ }
+
+ //
+ // Split and Concat Tensors
+ //
+ for (unsigned int i = 0; i < maxTime; ++i)
+ {
+ arm_compute::Tensor splitter_out;
+ arm_compute::Tensor concat_in;
+
+ auto splitterTensorInfo = inputInfo;
+ auto concatTensorInfo = outputInfo;
+ splitterTensorInfo.SetShape({batchSize, inputSize});
+ concatTensorInfo.SetShape({batchSize, outputSize});
+ BuildArmComputeTensor(splitter_out, splitterTensorInfo);
+ BuildArmComputeTensor(concat_in, concatTensorInfo);
+
+ armcomputetensorutils::InitialiseArmComputeTensorEmpty(splitter_out);
+ armcomputetensorutils::InitialiseArmComputeTensorEmpty(concat_in);
+
+ // append to std::vector<arm_compute::Tensor>
+ m_SplitterOutputsTensors.push_back(std::move(splitter_out));
+ m_ConcatInputsTensors.push_back(std::move(concat_in));
+ }
+
+ for (unsigned int i = 0; i < maxTime; ++i)
+ {
+ // append to std::vector<arm_compute::ITensor*>
+ m_SplitterOutputs.push_back(&m_SplitterOutputsTensors[i]);
+ m_ConcatInputs.push_back(&m_ConcatInputsTensors[i]);
+ }
+
+ //
+ // Split
+ //
+ unsigned int numberDimensions = 3;
+ unsigned int dimension = 0; // splitting on 0-dimension (i.e. maxTime dimension)
+
+ if (maxTime != 1) // ACL split does not work with only one element to split.
+ {
+ ViewsDescriptor splitterDesc(maxTime, numberDimensions);
+ unsigned int splitterDimSizes[3] = {1, batchSize, inputSize};
+ for (unsigned int outputIdx = 0u; outputIdx < maxTime; ++outputIdx)
+ {
+ splitterDesc.SetViewOriginCoord(outputIdx, dimension, splitterDimSizes[dimension] * outputIdx);
+ for (unsigned int dimIdx = 0u; dimIdx < numberDimensions; ++dimIdx)
+ {
+ splitterDesc.SetViewSize(outputIdx, dimIdx, splitterDimSizes[dimIdx]);
+ }
+ }
+
+ std::set<unsigned int> splitAxis = ComputeSplitAxis(splitterDesc, timeMajorShapeInput);
+
+ std::unique_ptr<arm_compute::NESplit> split_layer(new arm_compute::NESplit());
+ unsigned int aclAxisSplit = CalcAclAxis(splitterDesc.GetNumDimensions(),
+ *splitAxis.begin());
+ if (!m_Data.m_Parameters.m_TimeMajor)
+ {
+ split_layer->configure(&m_PermuteFirstOut, m_SplitterOutputs, aclAxisSplit);
+ } else
+ {
+ split_layer->configure(&input, m_SplitterOutputs, aclAxisSplit);
+ }
+
+ split_layer->prepare();
+ m_Splitter.reset(split_layer.release());
+ }
+
+ //
+ // Lstm
+ //
+ arm_compute::LSTMParams<arm_compute::ITensor> lstm_param;
+
+ m_InputToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
+ BuildArmComputeTensor(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights->GetTensorInfo());
+
+ m_InputToCellWeightsTensor = std::make_unique<arm_compute::Tensor>();
+ BuildArmComputeTensor(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights->GetTensorInfo());
+
+ m_InputToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
+ BuildArmComputeTensor(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights->GetTensorInfo());
+
+ m_RecurrentToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
+ BuildArmComputeTensor(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights->GetTensorInfo());
+
+ m_RecurrentToCellWeightsTensor = std::make_unique<arm_compute::Tensor>();
+ BuildArmComputeTensor(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights->GetTensorInfo());
+
+ m_RecurrentToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
+ BuildArmComputeTensor(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights->GetTensorInfo());
+
+ m_ForgetGateBiasTensor = std::make_unique<arm_compute::Tensor>();
+ BuildArmComputeTensor(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias->GetTensorInfo());
+
+ m_CellBiasTensor = std::make_unique<arm_compute::Tensor>();
+ BuildArmComputeTensor(*m_CellBiasTensor, m_Data.m_CellBias->GetTensorInfo());
+
+ m_OutputGateBiasTensor = std::make_unique<arm_compute::Tensor>();
+ BuildArmComputeTensor(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias->GetTensorInfo());
+
+ // for future reference: check the AndroidNN API for the logic here
+ if (!m_Data.m_Parameters.m_CifgEnabled)
+ {
+ m_InputToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
+ BuildArmComputeTensor(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights->GetTensorInfo());
+
+ m_RecurrentToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
+ BuildArmComputeTensor(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights->GetTensorInfo());
+
+ m_CellToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
+ if (m_Data.m_CellToInputWeights != nullptr)
+ {
+ BuildArmComputeTensor(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights->GetTensorInfo());
+ }
+
+ m_InputGateBiasTensor = std::make_unique<arm_compute::Tensor>();
+ BuildArmComputeTensor(*m_InputGateBiasTensor, m_Data.m_InputGateBias->GetTensorInfo());
+
+ lstm_param.set_cifg_params(m_InputToInputWeightsTensor.get(),
+ m_RecurrentToInputWeightsTensor.get(),
+ m_Data.m_CellToInputWeights ? m_CellToInputWeightsTensor.get() : nullptr,
+ m_InputGateBiasTensor.get());
+ }
+
+ if (m_Data.m_Parameters.m_ProjectionEnabled)
+ {
+ m_ProjectionWeightsTensor = std::make_unique<arm_compute::Tensor>();
+ BuildArmComputeTensor(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights->GetTensorInfo());
+
+ m_ProjectionBiasTensor = std::make_unique<arm_compute::Tensor>();
+ if (m_Data.m_ProjectionBias != nullptr)
+ {
+ BuildArmComputeTensor(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias->GetTensorInfo());
+ }
+
+ lstm_param.set_projection_params(m_ProjectionWeightsTensor.get(),
+ m_Data.m_ProjectionBias ? m_ProjectionBiasTensor.get() : nullptr);
+ }
+
+ if (m_Data.m_Parameters.m_PeepholeEnabled)
+ {
+ m_CellToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
+ BuildArmComputeTensor(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights->GetTensorInfo());
+
+ m_CellToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
+ BuildArmComputeTensor(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights->GetTensorInfo());
+
+ lstm_param.set_peephole_params(m_CellToForgetWeightsTensor.get(), m_CellToOutputWeightsTensor.get());
+ }
+
+ if (m_Data.m_Parameters.m_LayerNormEnabled)
+ {
+ m_InputLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
+ if (!m_Data.m_Parameters.m_CifgEnabled)
+ {
+ BuildArmComputeTensor(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights->GetTensorInfo());
+ }
+
+ m_ForgetLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
+ BuildArmComputeTensor(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights->GetTensorInfo());
+
+ m_CellLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
+ BuildArmComputeTensor(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights->GetTensorInfo());
+
+ m_OutputLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
+ BuildArmComputeTensor(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights->GetTensorInfo());
+
+ auto inputNormWeightTensor = m_Data.m_Parameters.m_CifgEnabled ? nullptr : m_InputLayerNormWeightsTensor.get();
+ lstm_param.set_layer_normalization_params(inputNormWeightTensor,
+ m_ForgetLayerNormWeightsTensor.get(),
+ m_CellLayerNormWeightsTensor.get(),
+ m_OutputLayerNormWeightsTensor.get());
+ }
+
+ arm_compute::ITensor& output_state_in = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
+ arm_compute::ITensor& cell_state_in = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
+
+ arm_compute::ITensor& output_state_out = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
+ arm_compute::ITensor& cell_state_out = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
+
+ m_ScratchBuffer = std::make_unique<arm_compute::Tensor>();
+ if (m_Data.m_Parameters.m_CifgEnabled)
+ {
+ // scratch_buffer [num_units * 3, batch_size] with CIFG
+ BuildArmComputeTensor(*m_ScratchBuffer, TensorInfo({batchSize, numUnits * 3}, armnnDataType));
+ }
+ else
+ {
+ // scratch_buffer [num_units * 4, batch_size] without CIFG
+ BuildArmComputeTensor(*m_ScratchBuffer, TensorInfo({batchSize, numUnits * 4}, armnnDataType));
+ }
+
+ // Need to be set at negative threshold to be compatible for ACL
+ float cell_threshold = m_Data.m_Parameters.m_ClippingThresCell;
+ float projection_threshold = m_Data.m_Parameters.m_ClippingThresProj;
+
+ // For preparing the object for the class ActivationLayerInfo, consider 5 situations
+ arm_compute::ActivationLayerInfo activationLayerInfo =
+ ConvertLstmActivationFuncToAclLayerInfo(m_Data.m_Parameters.m_ActivationFunc);
+
+ for (unsigned int i = 0; i != maxTime; ++i)
+ {
+ // Set LSTM input and output ITensors depending on:
+ // input format (timeMajor) & number of LSTM batches (maxTime).
+ arm_compute::ITensor* outputLSTM;
+ arm_compute::ITensor* inputLSTM;
+
+ // If there is only one LSTM time major batch, we will not concat OR permute.
+ // Set input of LSTM to be first input ITensor.
+ // Set output of LSTM to be final output ITensor.
+ // LSTM input/output cannot be > 2 dimensions so need to resize its TensorInfo.
+ if (maxTime == 1 && m_Data.m_Parameters.m_TimeMajor)
+ {
+ TensorShape inputShape = GetTensorShape((&input)->info()->tensor_shape(), 1U);
+ TensorShape outputShape = GetTensorShape((&output)->info()->tensor_shape(), 1U);
+
+ TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
+ TensorShape outputShapeShrink({outputShape[1], outputShape[2]});
+
+ auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
+ auto acl_output_shape_shrink = BuildArmComputeTensorShape(outputShapeShrink);
+
+ (&input)->info()->set_tensor_shape(acl_input_shape_shrink);
+ inputLSTM = const_cast<arm_compute::ITensor*>(&input);
+
+ (&output)->info()->set_tensor_shape(acl_output_shape_shrink);
+ outputLSTM = &output;
+ }
+ // If there is only one LSTM batch major batch, we will not concat, only permute.
+ // Set input of LSTM to be output of initial permute.
+ // Set output of LSTM to be first element of m_ConcatInputs & use that value later in permute.
+ // LSTM output cannot be > 2 dimensions so need to resize its TensorInfo.
+ else if (maxTime == 1 && !m_Data.m_Parameters.m_TimeMajor)
+ {
+ TensorShape inputShape = GetTensorShape(m_PermuteFirstOut.info()->tensor_shape(), 1U);
+ TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
+ auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
+ m_PermuteFirstOut.info()->set_tensor_shape(acl_input_shape_shrink);
+ inputLSTM = &m_PermuteFirstOut;
+
+ outputLSTM = const_cast<arm_compute::ITensor*>(m_ConcatInputs[i]);
+ }
+ // Batch major AND/OR 2+ LSTM batches so will use concat AND/OR permute later on.
+ else
+ {
+ inputLSTM = m_SplitterOutputs[i];
+ outputLSTM = const_cast<arm_compute::ITensor*>(m_ConcatInputs[i]);
+ }
+
+ std::unique_ptr<arm_compute::NELSTMLayer> lstm_layer(new arm_compute::NELSTMLayer());
+ lstm_layer->configure(inputLSTM,
+ m_InputToForgetWeightsTensor.get(),
+ m_InputToCellWeightsTensor.get(),
+ m_InputToOutputWeightsTensor.get(),
+ m_RecurrentToForgetWeightsTensor.get(),
+ m_RecurrentToCellWeightsTensor.get(),
+ m_RecurrentToOutputWeightsTensor.get(),
+ m_ForgetGateBiasTensor.get(),
+ m_CellBiasTensor.get(),
+ m_OutputGateBiasTensor.get(),
+ &output_state_in,
+ &cell_state_in,
+ m_ScratchBuffer.get(),
+ &output_state_out,
+ &cell_state_out,
+ outputLSTM,
+ lstm_param,
+ activationLayerInfo,
+ cell_threshold,
+ projection_threshold);
+
+ m_Layers.emplace_back(std::move(lstm_layer));
+ }
+
+ armcomputetensorutils::InitialiseArmComputeTensorEmpty(*m_ScratchBuffer);
+
+ InitializeArmComputeTensorData(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights);
+ InitializeArmComputeTensorData(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights);
+ InitializeArmComputeTensorData(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights);
+ InitializeArmComputeTensorData(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights);
+ InitializeArmComputeTensorData(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights);
+ InitializeArmComputeTensorData(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights);
+ InitializeArmComputeTensorData(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias);
+ InitializeArmComputeTensorData(*m_CellBiasTensor, m_Data.m_CellBias);
+ InitializeArmComputeTensorData(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias);
+
+ if (!m_Data.m_Parameters.m_CifgEnabled)
+ {
+ InitializeArmComputeTensorData(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights);
+ InitializeArmComputeTensorData(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights);
+ if (m_Data.m_CellToInputWeights != nullptr)
+ {
+ InitializeArmComputeTensorData(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights);
+ }
+ InitializeArmComputeTensorData(*m_InputGateBiasTensor, m_Data.m_InputGateBias);
+ }
+
+ if (m_Data.m_Parameters.m_ProjectionEnabled)
+ {
+ InitializeArmComputeTensorData(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights);
+ if (m_Data.m_ProjectionBias != nullptr)
+ {
+ InitializeArmComputeTensorData(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias);
+ }
+ }
+
+ if (m_Data.m_Parameters.m_PeepholeEnabled)
+ {
+ InitializeArmComputeTensorData(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights);
+ InitializeArmComputeTensorData(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights);
+ }
+
+ if (m_Data.m_Parameters.m_LayerNormEnabled)
+ {
+ if (!m_Data.m_Parameters.m_CifgEnabled)
+ {
+ InitializeArmComputeTensorData(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights);
+ }
+ InitializeArmComputeTensorData(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights);
+ InitializeArmComputeTensorData(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights);
+ InitializeArmComputeTensorData(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights);
+ }
+
+ // Force Compute Library to perform the necessary copying and reshaping.
+ // After which delete all the input tensors that will no longer be needed.
+ for (uint32_t i = 0; i < m_Layers.size(); ++i)
+ {
+ m_Layers[i]->prepare();
+ }
+
+ //
+ // Concat
+ //
+
+ // Expand dimensions of LSTM outputs adding one empty dimension to fit concatenate inputs.
+ TensorShape shape = GetTensorShape(m_ConcatInputs[0]->info()->tensor_shape(), 1U);
+ TensorShape shapeExpandTimeMajor({1, shape[0], shape[1]});
+ TensorShape shapeExpandBatchMajor({shape[0], 1, shape[1]});
+
+ if (maxTime != 1) // ACL concat does not work with only one element to concatenate.
+ {
+ for (unsigned int i = 0; i < maxTime; ++i)
+ {
+ m_ConcatInputs[i]->info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandTimeMajor));
+ }
+
+ ConcatDescriptor concatDescriptor(maxTime, numberDimensions); // maxTime = num inputs (aka. number of views).
+ for (unsigned int inputIdx = 0u; inputIdx < maxTime; ++inputIdx)
+ {
+ concatDescriptor.SetViewOriginCoord(inputIdx, dimension, inputIdx);
+ concatDescriptor.SetConcatAxis(dimension);
+ }
+
+ m_Concat.reset(new arm_compute::NEConcatenateLayer());
+ unsigned int aclAxisConcat = CalcAclAxis(concatDescriptor.GetNumDimensions(), concatDescriptor.GetConcatAxis());
+ if (!m_Data.m_Parameters.m_TimeMajor)
+ {
+ TensorInfo concatOuputTensorInfo = outputInfo;
+ concatOuputTensorInfo.SetShape(timeMajorShapeOutput);
+ BuildArmComputeTensor(concat_out, concatOuputTensorInfo);
+ armcomputetensorutils::InitialiseArmComputeTensorEmpty(concat_out);
+
+ m_Concat->configure(m_ConcatInputs, &concat_out, aclAxisConcat);
+ }
+ else
+ {
+ m_Concat->configure(m_ConcatInputs, &output, aclAxisConcat);
+ }
+
+ m_Concat->prepare();
+ }
+ // If only one LSTM batch, we do not concat and/or permute.
+ // Must ensure final output info is expanded to correct batch major dimensions.
+ else
+ {
+ if (!m_Data.m_Parameters.m_TimeMajor)
+ {
+ (&output)->info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandBatchMajor));
+ }
+ else
+ {
+ (&output)->info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandTimeMajor));
+ }
+ }
+
+ //
+ // Permute: only done if input/output are in batch major format.
+ //
+ if (!m_Data.m_Parameters.m_TimeMajor)
+ {
+ // Output now time major. Permute output back to batch major.
+ std::unique_ptr<arm_compute::NEPermute> layer(new arm_compute::NEPermute());
+ if (maxTime != 1)
+ {
+ layer->configure(&concat_out, &output, arm_compute::PermutationVector(0U, 2U, 1U));
+ }
+ else
+ {
+ layer->configure(m_ConcatInputs[0], &output, arm_compute::PermutationVector(0U, 2U, 1U));
+ }
+ m_Permute2.reset(layer.release());
+ }
+
+ FreeUnusedTensors();
+}
+
+void NeonUnidirectionalSequenceLstmFloatWorkload::Execute() const
+{
+ ARMNN_SCOPED_PROFILING_EVENT_NEON_GUID("NeonUnidirectionalSequenceLstmFloatWorkload_Execute", GetGuid());
+ if (m_Permute1)
+ {
+ m_Permute1->run();
+ }
+ if (m_Splitter)
+ {
+ m_Splitter->run();
+ }
+ for (uint32_t i = 0; i < m_Layers.size(); ++i)
+ {
+ m_Layers[i]->run();
+ }
+ if (m_Concat)
+ {
+ m_Concat->run();
+ }
+ if (m_Permute2)
+ {
+ m_Permute2->run();
+ }
+}
+
+arm_compute::Status
+NeonUnidirectionalSequenceLstmFloatWorkloadValidate(const TensorInfo& input,
+ const TensorInfo& outputStateIn,
+ const TensorInfo& cellStateIn,
+ const TensorInfo& output,
+ const Optional<TensorInfo>& hiddenStateOutput,
+ const Optional<TensorInfo>& cellStateOutput,
+ const UnidirectionalSequenceLstmDescriptor& descriptor,
+ const LstmInputParamsInfo& paramsInfo)
+{
+ IgnoreUnused(hiddenStateOutput, cellStateOutput);
+
+ TensorShape inputLayerShape = input.GetShape();
+ TensorShape outputLayerShape = outputStateIn.GetShape();
+
+ unsigned int maxTime = descriptor.m_TimeMajor ? inputLayerShape[0] : inputLayerShape[1];
+ unsigned int batchSize = descriptor.m_TimeMajor ? inputLayerShape[1] : inputLayerShape[0];
+ unsigned int inputSize = inputLayerShape[2];
+ unsigned int outputSize = outputLayerShape[2];
+
+ const TensorShape timeMajorShapeInput({maxTime, batchSize, inputSize});
+ const TensorShape timeMajorShapeOutput({maxTime, batchSize, outputSize});
+
+ arm_compute::Status statusPermute1 = arm_compute::Status(arm_compute::ErrorCode::OK,
+ "Permute1 status");
+ arm_compute::Status statusSplit = arm_compute::Status(arm_compute::ErrorCode::OK,
+ "Split status");
+ arm_compute::Status statusLSTM = arm_compute::Status(arm_compute::ErrorCode::OK,
+ "LSTM status");
+ arm_compute::Status statusConcat = arm_compute::Status(arm_compute::ErrorCode::OK,
+ "Concat status");
+ arm_compute::Status statusPermute2 = arm_compute::Status(arm_compute::ErrorCode::OK,
+ "Permute2 status");
+
+ const arm_compute::TensorInfo aclInputInfo = armcomputetensorutils::BuildArmComputeTensorInfo(input);
+ const arm_compute::TensorInfo aclOutputInfo = armcomputetensorutils::BuildArmComputeTensorInfo(output);
+
+ //
+ // Permute validate
+ //
+ TensorInfo permuteOutInfo = TensorInfo(input);
+ arm_compute::TensorInfo aclPermuteOutInfo = armcomputetensorutils::BuildArmComputeTensorInfo(permuteOutInfo);
+ if (!descriptor.m_TimeMajor)
+ {
+ statusPermute1 = arm_compute::NEPermute::validate(&aclInputInfo,
+ &aclPermuteOutInfo,
+ arm_compute::PermutationVector(0U, 2U, 1U));
+ }
+
+ //
+ // Split and Concat Tensors validate
+ //
+ std::vector<arm_compute::TensorInfo> splitterOutputsTensorInfos;
+ std::vector<arm_compute::TensorInfo> concatInputsTensorInfos;
+ std::vector<arm_compute::ITensorInfo*> splitterOutputsTensorInfosPtr;
+ std::vector<const arm_compute::ITensorInfo*> concatInputsTensorInfosPtr;
+ splitterOutputsTensorInfos.reserve(maxTime);
+ concatInputsTensorInfos.reserve(maxTime);
+ for (unsigned int i = 0; i < maxTime; ++i)
+ {
+ arm_compute::TensorInfo splitter_out;
+ arm_compute::TensorInfo concat_in;
+
+ auto splitterTensorInfo = TensorInfo(input);
+ auto concatTensorInfo = TensorInfo(output);
+ splitterTensorInfo.SetShape({batchSize, inputSize});
+ concatTensorInfo.SetShape({batchSize, outputSize});
+
+ arm_compute::TensorInfo aclSplitterTensorInfo
+ = armcomputetensorutils::BuildArmComputeTensorInfo(splitterTensorInfo);
+ arm_compute::TensorInfo aclConcatTensorInfo
+ = armcomputetensorutils::BuildArmComputeTensorInfo(concatTensorInfo);
+
+ splitterOutputsTensorInfos.emplace_back(aclSplitterTensorInfo);
+ concatInputsTensorInfos.emplace_back(aclConcatTensorInfo);
+ splitterOutputsTensorInfosPtr.emplace_back(&splitterOutputsTensorInfos[i]);
+ concatInputsTensorInfosPtr.emplace_back(&concatInputsTensorInfos[i]);
+ }
+
+ //
+ // Split validate
+ //
+ unsigned int numberDimensions = 3;
+ unsigned int dimension = 0; // splitting on 0-dimension (i.e. maxTime dimension)
+ unsigned int aclAxisSplit = CalcAclAxis(numberDimensions, dimension);
+
+ if (maxTime != 1) // ACL split does not work with only one element to split.
+ {
+ if (!descriptor.m_TimeMajor)
+ {
+ statusSplit = arm_compute::NESplit::validate(&aclPermuteOutInfo,
+ splitterOutputsTensorInfosPtr,
+ aclAxisSplit);
+ } else
+ {
+ statusSplit = arm_compute::NESplit::validate(&aclInputInfo, splitterOutputsTensorInfosPtr, aclAxisSplit);
+ }
+ }
+
+ //
+ // LSTM validate
+ //
+
+ arm_compute::LSTMParams<arm_compute::ITensorInfo> lstm_params_info;
+
+ const TensorInfo& scratchBuffer = TensorInfo(cellStateIn.GetShape(), input.GetDataType());
+ const TensorInfo& outputStateOut = TensorInfo(outputStateIn.GetShape(), input.GetDataType());
+ const TensorInfo& cellStateOut = TensorInfo(cellStateIn.GetShape(), input.GetDataType());
+
+ // The inputs and outputs
+ const arm_compute::TensorInfo aclOutputStateInInfo = BuildArmComputeTensorInfo(outputStateIn);
+ const arm_compute::TensorInfo aclCellStateInInfo = BuildArmComputeTensorInfo(cellStateIn);
+ const arm_compute::TensorInfo aclScratchBufferInfo = BuildArmComputeTensorInfo(scratchBuffer);
+ const arm_compute::TensorInfo aclOutputStateOutInfo = BuildArmComputeTensorInfo(outputStateOut);
+ const arm_compute::TensorInfo aclCellStateOutInfo = BuildArmComputeTensorInfo(cellStateOut);
+
+ // Basic parameters
+ const arm_compute::TensorInfo aclInputToForgetWeightsInfo
+ = BuildArmComputeTensorInfo(paramsInfo.GetInputToForgetWeights());
+ const arm_compute::TensorInfo aclInputToCellWeightsInfo
+ = BuildArmComputeTensorInfo(paramsInfo.GetInputToCellWeights());
+ const arm_compute::TensorInfo aclInputToOutputWeightsInfo
+ = BuildArmComputeTensorInfo(paramsInfo.GetInputToOutputWeights());
+ const arm_compute::TensorInfo aclRecurrentToForgetWeightsInfo
+ = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToForgetWeights());
+ const arm_compute::TensorInfo aclRecurrentToCellWeightsInfo
+ = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToCellWeights());
+ const arm_compute::TensorInfo aclRecurrentToOutputWeightsInfo
+ = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToOutputWeights());
+ const arm_compute::TensorInfo aclForgetGateBiasInfo
+ = BuildArmComputeTensorInfo(paramsInfo.GetForgetGateBias());
+ const arm_compute::TensorInfo aclCellBiasInfo
+ = BuildArmComputeTensorInfo(paramsInfo.GetCellBias());
+ const arm_compute::TensorInfo aclOutputGateBiasInfo
+ = BuildArmComputeTensorInfo(paramsInfo.GetOutputGateBias());
+
+ arm_compute::TensorInfo aclInputToInputWeightsInfo;
+ arm_compute::TensorInfo aclRecurrentToInputWeightsInfo;
+ arm_compute::TensorInfo aclCellToInputWeightsInfo;
+ arm_compute::TensorInfo aclInputGateBiasInfo;
+ arm_compute::TensorInfo aclProjectionWeightsInfo;
+ arm_compute::TensorInfo aclProjectionBiasInfo;
+ arm_compute::TensorInfo aclCellToForgetWeightsInfo;
+ arm_compute::TensorInfo aclCellToOutputWeightsInfo;
+
+ arm_compute::TensorInfo aclInputLayerNormWeightsInfo;
+ arm_compute::TensorInfo aclForgetLayerNormWeightsInfo;
+ arm_compute::TensorInfo aclCellLayerNormWeightsInfo;
+ arm_compute::TensorInfo aclOutputLayerNormWeightsInfo;
+
+
+ if (!descriptor.m_CifgEnabled)
+ {
+ if (descriptor.m_PeepholeEnabled)
+ {
+ aclCellToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToInputWeights());
+ }
+ aclInputToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputToInputWeights());
+ aclRecurrentToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToInputWeights());
+ aclInputGateBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputGateBias());
+
+ lstm_params_info.set_cifg_params(&aclInputToInputWeightsInfo,
+ &aclRecurrentToInputWeightsInfo,
+ descriptor.m_PeepholeEnabled ? &aclCellToInputWeightsInfo : nullptr,
+ &aclInputGateBiasInfo);
+ }
+
+ if (descriptor.m_ProjectionEnabled)
+ {
+ if (paramsInfo.m_ProjectionBias != nullptr)
+ {
+ aclProjectionBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionBias());
+ }
+ aclProjectionWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionWeights());
+
+ lstm_params_info.set_projection_params(&aclProjectionWeightsInfo,
+ paramsInfo.m_ProjectionBias ? &aclProjectionBiasInfo : nullptr);
+ }
+
+ if (descriptor.m_PeepholeEnabled)
+ {
+ aclCellToForgetWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToForgetWeights());
+ aclCellToOutputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToOutputWeights());
+
+ lstm_params_info.set_peephole_params(&aclCellToForgetWeightsInfo, &aclCellToOutputWeightsInfo);
+ }
+
+ if (descriptor.m_LayerNormEnabled)
+ {
+ if (!descriptor.m_CifgEnabled)
+ {
+ aclInputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputLayerNormWeights());
+ }
+ aclForgetLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetForgetLayerNormWeights());
+ aclCellLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellLayerNormWeights());
+ aclOutputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetOutputLayerNormWeights());
+
+ lstm_params_info.set_layer_normalization_params(descriptor.m_CifgEnabled ? nullptr :
+ &aclInputLayerNormWeightsInfo,
+ &aclForgetLayerNormWeightsInfo,
+ &aclCellLayerNormWeightsInfo,
+ &aclOutputLayerNormWeightsInfo);
+ }
+
+ // Need to be set at negative threshold to be compatible for ACL
+ float cell_threshold = descriptor.m_ClippingThresCell;
+ float projection_threshold = descriptor.m_ClippingThresProj;
+
+ arm_compute::ActivationLayerInfo activationLayerInfo =
+ ConvertLstmActivationFuncToAclLayerInfo(descriptor.m_ActivationFunc);
+
+ for (unsigned int i = 0; i != maxTime; ++i)
+ {
+
+ // Set LSTM input and output ITensors depending on:
+ // input format (timeMajor) & number of LSTM batches (maxTime).
+ arm_compute::ITensorInfo* outputLSTM;
+ arm_compute::ITensorInfo* inputLSTM;
+
+ // If there is only one LSTM time major batch, we will not concat OR permute.
+ // Set input of LSTM to be first input ITensor.
+ // Set output of LSTM to be final output ITensor.
+ // LSTM input/output cannot be > 2 dimensions so need to resize its TensorInfo.
+ if (maxTime == 1 && !descriptor.m_TimeMajor)
+ {
+ TensorShape inputShape = GetTensorShape(aclInputInfo.tensor_shape(), 1U);
+ TensorShape outputShape = GetTensorShape(aclOutputInfo.tensor_shape(), 1U);
+
+ TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
+ TensorShape outputShapeShrink({outputShape[1], outputShape[2]});
+
+ auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
+ auto acl_output_shape_shrink = BuildArmComputeTensorShape(outputShapeShrink);
+
+ const_cast<arm_compute::TensorInfo*>(&aclInputInfo)->set_tensor_shape(acl_input_shape_shrink);
+ inputLSTM = const_cast<arm_compute::TensorInfo*>(&aclInputInfo);
+
+ const_cast<arm_compute::TensorInfo*>(&aclOutputInfo)->set_tensor_shape(acl_output_shape_shrink);
+ outputLSTM = const_cast<arm_compute::TensorInfo*>(&aclOutputInfo);
+ }
+ // If there is only one LSTM batch major batch, we will not concat, only permute.
+ // Set input of LSTM to be output of initial permute.
+ // Set output of LSTM to be first element of m_ConcatInputs & use that value later in permute.
+ // LSTM output cannot be > 2 dimensions so need to resize its TensorInfo.
+ else if (maxTime == 1 && !descriptor.m_TimeMajor)
+ {
+ TensorShape inputShape = GetTensorShape(aclPermuteOutInfo.tensor_shape(), 1U);
+ TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
+ auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
+ aclPermuteOutInfo.set_tensor_shape(acl_input_shape_shrink);
+ inputLSTM = &aclPermuteOutInfo;
+
+ outputLSTM = const_cast<arm_compute::ITensorInfo*>(concatInputsTensorInfosPtr[i]);
+ }
+ // Batch major AND/OR 2+ LSTM batches so will use concat AND/OR permute later on.
+ else
+ {
+ inputLSTM = splitterOutputsTensorInfosPtr[i];
+ outputLSTM = const_cast<arm_compute::ITensorInfo*>(concatInputsTensorInfosPtr[i]);
+ }
+
+ statusLSTM = arm_compute::NELSTMLayer::validate(inputLSTM,
+ &aclInputToForgetWeightsInfo,
+ &aclInputToCellWeightsInfo,
+ &aclInputToOutputWeightsInfo,
+ &aclRecurrentToForgetWeightsInfo,
+ &aclRecurrentToCellWeightsInfo,
+ &aclRecurrentToOutputWeightsInfo,
+ &aclForgetGateBiasInfo,
+ &aclCellBiasInfo,
+ &aclOutputGateBiasInfo,
+ &aclOutputStateInInfo,
+ &aclCellStateInInfo,
+ &aclScratchBufferInfo,
+ &aclOutputStateOutInfo,
+ &aclCellStateOutInfo,
+ outputLSTM,
+ lstm_params_info,
+ activationLayerInfo,
+ cell_threshold,
+ projection_threshold);
+
+ if (statusLSTM.error_code() != arm_compute::ErrorCode::OK)
+ {
+ break;
+ }
+ }
+
+ //
+ // Concat validate
+ //
+
+ // Expand dimensions of LSTM outputs adding one empty dimension to fit concatenate inputs.
+ TensorShape shape = GetTensorShape(concatInputsTensorInfosPtr[0]->tensor_shape(), 1U);
+ TensorShape shapeExpandTimeMajor({1, shape[0], shape[1]});
+ TensorShape shapeExpandBatchMajor({shape[0], 1, shape[1]});
+
+ TensorInfo concatOuputTensorInfo = TensorInfo(output);
+ concatOuputTensorInfo.SetShape(timeMajorShapeOutput);
+ arm_compute::TensorInfo aclConcatOuputTensorInfo= BuildArmComputeTensorInfo(concatOuputTensorInfo);
+
+ if (maxTime != 1) // ACL concat does not work with only one element to concatenate.
+ {
+ for (unsigned int i = 0; i < maxTime; ++i)
+ {
+ auto acl_shape_expand = BuildArmComputeTensorShape(shapeExpandTimeMajor);
+ concatInputsTensorInfos[i].set_tensor_shape(acl_shape_expand);
+ }
+
+ unsigned int aclAxisConcat = CalcAclAxis(numberDimensions, dimension);
+ if (!descriptor.m_TimeMajor)
+ {
+ statusConcat = arm_compute::NEConcatenateLayer::validate(concatInputsTensorInfosPtr,
+ &aclConcatOuputTensorInfo,
+ aclAxisConcat);
+ }
+ else
+ {
+ statusConcat = arm_compute::NEConcatenateLayer::validate(concatInputsTensorInfosPtr,
+ &aclOutputInfo,
+ aclAxisConcat);
+ }
+ }
+ // If only one LSTM batch, we do not concat and/or permute.
+ // Must ensure final output info is expanded to correct batch major dimensions.
+ else
+ {
+ if (!descriptor.m_TimeMajor)
+ {
+ const_cast<arm_compute::TensorInfo*>(&aclInputInfo)->set_tensor_shape(
+ BuildArmComputeTensorShape(shapeExpandBatchMajor));
+ }
+ else
+ {
+ const_cast<arm_compute::TensorInfo*>(&aclInputInfo)->set_tensor_shape(
+ BuildArmComputeTensorShape(shapeExpandTimeMajor));
+ }
+ }
+
+ //
+ // Permute validate
+ //
+ if (!descriptor.m_TimeMajor)
+ {
+ // Output now time major. Permute output back to batch major.
+ if (maxTime != 1)
+ {
+ statusPermute2 = arm_compute::NEPermute::validate(&aclConcatOuputTensorInfo,
+ &aclOutputInfo,
+ arm_compute::PermutationVector(0U, 2U, 1U));
+ }
+ else
+ {
+ statusPermute2 = arm_compute::NEPermute::validate(concatInputsTensorInfosPtr[0],
+ &aclOutputInfo,
+ arm_compute::PermutationVector(0U, 2U, 1U));
+ }
+ }
+
+ auto okCode = arm_compute::ErrorCode::OK;
+ if (statusPermute1.error_code() == okCode &&
+ statusSplit.error_code() == okCode &&
+ statusLSTM .error_code() == okCode &&
+ statusConcat.error_code() == okCode &&
+ statusPermute2.error_code() == okCode)
+ {
+ return arm_compute::Status(arm_compute::ErrorCode::OK,
+ "All Unidirectional Sequence LSTM layer validate status OK.");
+ }
+ else
+ {
+ return arm_compute::Status(arm_compute::ErrorCode::RUNTIME_ERROR,
+ "Unidirectional Sequence LSTM layer validate status failed.");
+ }
+}
+
+void NeonUnidirectionalSequenceLstmFloatWorkload::FreeUnusedTensors()
+{
+ FreeTensorIfUnused(m_InputToInputWeightsTensor);
+ FreeTensorIfUnused(m_InputToForgetWeightsTensor);
+ FreeTensorIfUnused(m_InputToCellWeightsTensor);
+ FreeTensorIfUnused(m_InputToOutputWeightsTensor);
+ FreeTensorIfUnused(m_RecurrentToInputWeightsTensor);
+ FreeTensorIfUnused(m_RecurrentToForgetWeightsTensor);
+ FreeTensorIfUnused(m_RecurrentToCellWeightsTensor);
+ FreeTensorIfUnused(m_RecurrentToOutputWeightsTensor);
+ FreeTensorIfUnused(m_CellToInputWeightsTensor);
+ FreeTensorIfUnused(m_CellToForgetWeightsTensor);
+ FreeTensorIfUnused(m_CellToOutputWeightsTensor);
+ FreeTensorIfUnused(m_InputGateBiasTensor);
+ FreeTensorIfUnused(m_ForgetGateBiasTensor);
+ FreeTensorIfUnused(m_CellBiasTensor);
+ FreeTensorIfUnused(m_OutputGateBiasTensor);
+ FreeTensorIfUnused(m_ProjectionWeightsTensor);
+ FreeTensorIfUnused(m_ProjectionBiasTensor);
+ FreeTensorIfUnused(m_InputLayerNormWeightsTensor);
+ FreeTensorIfUnused(m_ForgetLayerNormWeightsTensor);
+ FreeTensorIfUnused(m_CellLayerNormWeightsTensor);
+ FreeTensorIfUnused(m_OutputLayerNormWeightsTensor);
+ FreeTensorIfUnused(m_ScratchBuffer);
+}
+
+} //namespace armnn
diff --git a/src/backends/neon/workloads/NeonUnidirectionalSequenceLstmFloatWorkload.hpp b/src/backends/neon/workloads/NeonUnidirectionalSequenceLstmFloatWorkload.hpp
new file mode 100644
index 0000000000..10c2ecbd19
--- /dev/null
+++ b/src/backends/neon/workloads/NeonUnidirectionalSequenceLstmFloatWorkload.hpp
@@ -0,0 +1,92 @@
+//
+// Copyright © 2022 Arm Ltd and Contributors. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#pragma once
+
+#include <armnn/Descriptors.hpp>
+#include <armnn/LstmParams.hpp>
+#include <armnn/backends/Workload.hpp>
+#include <armnn/backends/WorkloadData.hpp>
+
+#include "arm_compute/graph/Tensor.h"
+#include "arm_compute/runtime/NEON/functions/NELSTMLayer.h"
+#include "arm_compute/runtime/NEON/functions/NEPermute.h"
+#include "arm_compute/runtime/NEON/functions/NESplit.h"
+#include "arm_compute/runtime/NEON/functions/NEConcatenateLayer.h"
+
+namespace armnn
+{
+
+class NeonUnidirectionalSequenceLstmFloatWorkload : public FloatWorkload<UnidirectionalSequenceLstmQueueDescriptor>
+{
+public:
+ NeonUnidirectionalSequenceLstmFloatWorkload(const UnidirectionalSequenceLstmQueueDescriptor& descriptor,
+ const WorkloadInfo& info);
+ virtual void Execute() const override;
+
+private:
+
+ //
+ // ACL layers required to fully form a Unidirectional Sequence LSTM layer.
+ //
+ mutable std::unique_ptr<arm_compute::NEPermute> m_Permute1;
+ mutable std::unique_ptr<arm_compute::IFunction> m_Splitter;
+ mutable std::vector<std::unique_ptr<arm_compute::NELSTMLayer>> m_Layers;
+ mutable std::unique_ptr<arm_compute::NEConcatenateLayer> m_Concat;
+ mutable std::unique_ptr<arm_compute::NEPermute> m_Permute2;
+
+ //
+ // ACL LSTM arm_compute::Tensors.
+ //
+ std::unique_ptr<arm_compute::Tensor> m_InputToInputWeightsTensor;
+ std::unique_ptr<arm_compute::Tensor> m_InputToForgetWeightsTensor;
+ std::unique_ptr<arm_compute::Tensor> m_InputToCellWeightsTensor;
+ std::unique_ptr<arm_compute::Tensor> m_InputToOutputWeightsTensor;
+ std::unique_ptr<arm_compute::Tensor> m_RecurrentToInputWeightsTensor;
+ std::unique_ptr<arm_compute::Tensor> m_RecurrentToForgetWeightsTensor;
+ std::unique_ptr<arm_compute::Tensor> m_RecurrentToCellWeightsTensor;
+ std::unique_ptr<arm_compute::Tensor> m_RecurrentToOutputWeightsTensor;
+ std::unique_ptr<arm_compute::Tensor> m_CellToInputWeightsTensor;
+ std::unique_ptr<arm_compute::Tensor> m_CellToForgetWeightsTensor;
+ std::unique_ptr<arm_compute::Tensor> m_CellToOutputWeightsTensor;
+ std::unique_ptr<arm_compute::Tensor> m_InputGateBiasTensor;
+ std::unique_ptr<arm_compute::Tensor> m_ForgetGateBiasTensor;
+ std::unique_ptr<arm_compute::Tensor> m_CellBiasTensor;
+ std::unique_ptr<arm_compute::Tensor> m_OutputGateBiasTensor;
+ std::unique_ptr<arm_compute::Tensor> m_ProjectionWeightsTensor;
+ std::unique_ptr<arm_compute::Tensor> m_ProjectionBiasTensor;
+
+ std::unique_ptr<arm_compute::Tensor> m_ScratchBuffer;
+
+ std::unique_ptr<arm_compute::Tensor> m_InputLayerNormWeightsTensor;
+ std::unique_ptr<arm_compute::Tensor> m_ForgetLayerNormWeightsTensor;
+ std::unique_ptr<arm_compute::Tensor> m_CellLayerNormWeightsTensor;
+ std::unique_ptr<arm_compute::Tensor> m_OutputLayerNormWeightsTensor;
+
+ //
+ // Additional ACL arm_compute::Tensors and std::vector<arm_compute::Tensor>.
+ // Required to perform splitting, concatenation and permutations.
+ //
+ arm_compute::Tensor m_PermuteFirstOut;
+ std::vector<arm_compute::Tensor> m_SplitterOutputsTensors;
+ std::vector<arm_compute::Tensor> m_ConcatInputsTensors;
+ std::vector<arm_compute::ITensor*> m_SplitterOutputs;
+ std::vector<const arm_compute::ITensor*> m_ConcatInputs;
+ arm_compute::Tensor concat_out;
+
+ void FreeUnusedTensors();
+};
+
+arm_compute::Status
+NeonUnidirectionalSequenceLstmFloatWorkloadValidate(const TensorInfo& input,
+ const TensorInfo& outputStateIn,
+ const TensorInfo& cellStateIn,
+ const TensorInfo& output,
+ const Optional<TensorInfo>& hiddenStateOutput,
+ const Optional<TensorInfo>& cellStateOutput,
+ const UnidirectionalSequenceLstmDescriptor& descriptor,
+ const LstmInputParamsInfo& paramsInfo);
+
+} //namespace armnn
diff --git a/src/backends/neon/workloads/NeonWorkloads.hpp b/src/backends/neon/workloads/NeonWorkloads.hpp
index a8134a130b..4f5ba2d708 100644
--- a/src/backends/neon/workloads/NeonWorkloads.hpp
+++ b/src/backends/neon/workloads/NeonWorkloads.hpp
@@ -68,3 +68,4 @@
#include "NeonSubtractionWorkload.hpp"
#include "NeonTransposeConvolution2dWorkload.hpp"
#include "NeonTransposeWorkload.hpp"
+#include "NeonUnidirectionalSequenceLstmFloatWorkload.hpp"
diff --git a/src/backends/reference/test/RefLayerTests.cpp b/src/backends/reference/test/RefLayerTests.cpp
index 69694e0275..b3df088c39 100644
--- a/src/backends/reference/test/RefLayerTests.cpp
+++ b/src/backends/reference/test/RefLayerTests.cpp
@@ -2554,6 +2554,10 @@ ARMNN_AUTO_TEST_CASE_WITH_THF(ReduceMinFloat32, ReduceMinSimpleTest<DataType::Fl
ARMNN_AUTO_TEST_CASE_WITH_THF(ReduceMinNegativeAxisFloat32, ReduceMinNegativeAxisTest<DataType::Float32>)
// Unidirectional Sequence Lstm
+ARMNN_AUTO_TEST_CASE_WITH_THF(UnidirectionalSequenceLstmLayerFloat32TimeMajorSingleBatch,
+ UnidirectionalSequenceLstmLayerFloat32TimeMajorSingleBatchTest)
+ARMNN_AUTO_TEST_CASE_WITH_THF(UnidirectionalSequenceLstmLayerFloat32BatchMajorSingleBatch,
+ UnidirectionalSequenceLstmLayerFloat32BatchMajorSingleBatchTest)
ARMNN_AUTO_TEST_CASE_WITH_THF(UnidirectionalSequenceLstmLayerFloat32,
UnidirectionalSequenceLstmLayerFloat32Test)
ARMNN_AUTO_TEST_CASE_WITH_THF(UnidirectionalSequenceLstmLayerFloat32TimeMajor,