aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/fixtures/GEMMLowpFixture.h
blob: 90a4b5cf400831b0ca41cd6348210d7739805996 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
/*
 * Copyright (c) 2017-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE
#define ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE

#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/GEMMLowp.h"

#include <random>

namespace arm_compute
{
namespace test
{
namespace validation
{
namespace
{
template <typename U>
void fill(U &&tensor, int i)
{
    // Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path
    std::uniform_int_distribution<> distribution(1, 254);
    library->fill(tensor, distribution, i);
}

template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d, bool reinterpret_output_as_3d, typename OutputType, bool is_fused = false>
TensorType compute_gemmlowp_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset,
                                   GEMMLowpOutputStageInfo output_stage = GEMMLowpOutputStageInfo())
{
    // Create tensors
    TensorType a      = create_tensor<TensorType>(shape_a, DataType::QASYMM8, 1);
    TensorType b      = create_tensor<TensorType>(shape_b, DataType::QASYMM8, 1);
    TensorType output = create_tensor<TensorType>(shape_output, output_stage.type == GEMMLowpOutputStageType::NONE ? DataType::S32 : DataType::QASYMM8, 1);

    a.info()->set_quantization_info(QuantizationInfo(1.0f / 255, a_offset));
    b.info()->set_quantization_info(QuantizationInfo(1.0f / 255, b_offset));

    TensorType bias;
    if(is_fused)
    {
        TensorShape bias_shape(shape_b[0]);
        bias = create_tensor<TensorType>(bias_shape, DataType::S32, 1);
    }

    // Create and configure function
    // The GEMMinfo includes the values of the depth in case of reinterpreted 3d input/output
    FunctionType gemmlowp;
    // TODO (COMPMID-1672) - Extending the test to validate add bias in offset contribution
    gemmlowp.configure(&a, &b, is_fused ? &bias : nullptr, &output, GEMMInfo(false, false, false, (reinterpret_output_as_3d ? shape_output[2] : 0), reinterpret_input_as_3d, false, output_stage));

    ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT(output.info()->is_resizable(), framework::LogLevel::ERRORS);

    // Allocate tensors
    a.allocator()->allocate();
    b.allocator()->allocate();
    output.allocator()->allocate();

    ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT(!output.info()->is_resizable(), framework::LogLevel::ERRORS);

    // Fill tensors
    fill(AccessorType(a), 0);
    fill(AccessorType(b), 1);

    if(is_fused)
    {
        ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
        bias.allocator()->allocate();
        ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
        fill(AccessorType(bias), 2);
    }

    // Compute GEMM function
    gemmlowp.run();
    return output;
}

template <bool        reinterpret_input_as_3d>
SimpleTensor<int32_t> compute_gemmlowp_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset)
{
    TensorShape shape_a_to_use = shape_a;
    if(reinterpret_input_as_3d)
    {
        // Collapse the second and third dimension if the input is 3D
        shape_a_to_use.collapse(2U, 1U);
    }

    // Create reference
    SimpleTensor<uint8_t> a{ shape_a_to_use, DataType::QASYMM8, 1 };
    SimpleTensor<uint8_t> b{ shape_b, DataType::QASYMM8, 1 };

    // Fill reference
    fill(a, 0);
    fill(b, 1);

    return reference::gemmlowp_matrix_multiply_core<int32_t, uint8_t>(a, b, shape_output, a_offset, b_offset);
}
}

template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d = false, bool reinterpret_output_as_3d = false>
class GEMMLowpMatrixMultiplyCoreValidationFixture : public framework::Fixture
{
public:
    template <typename...>
    void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, int32_t a_offset, int32_t b_offset)
    {
        _target    = compute_target(shape_a, shape_b, shape_output, a_offset, b_offset);
        _reference = compute_reference(shape_a, shape_b, shape_output, a_offset, b_offset);
    }

protected:
    TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset)
    {
        return compute_gemmlowp_target<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, int32_t>(shape_a, shape_b, shape_output, a_offset, b_offset);
    }

    SimpleTensor<int32_t> compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset)
    {
        return compute_gemmlowp_reference<reinterpret_input_as_3d>(shape_a, shape_b, shape_output, a_offset, b_offset);
    }

    TensorType            _target{};
    SimpleTensor<int32_t> _reference{};
};

template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d = false, bool reinterpret_output_as_3d = false>
class GEMMLowpMatrixMultiplyCoreFusedOffsetOutputValidationFixture : public framework::Fixture
{
public:
    template <typename...>
    void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage)
    {
        ARM_COMPUTE_EXPECT(output_stage.type != GEMMLowpOutputStageType::NONE, framework::LogLevel::ERRORS);
        _target    = compute_target(shape_a, shape_b, shape_output, a_offset, b_offset, output_stage);
        _reference = compute_reference(shape_a, shape_b, shape_output, a_offset, b_offset, output_stage);
    }

protected:
    TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage)
    {
        return compute_gemmlowp_target<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, qasymm8_t, true>(shape_a, shape_b, shape_output, a_offset, b_offset,
                output_stage);
    }

    SimpleTensor<qasymm8_t> compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset,
                                              GEMMLowpOutputStageInfo output_stage)
    {
        SimpleTensor<int32_t> output = compute_gemmlowp_reference<reinterpret_input_as_3d>(shape_a, shape_b, shape_output, a_offset, b_offset);

        TensorShape           bias_shape(shape_b[0]);
        SimpleTensor<int32_t> bias{ bias_shape, DataType::S32, 1 };
        fill(bias, 2);

        switch(output_stage.type)
        {
            case GEMMLowpOutputStageType::QUANTIZE_DOWN:
                return reference::gemmlowp_quantize_down_int32_to_uint8_scale<int32_t>(output, bias,
                                                                                       output_stage.gemmlowp_offset, output_stage.gemmlowp_multiplier, output_stage.gemmlowp_shift, output_stage.gemmlowp_min_bound, output_stage.gemmlowp_max_bound);
                break;
            case GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT:
                return reference::gemmlowp_quantize_down_int32_to_uint8_scale_by_fixedpoint<int32_t>(output, bias,
                                                                                                     output_stage.gemmlowp_multiplier, output_stage.gemmlowp_shift, output_stage.gemmlowp_offset, output_stage.gemmlowp_min_bound, output_stage.gemmlowp_max_bound);
                break;
            default:
                ARM_COMPUTE_ERROR("Not Supported!");
        }
    }

    TensorType              _target{};
    SimpleTensor<qasymm8_t> _reference{};
};

template <typename TensorType, typename AccessorType, typename FunctionType>
class GEMMLowpQuantizeDownInt32ToUint8ScaleValidationFixture : public framework::Fixture
{
public:
    template <typename...>
    void setup(TensorShape shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias)
    {
        _target    = compute_target(shape, result_offset, result_mult_int, result_shift, min, max, add_bias);
        _reference = compute_reference(shape, result_offset, result_mult_int, result_shift, min, max, add_bias);
    }

protected:
    template <typename U>
    void fill(U &&tensor, int i)
    {
        std::uniform_int_distribution<> distribution(-6000, 6000);
        library->fill(tensor, distribution, i);
    }

    TensorType compute_target(const TensorShape &shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias)
    {
        TensorShape shape_bias(shape[0]);

        // Create tensors
        TensorType a = create_tensor<TensorType>(shape, DataType::S32, 1);
        TensorType b = create_tensor<TensorType>(shape_bias, DataType::S32, 1);
        TensorType c = create_tensor<TensorType>(shape, DataType::QASYMM8, 1);

        // Create and configure function
        FunctionType output_stage;
        output_stage.configure(&a, add_bias ? &b : nullptr, &c, result_offset, result_mult_int, result_shift, min, max);

        ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS);

        // Allocate tensors
        a.allocator()->allocate();
        c.allocator()->allocate();

        ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS);

        // Fill tensor
        fill(AccessorType(a), 0);

        if(add_bias)
        {
            ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS);

            // Allocate bias tensor
            b.allocator()->allocate();

            ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS);

            // Fill tensor
            fill(AccessorType(b), 1);
        }

        // Compute GEMM function
        output_stage.run();
        return c;
    }

    SimpleTensor<uint8_t> compute_reference(const TensorShape &shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias)
    {
        // Create reference
        TensorShape shape_bias(shape[0]);

        SimpleTensor<int32_t> a{ shape, DataType::S32, 1 };
        SimpleTensor<int32_t> b{ shape_bias, DataType::S32, 1 };

        // Fill reference
        fill(a, 0);

        if(add_bias)
        {
            // Fill bias
            fill(b, 1);

            return reference::gemmlowp_quantize_down_int32_to_uint8_scale<int32_t>(a, b, result_offset, result_mult_int, result_shift, min, max);
        }
        else
        {
            return reference::gemmlowp_quantize_down_int32_to_uint8_scale<int32_t>(a, result_offset, result_mult_int, result_shift, min, max);
        }
    }

    TensorType            _target{};
    SimpleTensor<uint8_t> _reference{};
};

template <typename TensorType, typename AccessorType, typename FunctionType>
class GEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointValidationFixture : public framework::Fixture
{
public:
    template <typename...>
    void setup(TensorShape shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias)
    {
        _target    = compute_target(shape, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max, add_bias);
        _reference = compute_reference(shape, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max, add_bias);
    }

protected:
    template <typename U>
    void fill(U &&tensor, int i)
    {
        std::uniform_int_distribution<> distribution(-6000, 6000);
        library->fill(tensor, distribution, i);
    }

    TensorType compute_target(const TensorShape &shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias)
    {
        TensorShape shape_bias(shape[0]);

        // Create tensors
        TensorType a = create_tensor<TensorType>(shape, DataType::S32, 1);
        TensorType b = create_tensor<TensorType>(shape_bias, DataType::S32, 1);
        TensorType c = create_tensor<TensorType>(shape, DataType::QASYMM8, 1);

        // Create and configure function
        FunctionType output_stage;
        output_stage.configure(&a, add_bias ? &b : nullptr, &c, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max);

        ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS);

        // Allocate tensors
        a.allocator()->allocate();
        c.allocator()->allocate();

        ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS);

        // Fill tensor
        fill(AccessorType(a), 0);

        if(add_bias)
        {
            ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS);

            // Allocate bias tensor
            b.allocator()->allocate();

            ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS);

            // Fill tensor
            fill(AccessorType(b), 1);
        }

        // Compute GEMM function
        output_stage.run();
        return c;
    }

    SimpleTensor<uint8_t> compute_reference(const TensorShape &shape, int32_t result_fixed_point_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max,
                                            bool add_bias)
    {
        // Create reference
        TensorShape shape_bias(shape[0]);

        SimpleTensor<int32_t> a{ shape, DataType::S32, 1 };
        SimpleTensor<int32_t> b{ shape_bias, DataType::S32, 1 };

        // Fill reference
        fill(a, 0);

        if(add_bias)
        {
            // Fill bias
            fill(b, 1);

            return reference::gemmlowp_quantize_down_int32_to_uint8_scale_by_fixedpoint<int32_t>(a, b, result_fixed_point_multiplier, result_shift, result_offset_after_shift, min, max);
        }
        else
        {
            return reference::gemmlowp_quantize_down_int32_to_uint8_scale_by_fixedpoint<int32_t>(a, result_fixed_point_multiplier, result_shift, result_offset_after_shift, min, max);
        }
    }

    TensorType            _target{};
    SimpleTensor<uint8_t> _reference{};
};

template <typename TensorType, typename AccessorType, typename ReshapeLHSFunctionType, typename ReshapeRHSFunctionType, typename GEMMFunctionType>
class GEMMLowpMatrixMultiplyReshapedValidationFixture : public framework::Fixture
{
public:
    template <typename...>
    void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int v0, unsigned int h0, bool interleave_lhs,
               bool interleave_rhs)
    {
        GEMMLHSMatrixInfo lhs_info;
        lhs_info.m0         = m0;
        lhs_info.k0         = k0;
        lhs_info.v0         = v0;
        lhs_info.interleave = interleave_lhs;
        lhs_info.transpose  = false;

        GEMMRHSMatrixInfo rhs_info;
        rhs_info.n0         = n0;
        rhs_info.k0         = k0;
        rhs_info.h0         = h0;
        rhs_info.interleave = interleave_rhs;
        rhs_info.transpose  = true;

        // Set the tensor shapes for LHS and RHS matrices
        const TensorShape lhs_shape(k, m, batch_size);
        const TensorShape rhs_shape(n, k, batch_size);

        _target    = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info);
        _reference = compute_reference(lhs_shape, rhs_shape);
    }

protected:
    template <typename U>
    void fill(U &&tensor, int i)
    {
        // Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path
        std::uniform_int_distribution<> distribution(1, 254);
        library->fill(tensor, distribution, i);
    }

    TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info)
    {
        // Create tensors
        TensorType lhs = create_tensor<TensorType>(lhs_shape, DataType::QASYMM8, 1);
        TensorType rhs = create_tensor<TensorType>(rhs_shape, DataType::QASYMM8, 1);
        TensorType lhs_reshaped;
        TensorType rhs_reshaped;
        TensorType dst;

        const unsigned int M = lhs_shape[1];
        const unsigned int N = rhs_shape[0];
        const unsigned int K = lhs_shape[0];

        // The output tensor will be auto-initialized within the function

        // Create and configure function
        ReshapeLHSFunctionType reshape_lhs;
        ReshapeRHSFunctionType reshape_rhs;
        GEMMFunctionType       gemm;
        reshape_lhs.configure(&lhs, &lhs_reshaped, lhs_info);
        reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info);
        gemm.configure(&lhs_reshaped, &rhs_reshaped, &dst, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K));

        ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);

        // Allocate tensors
        lhs.allocator()->allocate();
        rhs.allocator()->allocate();
        lhs_reshaped.allocator()->allocate();
        rhs_reshaped.allocator()->allocate();
        dst.allocator()->allocate();

        ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(!lhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);

        // Fill tensors
        fill(AccessorType(lhs), 0);
        fill(AccessorType(rhs), 1);

        // Compute GEMM
        reshape_lhs.run();
        reshape_rhs.run();
        gemm.run();

        return dst;
    }

    SimpleTensor<int32_t> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape)
    {
        TensorShape dst_shape = lhs_shape;
        dst_shape[0]          = rhs_shape[0];
        dst_shape[1]          = lhs_shape[1];

        // Create reference
        SimpleTensor<uint8_t> lhs{ lhs_shape, DataType::QASYMM8, 1 };
        SimpleTensor<uint8_t> rhs{ rhs_shape, DataType::QASYMM8, 1 };

        // Fill reference
        fill(lhs, 0);
        fill(rhs, 1);

        return reference::gemmlowp_matrix_multiply_core<int32_t, uint8_t>(lhs, rhs, dst_shape, 0, 0);
    }

    TensorType            _target{};
    SimpleTensor<int32_t> _reference{};
};

template <typename TensorType, typename AccessorType, typename ReshapeLHSFunctionType, typename ReshapeRHSFunctionType, typename GEMMFunctionType>
class GEMMLowpMatrixMultiplyReshaped3DValidationFixture : public framework::Fixture
{
public:
    template <typename...>
    void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int v0, unsigned int h0,
               bool interleave_lhs, bool interleave_rhs)
    {
        GEMMLHSMatrixInfo lhs_info;
        lhs_info.m0         = m0;
        lhs_info.k0         = k0;
        lhs_info.v0         = v0;
        lhs_info.interleave = interleave_lhs;
        lhs_info.transpose  = false;

        GEMMRHSMatrixInfo rhs_info;
        rhs_info.n0         = n0;
        rhs_info.k0         = k0;
        rhs_info.h0         = h0;
        rhs_info.interleave = interleave_rhs;
        rhs_info.transpose  = true;

        // In case of GEMM3D, m is the product between m_w and m_h
        const unsigned int m = m_w * m_h;

        // Set the tensor shapes for LHS and RHS matrices
        const TensorShape lhs_shape(k, m, batch_size);
        const TensorShape rhs_shape(n, k, batch_size);

        _target    = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info, m_h);
        _reference = compute_reference(lhs_shape, rhs_shape, m_h);
    }

protected:
    template <typename U>
    void fill(U &&tensor, int i)
    {
        // Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path
        std::uniform_int_distribution<> distribution(1, 254);
        library->fill(tensor, distribution, i);
    }

    TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, unsigned int m_h)
    {
        // Create tensors
        TensorType lhs = create_tensor<TensorType>(lhs_shape, DataType::QASYMM8, 1);
        TensorType rhs = create_tensor<TensorType>(rhs_shape, DataType::QASYMM8, 1);
        TensorType lhs_reshaped;
        TensorType rhs_reshaped;
        TensorType dst;

        const unsigned int M = lhs_shape[1];
        const unsigned int N = rhs_shape[0];
        const unsigned int K = lhs_shape[0];

        // The output tensor will be auto-initialized within the function

        // Create and configure function
        ReshapeLHSFunctionType reshape_lhs;
        ReshapeRHSFunctionType reshape_rhs;
        GEMMFunctionType       gemm;
        reshape_lhs.configure(&lhs, &lhs_reshaped, lhs_info);
        reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info);
        gemm.configure(&lhs_reshaped, &rhs_reshaped, &dst, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K, 1, 1, m_h));

        ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);

        // Allocate tensors
        lhs.allocator()->allocate();
        rhs.allocator()->allocate();
        lhs_reshaped.allocator()->allocate();
        rhs_reshaped.allocator()->allocate();
        dst.allocator()->allocate();

        ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(!lhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);

        // Fill tensors
        fill(AccessorType(lhs), 0);
        fill(AccessorType(rhs), 1);

        // Compute GEMM
        reshape_lhs.run();
        reshape_rhs.run();
        gemm.run();

        return dst;
    }

    SimpleTensor<int32_t> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, unsigned int m_h)
    {
        TensorShape dst_shape = lhs_shape;
        dst_shape.set(0, rhs_shape[0]);
        dst_shape.set(1, lhs_shape[1] / m_h);
        dst_shape.set(2, m_h);
        dst_shape.set(3, lhs_shape[2]);

        // Create reference
        SimpleTensor<uint8_t> lhs{ lhs_shape, DataType::QASYMM8, 1 };
        SimpleTensor<uint8_t> rhs{ rhs_shape, DataType::QASYMM8, 1 };

        // Fill reference
        fill(lhs, 0);
        fill(rhs, 1);

        return reference::gemmlowp_matrix_multiply_core<int32_t, uint8_t>(lhs, rhs, dst_shape, 0, 0);
    }

    TensorType            _target{};
    SimpleTensor<int32_t> _reference{};
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE */