aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/NEON/functions/NEWinogradLayer.cpp
blob: 0ac6d0966dbe9df320c8013769a7a00ee44ac341 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*
 * Copyright (c) 2017-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/NEON/functions/NEWinogradLayer.h"

#include "arm_compute/core/Error.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "support/ToolchainSupport.h"

#include "arm_compute/core/NEON/kernels/NEWinogradLayerKernel.h"

#include "arm_compute/core/NEON/kernels/convolution/winograd/winograd_gemm.hpp"

namespace
{
inline Tensor4DShape internal_get_input_shape(const arm_compute::ITensor *input)
{
    const int in_width    = input->info()->dimension(0);
    const int in_height   = input->info()->dimension(1);
    const int in_batches  = input->info()->dimension(3);
    const int in_channels = input->info()->dimension(2);
    return Tensor4DShape({ in_batches, in_height, in_width, in_channels });
}
} /* namespace */

namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info)
{
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, biases);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights->dimension(0) != 3 && weights->dimension(0) != 5, "Only 3 and 5 kernels are supported");
    ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);

    if(biases != nullptr)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
        ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
    }

    // Get parameters from conv_info
    unsigned int stride_x = 0;
    unsigned int stride_y = 0;
    std::tie(stride_x, stride_y) = conv_info.stride();
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(stride_y != 1 || stride_x != 1, "Winograd layer only supports unit strides.");

    ARM_COMPUTE_UNUSED(output);

    return Status{};
}
} //namespace

NEWinogradLayer::NEWinogradLayer(std::shared_ptr<IMemoryManager> memory_manager)
    : _memory_group(std::move(memory_manager)), _batched_gemm_kernel(nullptr), _transform_input_kernel(nullptr), _transform_output_kernel(nullptr), _transform_weights_kernel(nullptr), _permute_input(),
      _permute_weights(), _permute_output(), _input_workspace(), _output_workspace(), _kernel_storage(), _input_nhwc(), _output_nhwc(), _weights_hwio(), _input(), _weights(), _output(),
      _reshaped_kernel(false)
{
} /* arm_compute */

void NEWinogradLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, biases, output);
    ARM_COMPUTE_UNUSED(conv_info);
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), weights->info(), biases->info(), output->info(), conv_info));

    _weights = weights;
    _input   = input;
    _output  = output;

    std::unique_ptr<INEWinogradLayerBatchedGEMMKernel<float, float>> batched_gemm_kernel;
    std::unique_ptr<INEWinogradLayerTransformInputKernel<float>>   transform_input_kernel;
    std::unique_ptr<INEWinogradLayerTransformWeightsKernel<float>> transform_weights_kernel;
    std::unique_ptr<INEWinogradLayerTransformOutputKernel<float>>  transform_output_kernel;

    switch(weights->info()->dimension(0))
    {
        case 3:
        {
            batched_gemm_kernel      = support::cpp14::make_unique<NEWinogradLayerBatchedGEMMKernel<float, float, 2, 2, 3, 3>>();
            transform_input_kernel   = support::cpp14::make_unique<NEWinogradLayerTransformInputKernel<float, 2, 2, 3, 3>>();
            transform_weights_kernel = support::cpp14::make_unique<NEWinogradLayerTransformWeightsKernel<float, 2, 2, 3, 3>>();
            transform_output_kernel  = support::cpp14::make_unique<NEWinogradLayerTransformOutputKernel<float, 2, 2, 3, 3>>();
            break;
        }
        case 5:
        {
            batched_gemm_kernel      = support::cpp14::make_unique<NEWinogradLayerBatchedGEMMKernel<float, float, 2, 2, 5, 5>>();
            transform_input_kernel   = support::cpp14::make_unique<NEWinogradLayerTransformInputKernel<float, 2, 2, 5, 5>>();
            transform_weights_kernel = support::cpp14::make_unique<NEWinogradLayerTransformWeightsKernel<float, 2, 2, 5, 5>>();
            transform_output_kernel  = support::cpp14::make_unique<NEWinogradLayerTransformOutputKernel<float, 2, 2, 5, 5>>();
            break;
        }
        default:
        {
            ARM_COMPUTE_ERROR("Not supported.");
            break;
        }
    }

    const PaddingType use_padding_type = (conv_info.pad_left() != 0u) ? PADDING_SAME : PADDING_VALID;
    const bool        use_same_padding = use_padding_type == PADDING_SAME;

    // Get parameters from conv_info
    unsigned int stride_x = 0;
    unsigned int stride_y = 0;
    std::tie(stride_x, stride_y) = conv_info.stride();
    ARM_COMPUTE_ERROR_ON_MSG(stride_y != 1 || stride_x != 1, "Winograd layer only supports unit strides.");

    // Get convolved dimensions
    const int in_channels  = input->info()->dimension(2);
    const int out_channels = output->info()->dimension(2);

    const Tensor4DShape in_shape(internal_get_input_shape(input));
    const size_t        data_type_size = input->info()->element_size();
    // Get the memory required to instantiate a new Winograd operator.
    constexpr size_t storage_alignment   = 64;
    const size_t     kernel_storage_size = transform_weights_kernel->get_weight_storage_size(out_channels, in_channels) * data_type_size;
    _kernel_storage.allocator()->init(TensorInfo(TensorShape{ (kernel_storage_size + storage_alignment - 1) }, 1, DataType::U8));
    _kernel_storage.allocator()->allocate();
    // Input storage
    const size_t input_storage_size = transform_input_kernel->get_input_storage_size(in_shape.n_batches, in_shape.n_channels, in_shape.n_rows, in_shape.n_cols, use_same_padding) * data_type_size;
    _input_workspace.allocator()->init(TensorInfo(TensorShape{ (input_storage_size + storage_alignment - 1) }, 1, DataType::U8));
    _input_workspace.allocator()->allocate();

    // Output storage
    const size_t output_storage_size = transform_output_kernel->get_output_storage_size(in_shape.n_batches, in_shape.n_rows, in_shape.n_cols, out_channels, use_same_padding) * data_type_size;
    _output_workspace.allocator()->init(TensorInfo(TensorShape{ (output_storage_size + storage_alignment - 1) }, 1, DataType::U8));
    _output_workspace.allocator()->allocate();

    // configure and allocate dst tensor to be used to convert from winograd domain to spatial domain when calling to reshape_output()
    TensorInfo info(TensorShape(_output->info()->dimension(2), _output->info()->dimension(0),
                                _output->info()->dimension(1), _output->info()->dimension(3)),
                    1, _output->info()->data_type());
    _output_nhwc.allocator()->init(info);
    _output_nhwc.allocator()->allocate();

    // Re-order a weight tensor from [Output feature map x Input feature map x Height x Width] to [Height x Width x Input feature map x Output feature map]
    _permute_weights.configure(weights, &_weights_hwio, PermutationVector(3U, 2U, 0U, 1U));
    _weights_hwio.allocator()->allocate();

    // configure the kernel to transform the input tensor from NCHW -> NHWC
    _permute_input.configure(input, &_input_nhwc, PermutationVector(2U, 0U, 1U));
    _input_nhwc.allocator()->allocate();

    const int         weights_width  = weights->info()->dimension(0);
    const int         weights_height = weights->info()->dimension(1);
    const KernelShape kernel_shape({ out_channels, weights_height, weights_width, in_channels });

    // Configure the InputTransform
    const int input_matrix_stride = transform_input_kernel->get_matrix_stride(kernel_shape, in_shape, use_padding_type);
    transform_input_kernel->configure(reinterpret_cast<float *>(_input_nhwc.buffer()), in_shape.n_batches, in_shape.n_rows, in_shape.n_cols, in_shape.n_channels, use_padding_type,
                                      reinterpret_cast<float *>(_input_workspace.buffer()), input_matrix_stride);

    // Configure WeightsTransform
    const int kernel_matrix_stride = transform_weights_kernel->get_matrix_stride(kernel_shape);
    transform_weights_kernel->configure(&_weights_hwio, reinterpret_cast<float *>(_kernel_storage.buffer()), kernel_matrix_stride, out_channels, in_channels);

    // Configure OutputTransform
    //The biases tensor has not been allocated at this point in time, the output transform will add the biases to the final result in the run() method
    const int  output_matrix_stride = transform_output_kernel->get_matrix_stride(kernel_shape, in_shape, use_padding_type);
    const auto output_shape(transform_output_kernel->get_output_shape(kernel_shape, in_shape, use_padding_type));

    transform_output_kernel->configure(biases, reinterpret_cast<float *>(_output_workspace.buffer()),
                                       output_matrix_stride, reinterpret_cast<float *>(_output_nhwc.buffer()),
                                       in_shape.n_batches, output_shape.n_rows, output_shape.n_cols, out_channels);

    // Configure Batched GEMMs
    const int      output_tile_rows         = batched_gemm_kernel->get_output_tile_rows();
    const int      output_tile_cols         = batched_gemm_kernel->get_output_tile_cols();
    const int      n_block                  = batched_gemm_kernel->get_number_blocks();
    const int      tile_rows                = iceildiv(output_shape.n_rows, output_tile_rows);
    const int      tile_cols                = iceildiv(output_shape.n_cols, output_tile_cols);
    const int      m                        = in_shape.n_batches * tile_rows * tile_cols;
    const int      k                        = in_shape.n_channels;
    const int      n                        = out_channels;
    const int      input_matrix_row_stride  = in_shape.n_channels;
    const int      kernel_matrix_row_stride = roundup(out_channels, n_block);
    const int      output_matrix_row_stride = kernel_matrix_row_stride;
    const unsigned n_gemms                  = batched_gemm_kernel->get_number_gemms();

    batched_gemm_kernel->configure(n_gemms, m, k, n,
                                   input_matrix_stride, input_matrix_row_stride,
                                   kernel_matrix_stride, kernel_matrix_row_stride,
                                   output_matrix_stride, output_matrix_row_stride,
                                   reinterpret_cast<float *>(_input_workspace.buffer()),
                                   reinterpret_cast<float *>(_kernel_storage.buffer()),
                                   reinterpret_cast<float *>(_output_workspace.buffer()));

    // Reorder the convoluted output to ACL's ordering NCHW
    _permute_output.configure(&_output_nhwc, _output, PermutationVector(1U, 2U, 0U));

    _transform_input_kernel   = std::move(transform_input_kernel);
    _transform_weights_kernel = std::move(transform_weights_kernel);
    _transform_output_kernel  = std::move(transform_output_kernel);
    _batched_gemm_kernel      = std::move(batched_gemm_kernel);
}

void NEWinogradLayer::run()
{
    _memory_group.acquire();
    if(!_reshaped_kernel)
    {
        _reshaped_kernel = true;
        _permute_weights.run();
        NEScheduler::get().schedule(_transform_weights_kernel.get(), Window::DimX);
    }
    //Bring channels to the front as Winograd code expects the tensor to be in the format NHWC
    _permute_input.run();

    // Transform input tensor to the winograd domain
    NEScheduler::get().schedule(_transform_input_kernel.get(), Window::DimX);

    //Run 16 GEMMs in multiple threads, each kernel runs one or more GEMMs
    NEScheduler::get().schedule(_batched_gemm_kernel.get(), Window::DimX);

    // Transform output tensor to the spatial domain
    NEScheduler::get().schedule(_transform_output_kernel.get(), Window::DimX);

    // Reorder the convoluted output to ACL's ordering NCHW
    _permute_output.run();
    _memory_group.release();
}

Status NEWinogradLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, biases, output);
    ARM_COMPUTE_RETURN_ERROR_ON(validate_arguments(input, weights, biases, output, conv_info));

    return Status{};
}

} // namespace arm_compute