aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/NEON/functions/NEWinogradConvolutionLayer.cpp
blob: d6bc5cfd9ab136e72724b73e450a1e075aca601b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
/*
 * Copyright (c) 2017-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/NEON/functions/NEWinogradConvolutionLayer.h"

#include "arm_compute/core/Error.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/NEON/AssemblyHelper.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "support/ToolchainSupport.h"

#include "arm_compute/core/NEON/kernels/NEWinogradConvolutionLayerKernel.h"

#include "arm_compute/core/NEON/kernels/convolution/winograd/winograd_gemm.hpp"

namespace arm_compute
{
namespace
{
inline Tensor4DShape internal_get_input_shape(const arm_compute::ITensor *input)
{
    const DataLayout data_layout = input->info()->data_layout();
    const int        in_width    = input->info()->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH));
    const int        in_height   = input->info()->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT));
    const int        in_channels = input->info()->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL));
    const int        in_batches  = input->info()->dimension(3);

    return Tensor4DShape({ in_batches, in_height, in_width, in_channels });
}

Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info)
{
    const DataLayout   data_layout = input->data_layout();
    const unsigned int width_idx   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const unsigned int height_idx  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);

    ARM_COMPUTE_UNUSED(output);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights->dimension(width_idx) != 3 && weights->dimension(height_idx) != 5, "Only 3 and 5 kernels are supported");
    ARM_COMPUTE_RETURN_ERROR_ON(data_layout != DataLayout::NCHW); // COMPMID-1287
    ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);

    ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.stride().first != 1 || conv_info.stride().second != 1, "Winograd layer only supports unit strides.");

    if(biases != nullptr)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
        ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
    }

    return Status{};
}

Size2D winograd_output_tile(const Size2D &input_dims, const Size2D &kernel_dims)
{
    Size2D output_tile = Size2D{};

    if(kernel_dims == Size2D(3U, 3U))
    {
        output_tile = (input_dims.width <= 4 && input_dims.height <= 4) ? Size2D(2U, 2U) : Size2D(4U, 4U);
    }
    else if(kernel_dims == Size2D(5U, 5U))
    {
        output_tile = Size2D(2U, 2U);
    }

    return output_tile;
}

bool check_support_fast_math(const Size2D &output_tile, const Size2D &kernel_size)
{
    // Check if we want to configure a Winograd configuration which requires fast math
    using WinogradConfiguration = std::pair<std::pair<int, int>, std::pair<int, int>>;

    std::vector<WinogradConfiguration> fast_math_winograd =
    {
        WinogradConfiguration(std::pair<int, int>(2, 2), std::pair<int, int>(5, 5)),
        WinogradConfiguration(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5))
    };

    auto p = std::make_pair(std::pair<int, int>(output_tile.width, output_tile.height),
                            std::pair<int, int>(kernel_size.width, kernel_size.height));

    return std::find(fast_math_winograd.begin(), fast_math_winograd.end(), p) != fast_math_winograd.end();
}

} //namespace

NEWinogradConvolutionLayer::NEWinogradConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
    : _memory_group(std::move(memory_manager)), _arm_gemm(nullptr), _gemm_kernel(nullptr), _transform_input_kernel(nullptr), _transform_output_kernel(nullptr), _transform_weights_kernel(nullptr),
      _activationlayer_function(), _permute_input(), _permute_weights(), _permute_output(), _input_workspace(), _output_workspace(), _kernel_storage(), _input_nhwc(), _output_nhwc(), _weights_hwio(),
      _workspace(), _input(), _weights(), _output(), _reshaped_kernel(false), _is_activationlayer_enabled(false)
{
} /* arm_compute */

void NEWinogradConvolutionLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info,
                                           bool enable_fast_math)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(), conv_info));

    // Get indices for the width and height
    const DataLayout   data_layout = input->info()->data_layout();
    const unsigned int width_idx   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const unsigned int height_idx  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const unsigned int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);

    const Size2D input_dims  = Size2D(input->info()->dimension(width_idx), input->info()->dimension(height_idx));
    const Size2D kernel_size = Size2D(weights->info()->dimension(width_idx), weights->info()->dimension(height_idx));
    const Size2D output_tile = winograd_output_tile(input_dims, kernel_size);

    // Check if the Winograd configuration requires fast math
    if(!enable_fast_math)
    {
        ARM_COMPUTE_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true");
    }

    _weights = weights;
    _input   = input;
    _output  = output;

    std::unique_ptr<INEWinogradLayerTransformInputKernel<float>>   transform_input_kernel;
    std::unique_ptr<INEWinogradLayerTransformWeightsKernel<float>> transform_weights_kernel;
    std::unique_ptr<INEWinogradLayerTransformOutputKernel<float>>  transform_output_kernel;

    int n_gemms = 0;
    int N_BLOCK = 0; // Size of block used by GEMM.

    switch(kernel_size.width)
    {
        case 3:
        {
            if(input->info()->dimension(width_idx) > 4 && input->info()->dimension(height_idx) > 4)
            {
                transform_input_kernel   = support::cpp14::make_unique<NEWinogradLayerTransformInputKernel<float, 4, 4, 3, 3>>();
                transform_weights_kernel = support::cpp14::make_unique<NEWinogradLayerTransformWeightsKernel<float, 4, 4, 3, 3>>();
                transform_output_kernel  = support::cpp14::make_unique<NEWinogradLayerTransformOutputKernel<float, 4, 4, 3, 3>>();
                n_gemms                  = NEWinogradLayerBatchedGEMMKernel<float, float, 4, 4, 3, 3>::WinogradBase::N_GEMMS;
                N_BLOCK                  = NEWinogradLayerBatchedGEMMKernel<float, float, 4, 4, 3, 3>::WinogradConv::N_BLOCK;
            }
            else
            {
                transform_input_kernel   = support::cpp14::make_unique<NEWinogradLayerTransformInputKernel<float, 2, 2, 3, 3>>();
                transform_weights_kernel = support::cpp14::make_unique<NEWinogradLayerTransformWeightsKernel<float, 2, 2, 3, 3>>();
                transform_output_kernel  = support::cpp14::make_unique<NEWinogradLayerTransformOutputKernel<float, 2, 2, 3, 3>>();
                n_gemms                  = NEWinogradLayerBatchedGEMMKernel<float, float, 2, 2, 3, 3>::WinogradBase::N_GEMMS;
                N_BLOCK                  = NEWinogradLayerBatchedGEMMKernel<float, float, 2, 2, 3, 3>::WinogradConv::N_BLOCK;
            }
            break;
        }
        case 5:
        {
            transform_input_kernel   = support::cpp14::make_unique<NEWinogradLayerTransformInputKernel<float, 2, 2, 5, 5>>();
            transform_weights_kernel = support::cpp14::make_unique<NEWinogradLayerTransformWeightsKernel<float, 2, 2, 5, 5>>();
            transform_output_kernel  = support::cpp14::make_unique<NEWinogradLayerTransformOutputKernel<float, 2, 2, 5, 5>>();
            n_gemms                  = NEWinogradLayerBatchedGEMMKernel<float, float, 2, 2, 5, 5>::WinogradBase::N_GEMMS;
            N_BLOCK                  = NEWinogradLayerBatchedGEMMKernel<float, float, 2, 2, 5, 5>::WinogradConv::N_BLOCK;
            break;
        }
        default:
        {
            ARM_COMPUTE_ERROR("Not supported.");
            break;
        }
    }

    const PaddingType use_padding_type = (conv_info.pad_left() != 0u) ? PADDING_SAME : PADDING_VALID;
    const bool        use_same_padding = use_padding_type == PADDING_SAME;

    // Get convolved dimensions
    const int in_channels  = input->info()->dimension(channel_idx);
    const int out_channels = output->info()->dimension(channel_idx);

    const Tensor4DShape in_shape(internal_get_input_shape(input));
    const size_t        data_type_size = input->info()->element_size();
    // Get the memory required to instantiate a new Winograd operator.
    constexpr size_t storage_alignment   = 64;
    const size_t     kernel_storage_size = transform_weights_kernel->get_weight_storage_size(out_channels, in_channels) * data_type_size;
    _kernel_storage.allocator()->init(TensorInfo(TensorShape{ (kernel_storage_size + storage_alignment - 1) }, 1, DataType::U8));
    _kernel_storage.allocator()->allocate();
    // Input storage
    const size_t input_storage_size = transform_input_kernel->get_input_storage_size(in_shape.n_batches, in_shape.n_channels, in_shape.n_rows, in_shape.n_cols, use_same_padding) * data_type_size;
    _input_workspace.allocator()->init(TensorInfo(TensorShape{ (input_storage_size + storage_alignment - 1) }, 1, DataType::U8));
    _input_workspace.allocator()->allocate();

    // Output storage
    const size_t output_storage_size = transform_output_kernel->get_output_storage_size(in_shape.n_batches, in_shape.n_rows, in_shape.n_cols, out_channels, use_same_padding) * data_type_size;
    _output_workspace.allocator()->init(TensorInfo(TensorShape{ (output_storage_size + storage_alignment - 1) }, 1, DataType::U8));
    _output_workspace.allocator()->allocate();

    // configure and allocate dst tensor to be used to convert from winograd domain to spatial domain when calling to reshape_output()
    TensorInfo info(TensorShape(_output->info()->dimension(2), _output->info()->dimension(0),
                                _output->info()->dimension(1), _output->info()->dimension(3)),
                    1, _output->info()->data_type());
    _output_nhwc.allocator()->init(info);
    _output_nhwc.allocator()->allocate();

    const KernelShape kernel_shape({ out_channels, static_cast<int>(kernel_size.height), static_cast<int>(kernel_size.width), in_channels });

    // Configure the InputTransform
    const int input_matrix_stride = transform_input_kernel->get_matrix_stride(kernel_shape, in_shape, use_padding_type);

    if(data_layout == DataLayout::NCHW)
    {
        // configure the kernel to transform the input tensor from NCHW -> NHWC
        _permute_input.configure(input, &_input_nhwc, PermutationVector(2U, 0U, 1U));
        _input_nhwc.allocator()->allocate();
        transform_input_kernel->configure(&_input_nhwc, in_shape.n_batches, in_shape.n_rows, in_shape.n_cols, in_shape.n_channels, use_padding_type,
                                          reinterpret_cast<float *>(_input_workspace.buffer()), input_matrix_stride);
    }
    else
    {
        transform_input_kernel->configure(_input, in_shape.n_batches, in_shape.n_rows, in_shape.n_cols, in_shape.n_channels, use_padding_type,
                                          reinterpret_cast<float *>(_input_workspace.buffer()), input_matrix_stride);
    }

    // Configure WeightsTransform
    const int kernel_matrix_stride = transform_weights_kernel->get_matrix_stride(kernel_shape);
    if(data_layout == DataLayout::NCHW)
    {
        // Re-order a weight tensor from [Output feature map x Input feature map x Height x Width] to [Height x Width x Input feature map x Output feature map]
        _permute_weights.configure(weights, &_weights_hwio, PermutationVector(3U, 2U, 0U, 1U));

        transform_weights_kernel->configure(&_weights_hwio, reinterpret_cast<float *>(_kernel_storage.buffer()), kernel_matrix_stride, out_channels, in_channels);
    }
    else
    {
        // Re-order a weight tensor from [Output feature map x Input feature map x Height x Width] to [Height x Width x Input feature map x Output feature map]
        _permute_weights.configure(weights, &_weights_hwio, PermutationVector(3U, 0U, 1U, 2U));

        transform_weights_kernel->configure(&_weights_hwio, reinterpret_cast<float *>(_kernel_storage.buffer()), kernel_matrix_stride, out_channels, in_channels);
    }
    _weights_hwio.allocator()->allocate();

    // Configure OutputTransform
    //The biases tensor has not been allocated at this point in time, the output transform will add the biases to the final result in the run() method
    const int  output_matrix_stride = transform_output_kernel->get_matrix_stride(kernel_shape, in_shape, use_padding_type);
    const auto output_shape(transform_output_kernel->get_output_shape(kernel_shape, in_shape, use_padding_type));

    if(data_layout == DataLayout::NCHW)
    {
        transform_output_kernel->configure(biases, reinterpret_cast<float *>(_output_workspace.buffer()),
                                           output_matrix_stride, &_output_nhwc,
                                           in_shape.n_batches, output_shape.n_rows, output_shape.n_cols, out_channels);
    }
    else
    {
        transform_output_kernel->configure(biases, reinterpret_cast<float *>(_output_workspace.buffer()),
                                           output_matrix_stride, _output,
                                           in_shape.n_batches, output_shape.n_rows, output_shape.n_cols, out_channels);
    }

    // Configure GEMM
    const int    tile_rows                = iceildiv(output_shape.n_rows, output_tile.height);
    const int    tile_cols                = iceildiv(output_shape.n_cols, output_tile.width);
    const int    m                        = in_shape.n_batches * tile_rows * tile_cols;
    const int    k                        = in_shape.n_channels;
    const int    n                        = out_channels;
    const int    input_matrix_row_stride  = in_shape.n_channels;
    const int    kernel_matrix_row_stride = roundup(out_channels, N_BLOCK);
    const int    output_matrix_row_stride = kernel_matrix_row_stride;
    unsigned int num_threads              = NEScheduler::get().num_threads();

    _arm_gemm = arm_gemm::gemm<float, float>(NEScheduler::get().cpu_info(), m, n, k, 1, n_gemms, false, false, 1.f, 0.f, num_threads, false);
    _arm_gemm->set_arrays(reinterpret_cast<float *>(_input_workspace.buffer()), input_matrix_row_stride, 0, input_matrix_stride, reinterpret_cast<float *>(_kernel_storage.buffer()),
                          kernel_matrix_row_stride, kernel_matrix_stride, reinterpret_cast<float *>(_output_workspace.buffer()), output_matrix_row_stride, 0, output_matrix_stride);

    auto acl_gemm_wrapper = support::cpp14::make_unique<NEGEMMAssemblyWrapper<arm_gemm::GemmCommon<float, float>>>();
    acl_gemm_wrapper->configure(_arm_gemm.get());
    const size_t workspace_size = _arm_gemm->get_working_size();

    // Allocate workspace
    if(workspace_size > 0)
    {
        const unsigned int alignment = 4096;
        // TODO (COMPMID-1248) : Add support for memory manager in NEWinogradConvolutionLayer
        // Warning : Do not set a memory group in allocate_workspace, should be done under COMPMID-1248
        allocate_workspace(workspace_size, _workspace, nullptr, alignment, 1);
        _arm_gemm->set_working_space(reinterpret_cast<float *>(_workspace.buffer()));
    }

    const unsigned int window_size = _arm_gemm->get_window_size();
    if(window_size < num_threads)
    {
        num_threads = window_size;
        _arm_gemm->set_nthreads(num_threads);
    }

    _gemm_kernel = std::move(acl_gemm_wrapper);

    // Reorder the convoluted output to ACL's ordering NCHW
    _permute_output.configure(&_output_nhwc, _output, PermutationVector(1U, 2U, 0U));

    _transform_input_kernel   = std::move(transform_input_kernel);
    _transform_weights_kernel = std::move(transform_weights_kernel);
    _transform_output_kernel  = std::move(transform_output_kernel);

    //Configure Activation Layer
    _is_activationlayer_enabled = act_info.enabled();
    if(data_layout == DataLayout::NCHW && _is_activationlayer_enabled)
    {
        _activationlayer_function.configure(_output, nullptr, act_info);
    }
}

void NEWinogradConvolutionLayer::run()
{
    const DataLayout data_layout = _input->info()->data_layout();

    _memory_group.acquire();
    if(!_reshaped_kernel)
    {
        _reshaped_kernel = true;
        _permute_weights.run();
        NEScheduler::get().schedule(_transform_weights_kernel.get(), Window::DimX);
    }

    if(data_layout == DataLayout::NCHW)
    {
        //Bring channels to the front as Winograd code expects the tensor to be in the format NHWC
        _permute_input.run();
    }
    // Transform input tensor to the winograd domain
    NEScheduler::get().schedule(_transform_input_kernel.get(), Window::DimX);

    //Run 16 GEMMs in multiple threads, each kernel runs one or more GEMMs
    NEScheduler::get().schedule(_gemm_kernel.get(), Window::DimX);

    // Transform output tensor to the spatial domain
    NEScheduler::get().schedule(_transform_output_kernel.get(), Window::DimX);

    if(data_layout == DataLayout::NCHW)
    {
        // Reorder the convoluted output to ACL's ordering NCHW
        _permute_output.run();
    }

    if(_is_activationlayer_enabled)
    {
        _activationlayer_function.run();
    }
    _memory_group.release();
}

Status NEWinogradConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
                                            const ActivationLayerInfo &act_info, bool enable_fast_math)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, biases, output, conv_info));

    // Get indices for the width and height
    const size_t idx_width  = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
    const size_t idx_height = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);

    // Input shape, kernel size and output tile
    const Size2D input_dims  = Size2D(input->dimension(idx_width), input->dimension(idx_height));
    const Size2D kernel_size = Size2D(weights->dimension(idx_width), weights->dimension(idx_height));
    const Size2D output_tile = winograd_output_tile(input_dims, kernel_size);

    // Check if the Winograd configuration requires fast math
    if(!enable_fast_math)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true");
    }

    const WinogradInfo winograd_info = WinogradInfo(output_tile,
                                                    kernel_size,
                                                    input_dims,
                                                    conv_info,
                                                    input->data_layout());

    // Validate input transform
    const TensorShape input0_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input, winograd_info);
    const TensorInfo  input0       = input->clone()->set_tensor_shape(input0_shape);
    switch(weights->dimension(idx_width))
    {
        case 3:
        {
            if(input_dims.width > 4 && input_dims.height > 4)
            {
                ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 4, 4, 3, 3>::validate(input, &input0, winograd_info)));
            }
            else
            {
                ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 2, 2, 3, 3>::validate(input, &input0, winograd_info)));
            }
            break;
        }
        case 5:
        {
            ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 2, 2, 5, 5>::validate(input, &input0, winograd_info)));
            break;
        }
        default:
        {
            ARM_COMPUTE_RETURN_ERROR_MSG("Only 3x3 and 5x5 kernels supported.");
            break;
        }
    }
    // Validate filter transform
    const TensorShape input1_shape = misc::shape_calculator::compute_winograd_filter_transform_shape(*weights, winograd_info);
    const TensorInfo  input1       = weights->clone()->set_tensor_shape(input1_shape);

    switch(weights->dimension(idx_width))
    {
        case 3:
        {
            if(input_dims.width > 4 && input_dims.height > 4)
            {
                ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 4, 4, 3, 3>::validate(weights, &input1, winograd_info)));
            }
            else
            {
                ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 2, 2, 3, 3>::validate(weights, &input1, winograd_info)));
            }
            break;
        }
        case 5:
        {
            ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 2, 2, 5, 5>::validate(weights, &input1, winograd_info)));
            break;
        }
        default:
        {
            ARM_COMPUTE_RETURN_ERROR_MSG("Only 3x3 and 5x5 kernels supported.");
            break;
        }
    }
    // Validate batched matrix multiply
    TensorShape batched_mm_output_shape = input0.tensor_shape();
    batched_mm_output_shape[0]          = input1.tensor_shape()[0];
    const TensorInfo batched_mm_output  = input0.clone()->set_tensor_shape(batched_mm_output_shape);
    switch(weights->dimension(idx_width))
    {
        case 3:
        {
            if(input_dims.width > 4 && input_dims.height > 4)
            {
                // Validate output transform
                ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 4, 4, 3, 3>::validate(&batched_mm_output, biases, output, winograd_info)));
            }
            else
            {
                // Validate output transform
                ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 2, 2, 3, 3>::validate(&batched_mm_output, biases, output, winograd_info)));
            }
            break;
        }
        case 5:
        {
            // Validate output transform
            ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 2, 2, 5, 5>::validate(&batched_mm_output, biases, output, winograd_info)));
            break;
        }
        default:
        {
            ARM_COMPUTE_RETURN_ERROR_MSG("Only 3x3 and 5x5 kernels supported.");
            break;
        }
    }

    // Validate Activation Layer
    if(act_info.enabled())
    {
        NEActivationLayer::validate(output, nullptr, act_info);
    }
    return Status{};
}

} // namespace arm_compute