aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/NEON/functions/NELSTMLayerQuantized.cpp
blob: 6cfa9887ff0bf5d94583fea48cc742977107acdf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
/*
 * Copyright (c) 2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/NEON/functions/NELSTMLayerQuantized.h"

#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"

#include <cmath>
#include <memory>
#include <tuple>

namespace arm_compute
{
namespace
{
// Quantization info structures used in the LSTMQuantize layer
const QuantizationInfo qasymm(1.f / 128.f, 128);
const QuantizationInfo qsymm_3(8.f / 32768.f, 0);  // qsymm16 with 3 integer bit
const QuantizationInfo qsymm_4(16.f / 32768.f, 0); // qsymm16 with 4 integer bit
const QuantizationInfo qsymm_0(1.f / 32768.f, 0);  // qsymm16 with 0 integer bit
} // namespace

NELSTMLayerQuantized::NELSTMLayerQuantized(std::shared_ptr<IMemoryManager> memory_manager)
    : _memory_group(std::move(memory_manager)), _gemmlowp(), _output_stage(), _transpose_weights(), _concat_input_weights(), _concat_recurrent_weights(), _concat_weights(), _concat_inputs(),
      _concat_bias(), _sigmoid_forget_gate(), _sigmoid_input_gate(), _sigmoid_output_gate(), _tanh_modulation_gate(), _tanh_output_state(), _add1(), _add2(), _mul1(), _mul2(), _mul3(),
      _slice_input_tensor(), _slice_forget_tensor(), _slice_cell_tensor(), _slice_output_tensor(), _dequantize(), _quantize(), _input_to_input_weights(nullptr), _input_to_forget_weights(nullptr),
      _input_to_cell_weights(nullptr), _input_to_output_weights(nullptr), _recurrent_to_input_weights(nullptr), _recurrent_to_forget_weights(nullptr), _recurrent_to_cell_weights(nullptr),
      _recurrent_to_output_weights(nullptr), _input_gate_bias(nullptr), _forget_gate_bias(nullptr), _cell_bias(nullptr), _output_gate_bias(nullptr), _recurrent_weights(), _input_weights(), _weights(),
      _input(), _weights_transposed(), _output_highp(), _output_lowp(), _bias(), _forget_gate_input(), _input_gate_input(), _output_gate_input(), _input_modulation_gate_input(), _forget_gate_output(),
      _input_gate_output(), _output_gate_output(), _input_modulation_gate_output(), _cell_state1(), _cell_state2(), _output_state_tmp(), _output_state_out_symm(), _output_state_out_f32(),
      _is_prepared(false)
{
}

void NELSTMLayerQuantized::configure(const ITensor *input,
                                     const ITensor *input_to_input_weights, const ITensor *input_to_forget_weights, const ITensor *input_to_cell_weights, const ITensor *input_to_output_weights,
                                     const ITensor *recurrent_to_input_weights, const ITensor *recurrent_to_forget_weights, const ITensor *recurrent_to_cell_weights, const ITensor *recurrent_to_output_weights,
                                     const ITensor *input_gate_bias, const ITensor *forget_gate_bias, const ITensor *cell_bias, const ITensor *output_gate_bias,
                                     ITensor *cell_state_in, const ITensor *output_state_in,
                                     ITensor *cell_state_out, ITensor *output_state_out)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights,
                                 recurrent_to_input_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights,
                                 input_gate_bias, forget_gate_bias, cell_bias, output_gate_bias, cell_state_in, output_state_in, cell_state_out, output_state_out);

    ARM_COMPUTE_ERROR_THROW_ON(NELSTMLayerQuantized::validate(input->info(), input_to_input_weights->info(), input_to_forget_weights->info(), input_to_cell_weights->info(),
                                                              input_to_output_weights->info(),
                                                              recurrent_to_input_weights->info(), recurrent_to_forget_weights->info(), recurrent_to_cell_weights->info(), recurrent_to_output_weights->info(),
                                                              input_gate_bias->info(), forget_gate_bias->info(), cell_bias->info(), output_gate_bias->info(), cell_state_in->info(), output_state_in->info(), cell_state_out->info(), output_state_out->info()));

    const int input_size  = input->info()->dimension(0);
    const int batch_size  = input->info()->dimension(1);
    const int output_size = input_to_input_weights->info()->dimension(1);

    const QuantizationInfo qweights = input_to_input_weights->info()->quantization_info(); // Weights quantization

    auto_init_if_empty(*cell_state_out->info(), TensorInfo(TensorShape(batch_size, output_size), 1, DataType::QSYMM16, qsymm_4));
    auto_init_if_empty(*output_state_out->info(), TensorInfo(TensorShape(batch_size, output_size), 1, DataType::QASYMM8, qasymm));

    _input_to_input_weights      = input_to_input_weights;
    _input_to_forget_weights     = input_to_forget_weights;
    _input_to_cell_weights       = input_to_cell_weights;
    _input_to_output_weights     = input_to_output_weights;
    _recurrent_to_input_weights  = recurrent_to_input_weights;
    _recurrent_to_forget_weights = recurrent_to_forget_weights;
    _recurrent_to_cell_weights   = recurrent_to_cell_weights;
    _recurrent_to_output_weights = recurrent_to_output_weights;
    _input_gate_bias             = input_gate_bias;
    _forget_gate_bias            = forget_gate_bias;
    _cell_bias                   = cell_bias;
    _output_gate_bias            = output_gate_bias;

    // Weights concatenation
    std::vector<const ITensor *> inputs_weights_vector{ input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights };
    std::vector<const ITensor *> recurrent_weights_vector{ recurrent_to_input_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights };

    _input_weights.allocator()->init(TensorInfo(TensorShape(input_size, 4 * output_size), 1, DataType::QASYMM8, qweights));
    _concat_input_weights.configure(inputs_weights_vector, &_input_weights, Window::DimY);

    _recurrent_weights.allocator()->init(TensorInfo(TensorShape(output_size, 4 * output_size), 1, DataType::QASYMM8, qweights));
    _concat_recurrent_weights.configure(recurrent_weights_vector, &_recurrent_weights, Window::DimY);

    std::vector<const ITensor *> weights_vector{ &_recurrent_weights, &_input_weights };
    _weights.allocator()->init(TensorInfo(TensorShape(output_size + input_size, 4 * output_size), 1, DataType::QASYMM8, qweights));
    _concat_weights.configure(weights_vector, &_weights, Window::DimX);
    _transpose_weights.configure(&_weights, &_weights_transposed);

    // Input concatenation
    std::vector<const ITensor *> input_vector{ input, output_state_in };
    _memory_group.manage(&_input);
    _input.allocator()->init(TensorInfo(TensorShape(output_size + input_size, batch_size), 1, DataType::QASYMM8, qasymm));
    _concat_inputs.configure(input_vector, &_input, Window::DimX);

    // Bias concatenation
    std::vector<const ITensor *> bias_vector{ input_gate_bias, forget_gate_bias, cell_bias, output_gate_bias };
    _bias.allocator()->init(TensorInfo(TensorShape(4 * output_size), 1, DataType::S32));
    _concat_bias.configure(bias_vector, &_bias, Window::DimX);

    // Invert the offset for gemmlowp
    _input.info()->set_quantization_info(QuantizationInfo(qasymm.uniform().scale, -qasymm.uniform().offset));
    _weights_transposed.info()->set_quantization_info(QuantizationInfo(qweights.uniform().scale, -qweights.uniform().offset));

    // Run gemmlowp
    _memory_group.manage(&_output_highp);
    _output_highp.allocator()->init(TensorInfo(TensorShape(4 * output_size, batch_size), 1, DataType::S32));
    _gemmlowp.configure(&_input, &_weights_transposed, nullptr, &_output_highp);
    _input.allocator()->allocate();

    // Set the offset back
    _input.info()->set_quantization_info(QuantizationInfo(qasymm.uniform().scale, qasymm.uniform().offset));
    _weights_transposed.info()->set_quantization_info(QuantizationInfo(qweights.uniform().scale, qweights.uniform().offset));

    // multiplier = (input_scale * weights_scale) / output_scale (2 ^ (-12))
    _output_lowp.allocator()->init(TensorInfo(_output_highp.info()->tensor_shape(), 1, DataType::QSYMM16, qsymm_3));

    const float multiplier        = 4096.f * qasymm.uniform().scale * qweights.uniform().scale;
    int         output_multiplier = 0;
    int         output_shift      = 0;

    quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);

    _memory_group.manage(&_output_lowp);
    _output_stage.configure(&_output_highp, &_bias, &_output_lowp, output_multiplier, output_shift);
    _output_highp.allocator()->allocate();
    _bias.allocator()->allocate();

    // Get the gate tensors
    _memory_group.manage(&_input_gate_input);
    _slice_input_tensor.configure(&_output_lowp, &_input_gate_input, { 0, 0 }, { output_size, batch_size });
    _memory_group.manage(&_forget_gate_input);
    _slice_forget_tensor.configure(&_output_lowp, &_forget_gate_input, { output_size, 0 }, { 2 * output_size, batch_size });
    _memory_group.manage(&_input_modulation_gate_input);
    _slice_cell_tensor.configure(&_output_lowp, &_input_modulation_gate_input, { 2 * output_size, 0 }, { 3 * output_size, batch_size });
    _memory_group.manage(&_output_gate_input);
    _slice_output_tensor.configure(&_output_lowp, &_output_gate_input, { 3 * output_size, 0 }, { 4 * output_size, batch_size });
    _output_lowp.allocator()->allocate();

    // Forget gate
    _memory_group.manage(&_forget_gate_output);
    _forget_gate_output.allocator()->init(TensorInfo(_forget_gate_input.info()->tensor_shape(), 1, DataType::QSYMM16, qsymm_0));
    _sigmoid_forget_gate.configure(&_forget_gate_input, &_forget_gate_output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
    _forget_gate_input.allocator()->allocate();

    // Input gate
    _memory_group.manage(&_input_gate_output);
    _input_gate_output.allocator()->init(TensorInfo(_input_gate_input.info()->tensor_shape(), 1, DataType::QSYMM16, qsymm_0));
    _sigmoid_input_gate.configure(&_input_gate_input, &_input_gate_output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
    _input_gate_input.allocator()->allocate();

    // Input modulation gate equation
    _memory_group.manage(&_input_modulation_gate_output);
    _input_modulation_gate_output.allocator()->init(TensorInfo(_input_modulation_gate_input.info()->tensor_shape(), 1, DataType::QSYMM16, qsymm_0));
    _tanh_modulation_gate.configure(&_input_modulation_gate_input, &_input_modulation_gate_output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.0f, 1.0f));
    _input_modulation_gate_input.allocator()->allocate();

    // Output gate
    _memory_group.manage(&_output_gate_output);
    _output_gate_output.allocator()->init(TensorInfo(_output_gate_input.info()->tensor_shape(), 1, DataType::QSYMM16, qsymm_0));
    _sigmoid_output_gate.configure(&_output_gate_input, &_output_gate_output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
    _output_gate_input.allocator()->allocate();

    // Long term memory
    _memory_group.manage(&_cell_state1);
    _cell_state1.allocator()->init(TensorInfo(_forget_gate_output.info()->tensor_shape(), 1, DataType::QSYMM16, qsymm_4));
    _mul1.configure(&_forget_gate_output, cell_state_in, &_cell_state1, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
    _forget_gate_output.allocator()->allocate();

    _memory_group.manage(&_cell_state2);
    _cell_state2.allocator()->init(TensorInfo(_input_gate_output.info()->tensor_shape(), 1, DataType::QSYMM16, qsymm_4));
    _mul2.configure(&_input_gate_output, &_input_modulation_gate_output, &_cell_state2, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
    _input_modulation_gate_output.allocator()->allocate();
    _input_gate_output.allocator()->allocate();

    _add1.configure(&_cell_state1, &_cell_state2, cell_state_out, ConvertPolicy::SATURATE);
    _cell_state1.allocator()->allocate();
    _cell_state2.allocator()->allocate();

    // Short term memory
    _memory_group.manage(&_output_state_tmp);
    _output_state_tmp.allocator()->init(TensorInfo(cell_state_out->info()->tensor_shape(), 1, DataType::QSYMM16, qsymm_0));
    _tanh_output_state.configure(cell_state_out, &_output_state_tmp, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.0f, 1.0f));

    _memory_group.manage(&_output_state_out_symm);
    _output_state_out_symm.allocator()->init(TensorInfo(_output_gate_output.info()->tensor_shape(), 1, DataType::QSYMM16, qsymm_0));
    _mul3.configure(&_output_state_tmp, &_output_gate_output, &_output_state_out_symm, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
    _output_gate_output.allocator()->allocate();
    _output_state_tmp.allocator()->allocate();

    // Requantize the output state from QSYMM16 to QASYMM8
    _memory_group.manage(&_output_state_out_f32);
    _output_state_out_f32.allocator()->init(TensorInfo(_output_state_out_symm.info()->tensor_shape(), 1, DataType::F32));
    _dequantize.configure(&_output_state_out_symm, &_output_state_out_f32);
    _output_state_out_symm.allocator()->allocate();

    _quantize.configure(&_output_state_out_f32, output_state_out);
    _output_state_out_f32.allocator()->allocate();
}

Status NELSTMLayerQuantized::validate(const ITensorInfo *input,
                                      const ITensorInfo *input_to_input_weights, const ITensorInfo *input_to_forget_weights, const ITensorInfo *input_to_cell_weights, const ITensorInfo *input_to_output_weights,
                                      const ITensorInfo *recurrent_to_input_weights, const ITensorInfo *recurrent_to_forget_weights, const ITensorInfo *recurrent_to_cell_weights, const ITensorInfo *recurrent_to_output_weights,
                                      const ITensorInfo *input_gate_bias, const ITensorInfo *forget_gate_bias, const ITensorInfo *cell_bias, const ITensorInfo *output_gate_bias,
                                      const ITensorInfo *cell_state_in, const ITensorInfo *output_state_in,
                                      const ITensorInfo *cell_state_out, const ITensorInfo *output_state_out)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_input_weights,
                                        recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, input_gate_bias, forget_gate_bias, cell_bias, output_gate_bias, cell_state_in,
                                        output_state_in, cell_state_out, output_state_out);

    const int input_size  = input->dimension(0);
    const int batch_size  = input->dimension(1);
    const int output_size = input_to_input_weights->dimension(1);

    // Dimensionality checks
    ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 2);
    ARM_COMPUTE_RETURN_ERROR_ON(input_to_input_weights->num_dimensions() > 2);
    ARM_COMPUTE_RETURN_ERROR_ON(input_gate_bias->num_dimensions() > 1);
    ARM_COMPUTE_RETURN_ERROR_ON(output_state_in->num_dimensions() > 2);

    TensorInfo input_weights_info(input_to_input_weights->clone()->set_tensor_shape(TensorShape(input_size, output_size)).set_data_type(DataType::QASYMM8));
    TensorInfo recurrent_weights_info(input_to_input_weights->clone()->set_tensor_shape(TensorShape(output_size, output_size)).set_data_type(DataType::QASYMM8));
    TensorInfo bias_info(input_gate_bias->clone()->set_tensor_shape(TensorShape(output_size)).set_data_type(DataType::S32));
    TensorInfo output_state_info(cell_state_in->clone()->set_tensor_shape(TensorShape(output_size, batch_size)).set_data_type(DataType::QASYMM8).set_quantization_info(qasymm));
    TensorInfo cell_state_info(cell_state_in->clone()->set_tensor_shape(TensorShape(output_size, batch_size)).set_data_type(DataType::QSYMM16).set_quantization_info(qsymm_4));

    // Shape checks
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&input_weights_info, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&recurrent_weights_info, recurrent_to_input_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&bias_info, input_gate_bias, forget_gate_bias, cell_bias, output_gate_bias);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&cell_state_info, cell_state_in);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&output_state_info, output_state_in);

    // Data type checks
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input_weights_info, input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(recurrent_to_input_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&bias_info, input_gate_bias, forget_gate_bias, cell_bias, output_gate_bias);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&cell_state_info, cell_state_in);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&output_state_info, output_state_in);

    // Quantization checks
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&input_weights_info, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(recurrent_to_input_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&cell_state_info, cell_state_in);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&output_state_info, output_state_in);

    if(cell_state_out->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&cell_state_info, cell_state_out);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&cell_state_info, cell_state_out);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&cell_state_info, cell_state_out);
    }

    if(output_state_out->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&output_state_info, output_state_out);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&output_state_info, output_state_out);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&output_state_info, output_state_out);
    }

    return Status{};
}

void NELSTMLayerQuantized::run()
{
    prepare();

    // Acquire all the temporaries
    MemoryGroupResourceScope scope_mg(_memory_group);

    // Concat and transpose the input
    _concat_inputs.run();

    // Run gemmlowp
    _gemmlowp.run();
    _output_stage.run();

    // Slice the results
    _slice_input_tensor.run();
    _slice_forget_tensor.run();
    _slice_cell_tensor.run();
    _slice_output_tensor.run();

    // Gates
    // Forget gate
    _sigmoid_forget_gate.run();

    // Input gate
    _sigmoid_input_gate.run();

    // Input modulation gate
    _tanh_modulation_gate.run();

    // Output gate
    _sigmoid_output_gate.run();

    // Cell state (long term memory)
    _mul1.run();
    _mul2.run();
    _add1.run();

    // Output state (short term memory)
    _tanh_output_state.run();
    _mul3.run();

    // Requantize output state from QSYMM16 to QASYMM16
    _dequantize.run();
    _quantize.run();
}

void NELSTMLayerQuantized::prepare()
{
    if(!_is_prepared)
    {
        _input_weights.allocator()->allocate();
        _concat_input_weights.run();

        _input_to_input_weights->mark_as_unused();
        _input_to_forget_weights->mark_as_unused();
        _input_to_cell_weights->mark_as_unused();
        _input_to_output_weights->mark_as_unused();

        _recurrent_weights.allocator()->allocate();
        _concat_recurrent_weights.run();
        _recurrent_to_input_weights->mark_as_unused();
        _recurrent_to_forget_weights->mark_as_unused();
        _recurrent_to_cell_weights->mark_as_unused();
        _recurrent_to_output_weights->mark_as_unused();

        _weights.allocator()->allocate();
        _concat_weights.run();

        _input_weights.mark_as_unused();
        _input_weights.allocator()->free();
        _recurrent_weights.mark_as_unused();
        _recurrent_weights.allocator()->free();

        _weights_transposed.allocator()->allocate();
        _transpose_weights.run();

        _weights.mark_as_unused();
        _weights.allocator()->free();

        _bias.allocator()->allocate();
        _concat_bias.run();
        _input_gate_bias->mark_as_unused();
        _forget_gate_bias->mark_as_unused();
        _cell_bias->mark_as_unused();
        _output_gate_bias->mark_as_unused();

        _is_prepared = true;
    }
}

} // namespace arm_compute