aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/NEON/functions/NEConvolutionLayer.cpp
blob: 155f4e561ab27f1ea58d19c3e20d313f51a1ca0f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/*
 * Copyright (c) 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/NEON/functions/NEConvolutionLayer.h"

#include "arm_compute/core/NEON/kernels/arm32/NEGEMMAArch32Kernel.h"
#include "arm_compute/core/NEON/kernels/arm64/NEGEMMAArch64Kernel.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "support/ToolchainSupport.h"

namespace arm_compute
{
#include "arm_compute/core/NEON/kernels/assembly/gemm_interleaved.hpp"
#include "arm_compute/core/NEON/kernels/assembly/kernels/a32_sgemm_8x6.hpp"
#include "arm_compute/core/NEON/kernels/assembly/kernels/a64_sgemm_12x8.hpp"
} // namespace arm_compute

#include <cmath>
#include <tuple>

namespace arm_compute
{
NEConvolutionLayerReshapeWeights::NEConvolutionLayerReshapeWeights(std::shared_ptr<IMemoryManager> memory_manager)
    : _memory_group(std::move(memory_manager)), _weights_reshape_kernel(), _weights_transposed_kernel(), _weights_reshaped(), _transpose1xW(false)
{
}

void NEConvolutionLayerReshapeWeights::configure(const ITensor *weights, const ITensor *biases, ITensor *output, bool transpose1xW)
{
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(weights, output);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(weights, output);
    ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4);

    if(biases != nullptr)
    {
        ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
        ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(weights, biases);
        ARM_COMPUTE_ERROR_ON(biases->info()->dimension(0) != weights->info()->dimension(3));
        ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1);
    }

    // Check if bias are present, if yes they will be embedded to the weights matrix
    const bool _has_bias = (biases != nullptr);

    _transpose1xW = transpose1xW;

    if(transpose1xW)
    {
        // Create tensor to store the reshaped weights
        const unsigned int mat_weights_cols = weights->info()->dimension(3);
        const unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + (_has_bias ? 1 : 0);
        TensorShape        shape_wr(mat_weights_cols, mat_weights_rows);
        TensorInfo         info_wr(shape_wr, 1, weights->info()->data_type(), weights->info()->fixed_point_position());

        _weights_reshaped.allocator()->init(info_wr);
        _memory_group.manage(&_weights_reshaped);

        _weights_reshape_kernel.configure(weights, biases, &_weights_reshaped);
        _weights_transposed_kernel.configure(&_weights_reshaped, output);

        _weights_reshaped.allocator()->allocate();
    }
    else
    {
        _weights_reshape_kernel.configure(weights, biases, output);
    }
}

void NEConvolutionLayerReshapeWeights::run()
{
    _memory_group.acquire();

    NEScheduler::get().schedule(&_weights_reshape_kernel, 3);

    if(_transpose1xW)
    {
        NEScheduler::get().schedule(&_weights_transposed_kernel, Window::DimY);
    }

    _memory_group.release();
}

NEConvolutionLayer::NEConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
    : _memory_group(std::move(memory_manager)), _input_im2col_kernel(), _input_interleave_kernel(), _reshape_weights(), _mm_kernel(), _mm_optimised_kernel(nullptr), _output_col2im_kernel(),
      _input_im2col_reshaped(), _input_interleaved_reshaped(), _weights_reshaped(), _gemm_output(), _workspace(), _has_bias(false), _is_fully_connected_convolution(false), _are_weights_reshaped(false)
{
}

void NEConvolutionLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info)
{
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, weights);
    ARM_COMPUTE_ERROR_ON(!weights_info.are_reshaped() && weights->info()->dimension(2) != input->info()->dimension(2));
    ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4);

    if(biases != nullptr)
    {
        ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
        ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, biases);
        ARM_COMPUTE_ERROR_ON(!weights_info.are_reshaped() && biases->info()->dimension(0) != weights->info()->dimension(3));
        ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1);
    }

    const DataType dt                   = input->info()->data_type();
    const int      fixed_point_position = input->info()->fixed_point_position();

    _has_bias             = (biases != nullptr);
    _are_weights_reshaped = weights_info.are_reshaped();

    // Get parameters from conv_info
    unsigned int stride_x = 0;
    unsigned int stride_y = 0;
    std::tie(stride_x, stride_y) = conv_info.stride();

    // Get convolved dimensions
    unsigned int conv_w = 0;
    unsigned int conv_h = 0;

    const unsigned int kernel_width  = (_are_weights_reshaped) ? weights_info.kernel_size().first : weights->info()->dimension(0);
    const unsigned int kernel_height = (_are_weights_reshaped) ? weights_info.kernel_size().second : weights->info()->dimension(1);
    std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), kernel_width, kernel_height,
                                                 conv_info);

    // Check if its a "fully connected" convolution, i.e. the output size is 1x1xnum_kernels
    _is_fully_connected_convolution = ((conv_w == 1) && (conv_h == 1));

#if defined(__arm__)
    if(NEScheduler::get().cpu_info().CPU == CPUTarget::ARMV7 && dt == DataType::F32)
    {
        _mm_optimised_kernel = support::cpp14::make_unique<NEGEMMAArch32Kernel>();
    }
#elif defined(__aarch64__)
    if(NEScheduler::get().cpu_info().CPU >= CPUTarget::ARMV8 && dt == DataType::F32)
    {
        _mm_optimised_kernel = support::cpp14::make_unique<NEGEMMAArch64Kernel>();
    }
#endif /* defined(__arm__) || defined(__aarch64__) */

    unsigned int mat_weights_cols = weights->info()->dimension(3);
    unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + (_has_bias ? 1 : 0);

    // Reshape weights if needed
    if(_mm_optimised_kernel != nullptr)
    {
        if(_are_weights_reshaped)
        {
            mat_weights_cols = weights_info.num_kernels();
            mat_weights_rows = weights->info()->dimension(1);
        }
        else
        {
            TensorShape reshaped_weights_shape{ mat_weights_cols, mat_weights_rows };

            // Create tensor to store the reshaped weights
            _weights_reshaped.allocator()->init(TensorInfo(reshaped_weights_shape, 1, dt, fixed_point_position));
            _reshape_weights.configure(weights, biases, &_weights_reshaped, false /* 1xW transpose */);
            weights = &_weights_reshaped;
        }
    }
    else
    {
        if(_are_weights_reshaped)
        {
            const unsigned int transpose_width = 16 / input->info()->element_size();
            mat_weights_cols                   = weights_info.num_kernels();
            mat_weights_rows                   = weights->info()->dimension(0) / transpose_width + (_has_bias ? 1 : 0);
        }
        else
        {
            TensorShape reshaped_weights_shape;

            if(_is_fully_connected_convolution)
            {
                reshaped_weights_shape = TensorShape{ mat_weights_cols, mat_weights_rows };
            }
            else
            {
                // Create tensor to store transposed weights
                const float transpose_width = 16.0f / input->info()->element_size();
                reshaped_weights_shape      = TensorShape{ mat_weights_rows *static_cast<unsigned int>(transpose_width),
                                                           static_cast<unsigned int>(std::ceil(mat_weights_cols / transpose_width)) };
            }

            // Create tensor to store the reshaped weights
            _weights_reshaped.allocator()->init(TensorInfo(reshaped_weights_shape, 1, dt, fixed_point_position));
            _reshape_weights.configure(weights, biases, &_weights_reshaped, !_is_fully_connected_convolution /* 1xW transpose */);
            weights = &_weights_reshaped;
        }
    }

    // Create tensor to store im2col reshaped inputs
    const unsigned int mat_input_cols = mat_weights_rows;
    const unsigned int mat_input_rows = conv_w * conv_h;

    TensorShape shape_im2col(input->info()->tensor_shape());
    shape_im2col.set(0, mat_input_cols);
    shape_im2col.set(1, mat_input_rows);
    shape_im2col.set(2, 1);
    _input_im2col_reshaped.allocator()->init(TensorInfo(shape_im2col, 1, dt, fixed_point_position));
    _memory_group.manage(&_input_im2col_reshaped);

    // Create tensor (interleave) to prepare input tensor for GEMM
    if(!_is_fully_connected_convolution && _mm_optimised_kernel == nullptr)
    {
        TensorShape shape_interleaved(shape_im2col);
        shape_interleaved.set(0, shape_interleaved.x() * 4);
        shape_interleaved.set(1, std::ceil(shape_interleaved.y() / 4.f));
        _input_interleaved_reshaped.allocator()->init(TensorInfo(shape_interleaved, 1, dt, fixed_point_position));
        _memory_group.manage(&_input_interleaved_reshaped);
    }

    // Create GEMM output tensor
    TensorShape shape_gemm(_input_im2col_reshaped.info()->tensor_shape());
    shape_gemm.set(0, mat_weights_cols);
    shape_gemm.set(1, mat_input_rows);
    _gemm_output.allocator()->init(TensorInfo(shape_gemm, 1, dt, fixed_point_position));
    _memory_group.manage(&_gemm_output);

    // Configure kernels
    _input_im2col_kernel.configure(input, &_input_im2col_reshaped, Size2D(kernel_width, kernel_height), conv_info, _has_bias);

#if defined(__arm__) || defined(__aarch64__)
    if(_mm_optimised_kernel != nullptr)
    {
        struct CPUInfo ci = NEScheduler::get().cpu_info();

        const int M = _gemm_output.info()->tensor_shape().y();
        const int N = _gemm_output.info()->tensor_shape().x();
        const int K = _input_im2col_reshaped.info()->tensor_shape().x();

#if defined(__arm__)
        GemmInterleaved<sgemm_8x6, float, float> gemm(&ci, M, N, K, false, false);
#elif defined(__aarch64__)
        GemmInterleaved<sgemm_12x8, float, float> gemm(&ci, M, N, K, false, false);
#endif /* defined(__arm__) || defined(__aarch64__) */

        constexpr size_t alignment = 4096;
        _workspace.allocator()->init(TensorInfo(TensorShape{ (gemm.get_working_size() + alignment - 1) * NEScheduler::get().num_threads() }, 1, DataType::U8));
        _memory_group.manage(&_workspace);

        // Configure matrix multiplication kernel
        if(_is_fully_connected_convolution)
        {
            _mm_optimised_kernel->configure(&_input_im2col_reshaped, weights, &_gemm_output, &_workspace, 1.f, 0.f, false, false);
        }
        else
        {
            _mm_optimised_kernel->configure(&_input_im2col_reshaped, weights, &_gemm_output, &_workspace);
        }

        _workspace.allocator()->allocate();
    }
    else
#endif /* defined(__arm__) || defined(__aarch64__) */
    {
        if(_is_fully_connected_convolution)
        {
            _mm_kernel.configure(&_input_im2col_reshaped, weights, &_gemm_output, 1.0f);
        }
        else
        {
            _input_interleave_kernel.configure(&_input_im2col_reshaped, &_input_interleaved_reshaped);
            _mm_kernel.configure(&_input_interleaved_reshaped, weights, &_gemm_output, 1.0f);
            _input_interleaved_reshaped.allocator()->allocate();
        }
    }

    _input_im2col_reshaped.allocator()->allocate();
    _output_col2im_kernel.configure(&_gemm_output, output, std::make_pair(conv_w, conv_h));
    _gemm_output.allocator()->allocate();

    ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(0) != conv_w) || (output->info()->dimension(1) != conv_h), "Output shape does not match the expected one");

    // Allocate intermediate tensor
    if(!_are_weights_reshaped)
    {
        _weights_reshaped.allocator()->allocate();
    }
}

void NEConvolutionLayer::run()
{
    // Run weights reshaping (Runs once for every configure)
    if(!_are_weights_reshaped)
    {
        _are_weights_reshaped = true;
        _reshape_weights.run();
    }

    _memory_group.acquire();

    // Run input reshaping
    NEScheduler::get().schedule(&_input_im2col_kernel, Window::DimY);

    // Runs matrix multiply on reshaped matrices
    if(_mm_optimised_kernel != nullptr)
    {
        NEScheduler::get().schedule(_mm_optimised_kernel.get(), Window::DimY);
    }
    else
    {
        if(!_is_fully_connected_convolution)
        {
            // Run interleave
            NEScheduler::get().schedule(&_input_interleave_kernel, Window::DimY);
        }

        NEScheduler::get().schedule(&_mm_kernel, Window::DimY);
    }

    // Reshape output matrix
    NEScheduler::get().schedule(&_output_col2im_kernel, Window::DimY);

    _memory_group.release();
}
} // namespace arm_compute