aboutsummaryrefslogtreecommitdiff
path: root/src/dynamic_fusion/sketch/gpu/GpuKernelComponentGraph.cpp
blob: 1f90aab477b22fd5a9343c55899655fa5cdf1ac1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*
 * Copyright (c) 2022 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "GpuKernelComponentGraph.h"

#include "arm_compute/dynamic_fusion/sketch/MemoryDescriptor.h"

namespace arm_compute
{
namespace experimental
{
namespace dynamic_fusion
{
namespace
{
/** Automatically create memory descriptors for all tensors in the graph
 *
 * @param[in] tensors @ref ITensorInfo map
 * @param[in] graph   @ref DependencyGraph of which the @p tensors are a part
 *
 * @return MemoryDescriptorMap  An assignment map of @ref MemoryDescriptors for each ITensorInfo in the graph
 */
MemoryDescriptorMap assign_memory_descriptors(const std::map<ITensorInfo::Id, const ITensorInfo *> tensors, const DependencyGraph &graph)
{
    const auto all_tensors = graph.all_tensors();
    const auto src_tensors = graph.global_src_tensors();
    const auto dst_tensors = graph.global_dst_tensors();
    const auto interm_tensors = graph.intermediate_tensors();

    MemoryDescriptorMap mem_map{};
    for(auto t_id : all_tensors)
    {
        const auto &tensor = tensors.at(t_id);
        // Only global src and dst tensors to the entire component graph are "User" tensors, which are user-specified memories
        if(is_in(t_id, src_tensors) || is_in(t_id, dst_tensors))
        {
            mem_map[t_id] = MemoryDescriptor{ MemoryType::User };
        }
        else if(is_in(t_id, interm_tensors))
        {
            mem_map[t_id] = MemoryDescriptor { MemoryType::NoAlloc };
        }
        else
        {
            AuxMemoryInfo aux_mem_info{ tensor->total_size() };
            mem_map[t_id] = MemoryDescriptor{ MemoryType::Auxiliary, aux_mem_info };
        }
    }
    return mem_map;
}

} // namespace

std::vector<DependencyGraph::TensorId> GpuKernelComponentGraph::get_tensor_ids(const std::vector<const ITensorInfo *> tensors)
{
    std::vector<DependencyGraph::TensorId> tensor_ids{};
    std::transform(
        std::begin(tensors), std::end(tensors),
        std::back_inserter(tensor_ids),
        [](const auto & t)
    {
        return t->id();
    });
    return tensor_ids;
}

GpuKernelComponentGraph::GpuKernelComponentGraph(GpuComponentServices *services)
    : _services{ services }, _components{}, _tensors{}, _dependency_graph{}
{
}

GpuKernelComponentStream GpuKernelComponentGraph::fuse() const
{
    // Obtain memory descriptor map
    const auto mem_map = assign_memory_descriptors(_tensors, _dependency_graph);
    /// @note Fusion constraints (for kernel components) are exactly the same as the invariants of @ref GpuKernelComponentGroup
    /// Fusion can be framed as a mathematical optimization problem:
    /// Given fusion constraints, find the "best" fusion patterns possible
    /// "Best" is ill-defined at the moment. For now we define "best" fusion pattern as one
    /// which results in the least number of fused kernels ( @ref GpuKernelComponentGroup ) at the end

    /// As the first iteration, we offer a sub-optimal algorithm here which ensures all
    /// constraints are met, but provides no guarantee that the fusion pattern is optimal

    GpuKernelComponentStream stream{ _services, mem_map };
    // Break down into linear groups of components (constraint 1), preserving topological order
    const auto linear_graphs = _dependency_graph.topological_partition();

    // Further divide up the linear groups based on rest of the fusion constraints (rely on component group's invariants)
    for(const auto &graph : linear_graphs)
    {
        for(unsigned int i = 0; i < graph.size(); ++i)
        {
            const auto comp = _components.at(graph[i].op).get();
            // Each new linear graph signals a new component group in the stream
            if(i == 0)
            {
                stream.new_component_group();
            }
            // If it violates the component group's invariant / fusion constraint, breaks up the stream by inserting a new group
            bool success = stream.add_component(comp);
            if(!success)
            {
                stream.new_component_group();
                success = stream.add_component(comp);
                ARM_COMPUTE_ERROR_ON(!success);
            }
        }
    }
    return stream;
}
} // namespace dynamic_fusion
} // namespace experimental
} // namespace arm_compute