aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/boundingboxtransform/generic/neon/impl.cpp
blob: 2d08c879cc3ed5ac3262288a637392408652d6b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/*
 * Copyright (c) 2019-2022 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "src/cpu/kernels/boundingboxtransform/generic/neon/impl.h"
namespace arm_compute
{
namespace cpu
{
void bounding_box_transform_qsymm16(const ITensor *boxes, ITensor *pred_boxes, const ITensor *deltas, BoundingBoxTransformInfo bbinfo, const Window &window)

{
    const size_t num_classes  = deltas->info()->tensor_shape()[0] >> 2;
    const size_t deltas_width = deltas->info()->tensor_shape()[0];
    const int    img_h        = std::floor(bbinfo.img_height() / bbinfo.scale() + 0.5f);
    const int    img_w        = std::floor(bbinfo.img_width() / bbinfo.scale() + 0.5f);

    const auto scale_after  = (bbinfo.apply_scale() ? bbinfo.scale() : 1.f);
    const auto scale_before = bbinfo.scale();
    const auto offset       = (bbinfo.correct_transform_coords() ? 1.f : 0.f);

    auto pred_ptr  = reinterpret_cast<uint16_t *>(pred_boxes->buffer() + pred_boxes->info()->offset_first_element_in_bytes());
    auto delta_ptr = reinterpret_cast<uint8_t *>(deltas->buffer() + deltas->info()->offset_first_element_in_bytes());

    const auto boxes_qinfo  = boxes->info()->quantization_info().uniform();
    const auto deltas_qinfo = deltas->info()->quantization_info().uniform();
    const auto pred_qinfo   = pred_boxes->info()->quantization_info().uniform();

    Iterator box_it(boxes, window);
    execute_window_loop(window, [&](const Coordinates & id)
    {
        const auto  ptr    = reinterpret_cast<uint16_t *>(box_it.ptr());
        const auto  b0     = dequantize_qasymm16(*ptr, boxes_qinfo);
        const auto  b1     = dequantize_qasymm16(*(ptr + 1), boxes_qinfo);
        const auto  b2     = dequantize_qasymm16(*(ptr + 2), boxes_qinfo);
        const auto  b3     = dequantize_qasymm16(*(ptr + 3), boxes_qinfo);
        const float width  = (b2 / scale_before) - (b0 / scale_before) + 1.f;
        const float height = (b3 / scale_before) - (b1 / scale_before) + 1.f;
        const float ctr_x  = (b0 / scale_before) + 0.5f * width;
        const float ctr_y  = (b1 / scale_before) + 0.5f * height;
        for(size_t j = 0; j < num_classes; ++j)
        {
            // Extract deltas
            const size_t delta_id = id.y() * deltas_width + 4u * j;
            const float  dx       = dequantize_qasymm8(delta_ptr[delta_id], deltas_qinfo) / bbinfo.weights()[0];
            const float  dy       = dequantize_qasymm8(delta_ptr[delta_id + 1], deltas_qinfo) / bbinfo.weights()[1];
            float        dw       = dequantize_qasymm8(delta_ptr[delta_id + 2], deltas_qinfo) / bbinfo.weights()[2];
            float        dh       = dequantize_qasymm8(delta_ptr[delta_id + 3], deltas_qinfo) / bbinfo.weights()[3];
            // Clip dw and dh
            dw = std::min(dw, bbinfo.bbox_xform_clip());
            dh = std::min(dh, bbinfo.bbox_xform_clip());
            // Determine the predictions
            const float pred_ctr_x = dx * width + ctr_x;
            const float pred_ctr_y = dy * height + ctr_y;
            const float pred_w     = std::exp(dw) * width;
            const float pred_h     = std::exp(dh) * height;
            // Store the prediction into the output tensor
            pred_ptr[delta_id]     = quantize_qasymm16(scale_after * utility::clamp<float>(pred_ctr_x - 0.5f * pred_w, 0.f, img_w - 1.f), pred_qinfo);
            pred_ptr[delta_id + 1] = quantize_qasymm16(scale_after * utility::clamp<float>(pred_ctr_y - 0.5f * pred_h, 0.f, img_h - 1.f), pred_qinfo);
            pred_ptr[delta_id + 2] = quantize_qasymm16(scale_after * utility::clamp<float>(pred_ctr_x + 0.5f * pred_w - offset, 0.f, img_w - 1.f), pred_qinfo);
            pred_ptr[delta_id + 3] = quantize_qasymm16(scale_after * utility::clamp<float>(pred_ctr_y + 0.5f * pred_h - offset, 0.f, img_h - 1.f), pred_qinfo);
        }
    },
    box_it);
}

template <typename T>
void bounding_box_transform(const ITensor *boxes, ITensor *pred_boxes, const ITensor *deltas, BoundingBoxTransformInfo bbinfo, const Window &window)
{
    const size_t num_classes  = deltas->info()->tensor_shape()[0] >> 2;
    const size_t deltas_width = deltas->info()->tensor_shape()[0];
    const int    img_h        = std::floor(bbinfo.img_height() / bbinfo.scale() + 0.5f);
    const int    img_w        = std::floor(bbinfo.img_width() / bbinfo.scale() + 0.5f);

    const auto scale_after  = (bbinfo.apply_scale() ? T(bbinfo.scale()) : T(1));
    const auto scale_before = T(bbinfo.scale());
    ARM_COMPUTE_ERROR_ON(scale_before <= 0);
    const auto offset = (bbinfo.correct_transform_coords() ? T(1.f) : T(0.f));

    auto pred_ptr  = reinterpret_cast<T *>(pred_boxes->buffer() + pred_boxes->info()->offset_first_element_in_bytes());
    auto delta_ptr = reinterpret_cast<T *>(deltas->buffer() + deltas->info()->offset_first_element_in_bytes());

    Iterator box_it(boxes, window);
    execute_window_loop(window, [&](const Coordinates & id)
    {
        const auto ptr    = reinterpret_cast<T *>(box_it.ptr());
        const auto b0     = *ptr;
        const auto b1     = *(ptr + 1);
        const auto b2     = *(ptr + 2);
        const auto b3     = *(ptr + 3);
        const T    width  = (b2 / scale_before) - (b0 / scale_before) + T(1.f);
        const T    height = (b3 / scale_before) - (b1 / scale_before) + T(1.f);
        const T    ctr_x  = (b0 / scale_before) + T(0.5f) * width;
        const T    ctr_y  = (b1 / scale_before) + T(0.5f) * height;
        for(size_t j = 0; j < num_classes; ++j)
        {
            // Extract deltas
            const size_t delta_id = id.y() * deltas_width + 4u * j;
            const T      dx       = delta_ptr[delta_id] / T(bbinfo.weights()[0]);
            const T      dy       = delta_ptr[delta_id + 1] / T(bbinfo.weights()[1]);
            T            dw       = delta_ptr[delta_id + 2] / T(bbinfo.weights()[2]);
            T            dh       = delta_ptr[delta_id + 3] / T(bbinfo.weights()[3]);
            // Clip dw and dh
            dw = std::min(dw, T(bbinfo.bbox_xform_clip()));
            dh = std::min(dh, T(bbinfo.bbox_xform_clip()));
            // Determine the predictions
            const T pred_ctr_x = dx * width + ctr_x;
            const T pred_ctr_y = dy * height + ctr_y;
            const T pred_w     = std::exp(dw) * width;
            const T pred_h     = std::exp(dh) * height;
            // Store the prediction into the output tensor
            pred_ptr[delta_id]     = scale_after * utility::clamp<T>(pred_ctr_x - T(0.5f) * pred_w, T(0), T(img_w - 1));
            pred_ptr[delta_id + 1] = scale_after * utility::clamp<T>(pred_ctr_y - T(0.5f) * pred_h, T(0), T(img_h - 1));
            pred_ptr[delta_id + 2] = scale_after * utility::clamp<T>(pred_ctr_x + T(0.5f) * pred_w - offset, T(0), T(img_w - 1));
            pred_ptr[delta_id + 3] = scale_after * utility::clamp<T>(pred_ctr_y + T(0.5f) * pred_h - offset, T(0), T(img_h - 1));
        }
    },
    box_it);
}

template void bounding_box_transform<float>(const ITensor *boxes, ITensor *pred_boxes, const ITensor *deltas, BoundingBoxTransformInfo bbinfo, const Window &window);

#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS)
template void bounding_box_transform<float16_t>(const ITensor *boxes, ITensor *pred_boxes, const ITensor *deltas, BoundingBoxTransformInfo bbinfo, const Window &window);
#endif //defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS)
} // namespace cpu
} // namespace arm_compute