aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/CpuDirectConv3dKernel.cpp
blob: fecdb2bcae07749b6e747d4c1bfe9adc28cef08e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/*
 * Copyright (c) 2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "src/cpu/kernels/CpuDirectConv3dKernel.h"

#include "src/core/NEON/kernels/detail/NEDirectConvolutionDetail.h"
#include "src/core/NEON/wrapper/wrapper.h"

#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "src/core/CPP/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"

#include <algorithm>

using namespace arm_compute::detail;

namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
Status validate_arguments(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const Conv3dInfo &conv_info)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
    ARM_COMPUTE_RETURN_ERROR_ON(src->data_layout() != DataLayout::NDHWC);
    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights);

    const DataLayout data_layout = src->data_layout();
    const int        channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);

    // Weight layout is D, H, W, Cin, Cout
    ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 5);
    ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(1) != src->dimension(channel_idx));

    if(biases != nullptr)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(biases->dimension(0) != weights->dimension(0),
                                        "biases size and number of output feature maps should match");
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(biases->num_dimensions() > 1, "biases should be one dimensional");
    }

    // Checks performed when output is configured
    if(dst->total_size() != 0)
    {
        TensorShape output_shape = misc::shape_calculator::compute_conv3d_shape(src->tensor_shape(), weights->tensor_shape(), conv_info);

        DataType data_type = src->data_type();

        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(), output_shape);
        ARM_COMPUTE_RETURN_ERROR_ON(dst->data_type() != data_type);
    }

    return Status{};
}

/** Reduce a vector to be a scalar by accumulating all lanes in the vector
 *
 * @param[in] v Vector to be reduced.
 *
 * @return the wrapped-around number.
 */
auto vreduce(const float32x4_t &v)
{
    auto v0    = wrapper::vgethigh(v);
    auto v1    = wrapper::vgetlow(v);
    auto v_out = wrapper::vadd(v0, v1);

    float a = wrapper::vgetlane(v_out, 0);
    float b = wrapper::vgetlane(v_out, 1);
    return a + b;
}

#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
auto vreduce(const float16x8_t &v)
{
    auto v0    = wrapper::vgethigh(v);
    auto v1    = wrapper::vgetlow(v);
    auto v_out = wrapper::vadd(v0, v1);

    float16_t a = wrapper::vgetlane(v_out, 0);
    float16_t b = wrapper::vgetlane(v_out, 1);
    float16_t c = wrapper::vgetlane(v_out, 2);
    float16_t d = wrapper::vgetlane(v_out, 3);
    return a + b + c + d;
}
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
}

template <typename T>
void CpuDirectConv3dKernel::convolve_ndhwc(const Window &window, const ITensor *src, const ITensor *weights, const ITensor *biases, ITensor *dst)
{
    using vtype                                = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
    using vector_type                          = typename vtype::type;
    using tag_type                             = typename vtype::tag_type;
    constexpr int num_elems_read_per_iteration = 16 / sizeof(T);

    // Scalar quantities (N D H W Cin)
    const int element_size   = src->info()->element_size();
    const int input_stride_w = src->info()->strides_in_bytes().y() / element_size;
    const int input_stride_h = src->info()->strides_in_bytes().z() / element_size;
    const int input_stride_d = src->info()->strides_in_bytes()[3] / element_size;
    const int input_stride_n = src->info()->strides_in_bytes()[4] / element_size;
    const int input_dim_w    = src->info()->dimension(1);
    const int input_dim_h    = src->info()->dimension(2);
    const int input_dim_d    = src->info()->dimension(3);

    // Kernel info (D H W Cin Cout)
    const unsigned int kernel_stride_w = weights->info()->strides_in_bytes()[2] / element_size;
    const unsigned int kernel_stride_h = weights->info()->strides_in_bytes()[3] / element_size;
    const unsigned int kernel_stride_d = weights->info()->strides_in_bytes()[4] / element_size;
    const int          kernel_dim_w    = weights->info()->dimension(2);
    const int          kernel_dim_h    = weights->info()->dimension(3);
    const int          kernel_dim_d    = weights->info()->dimension(4);

    // Convolution padding and stride
    const int conv_pad_top   = _conv_info.padding.top;
    const int conv_pad_left  = _conv_info.padding.left;
    const int conv_pad_front = _conv_info.padding.front;
    const int conv_stride_w  = _conv_info.stride.width;
    const int conv_stride_h  = _conv_info.stride.height;
    const int conv_stride_d  = _conv_info.stride.depth;

    // Setup input window for the output iterator
    Window window_out = window;
    window_out.set(Window::DimX, Window::Dimension(0, 1, 1));

    // Setup input window for the weights iterator
    Window window_w = calculate_max_window(*weights->info(), Steps());
    window_w.set(Window::DimY, Window::Dimension(0, 1, 1));
    window_w.set(Window::DimZ, Window::Dimension(0, 1, 1));
    window_w.set(Window::DimW, Window::Dimension(0, 1, 1));
    window_w.set(4, Window::Dimension(0, 1, 1));

    Iterator out(dst, window_out);
    Iterator wei(weights, window_w);

    const T *biases_ptr = nullptr;
    if(biases)
    {
        biases_ptr = reinterpret_cast<T *>(biases->buffer() + biases->info()->offset_first_element_in_bytes());
    }
    execute_window_loop(window_out, [&](const Coordinates & id)
    {
        // We are computing the theoretical input starting points
        const int in_w_start_t = static_cast<int>(id.y()) * conv_stride_w - conv_pad_left;
        const int in_h_start_t = static_cast<int>(id.z()) * conv_stride_h - conv_pad_top;
        const int in_d_start_t = static_cast<int>(id[3]) * conv_stride_d - conv_pad_front;
        const int in_w_end_t   = in_w_start_t + kernel_dim_w;
        const int in_h_end_t   = in_h_start_t + kernel_dim_h;
        const int in_d_end_t   = in_d_start_t + kernel_dim_d;

        // We are computing the valid initial and ending input points by checking the borders
        const int in_w_start = std::max(in_w_start_t, 0);
        const int in_h_start = std::max(in_h_start_t, 0);
        const int in_d_start = std::max(in_d_start_t, 0);
        const int in_w_end   = std::min(in_w_end_t, input_dim_w);
        const int in_h_end   = std::min(in_h_end_t, input_dim_h);
        const int in_d_end   = std::min(in_d_end_t, input_dim_d);

        // We use the input points to select the valid weight points to use
        const int wei_w_start = in_w_start - in_w_start_t;
        const int wei_h_start = in_h_start - in_h_start_t;
        const int wei_d_start = in_d_start - in_d_start_t;
        const int wei_w_end   = kernel_dim_w - (in_w_end_t - in_w_end);
        const int wei_h_end   = kernel_dim_h - (in_h_end_t - in_h_end);
        const int wei_d_end   = kernel_dim_d - (in_d_end_t - in_d_end);

        const int      index_c_out_end = weights->info()->dimension(0);
        const int      index_c_in_end  = weights->info()->dimension(1);
        const T *const in_ptr_start    = reinterpret_cast<const T *>(src->buffer() + src->info()->offset_first_element_in_bytes()) + id[4] * input_stride_n;

        execute_window_loop(window_w, [&](const Coordinates & id_w)
        {
            /*
            * This is the loop in the weights, and it goes along OFM (output feature map)
            */
            const auto weights_ptr_start = reinterpret_cast<const T *>(wei.ptr());
            T          out_temp          = static_cast<T>(0);
            T         *out_ptr           = reinterpret_cast<T *>(out.ptr());
            for(int index_wei_d = wei_d_start, index_in_d = in_d_start; index_wei_d < wei_d_end; ++index_wei_d, ++index_in_d)
            {
                const auto in_ptr_d      = in_ptr_start + index_in_d * input_stride_d;
                const auto weights_ptr_d = weights_ptr_start + index_wei_d * kernel_stride_d;
                for(int index_wei_h = wei_h_start, index_in_h = in_h_start; index_wei_h < wei_h_end; ++index_wei_h, ++index_in_h)
                {
                    const T *const in_ptr_row      = in_ptr_d + index_in_h * input_stride_h;
                    const T *const weights_ptr_row = weights_ptr_d + index_wei_h * kernel_stride_h;
                    for(int index_wei_w = wei_w_start, index_in_w = in_w_start; index_wei_w < wei_w_end; ++index_wei_w, ++index_in_w)
                    {
                        const T    *in_ptr_mover      = in_ptr_row + index_in_w * input_stride_w;
                        const T    *weights_ptr_mover = weights_ptr_row + index_wei_w * kernel_stride_w;
                        int         index_c_in        = 0;
                        vector_type out_temp_vec      = wrapper::vdup_n(static_cast<T>(0), tag_type());
                        vector_type w_vec             = wrapper::vdup_n(static_cast<T>(0), tag_type());
                        for(; index_c_in <= index_c_in_end - num_elems_read_per_iteration;
                            index_c_in += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration)
                        {
                            const auto src_vec = wrapper::vloadq(in_ptr_mover);
                            //Load Cin weights
                            for(unsigned int k = 0; k < num_elems_read_per_iteration; ++k, weights_ptr_mover += index_c_out_end)
                            {
                                w_vec = wrapper::vsetlane(*weights_ptr_mover, w_vec, k);
                            }
                            out_temp_vec = wrapper::vmla(out_temp_vec, w_vec, src_vec);
                        }
                        out_temp += vreduce(out_temp_vec);
                        for(; index_c_in < index_c_in_end; ++index_c_in, ++in_ptr_mover, weights_ptr_mover += index_c_out_end)
                        {
                            const auto src_val = *(in_ptr_mover);
                            const auto w_val   = *(weights_ptr_mover);
                            out_temp += src_val * w_val;
                        }
                    }
                }
            }
            *(reinterpret_cast<T *>(out_ptr + id_w[0])) = (biases) ? out_temp + biases_ptr[id_w[0]] : out_temp;
        },
        wei);
    },
    out);
}

void CpuDirectConv3dKernel::configure(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const Conv3dInfo &conv_info)
{
    ARM_COMPUTE_UNUSED(biases);
    ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);

    _conv_info = conv_info;

    // Get convolved dimensions
    TensorShape output_shape = misc::shape_calculator::compute_conv3d_shape(src->tensor_shape(), weights->tensor_shape(), conv_info);

    DataType data_type = src->data_type();

    // Output auto inizialitation if not yet initialized
    auto_init_if_empty(*dst, output_shape, 1, data_type);

    // Perform validation step
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, weights, biases, dst, conv_info));

    // Configure kernel window
    Window win = calculate_max_window(*dst, Steps());
    ICpuKernel::configure(win);
}

Status CpuDirectConv3dKernel::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const Conv3dInfo &conv_info)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, weights, biases, dst, conv_info));

    return Status{};
}

void CpuDirectConv3dKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);

    auto src     = tensors.get_const_tensor(TensorType::ACL_SRC_0);
    auto weights = tensors.get_const_tensor(TensorType::ACL_SRC_1);
    auto biases  = tensors.get_const_tensor(TensorType::ACL_SRC_2);
    auto dst     = tensors.get_tensor(TensorType::ACL_DST);

    switch(src->info()->data_type())
    {
        case DataType::F32:
        {
            convolve_ndhwc<float>(window, src, weights, biases, dst);
            break;
        }
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        case DataType::F16:
        {
            convolve_ndhwc<float16_t>(window, src, weights, biases, dst);
            break;
        }
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        default:
            ARM_COMPUTE_ERROR("Data type not supported");
            break;
    }
}

const char *CpuDirectConv3dKernel::name() const
{
    return "CpuDirectConv3dKernel";
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute