aboutsummaryrefslogtreecommitdiff
path: root/src/core/cpu/kernels/pooling/neon/quantized.h
blob: 535fb53d87ee5a24c25c9444b31ea941e81e4270 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
/*
 * Copyright (c) 2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef SRC_CORE_NEON_KERNELS_QUANTIZED_H
#define SRC_CORE_NEON_KERNELS_QUANTIZED_H

#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/Traits.h"
#include "src/core/NEON/NEAsymm.h"
#include "src/core/NEON/NEFixedPoint.h"
#include "src/core/NEON/NEMath.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include <arm_neon.h>

namespace arm_compute
{
namespace cpu
{
template <typename T>
inline typename std::enable_if<std::is_same<T, int8_t>::value, int8_t>::type
quantize(float val, const UniformQuantizationInfo &info)
{
    return quantize_qasymm8_signed(val, info);
}

template <typename T>
inline typename std::enable_if<std::is_same<T, uint8_t>::value, uint8_t>::type
quantize(float val, const UniformQuantizationInfo &info)
{
    return quantize_qasymm8(val, info);
}

template <typename T>
inline T vcvtq_q32_f32(float32x4_t values);

template <>
inline uint32x4_t vcvtq_q32_f32(float32x4_t values)
{
    return vcvtq_u32_f32(values);
}

template <>
inline int32x4_t vcvtq_q32_f32(float32x4_t values)
{
    return vcvtq_s32_f32(values);
}

template <typename T>
inline float32x4_t vcvtq_f32_q32(T values);

template <>
inline float32x4_t vcvtq_f32_q32(uint32x4_t values)
{
    return vcvtq_f32_u32(values);
}

template <>
inline float32x4_t vcvtq_f32_q32(int32x4_t values)
{
    return vcvtq_f32_s32(values);
}

template <typename Tout>
inline Tout vrequantize_pooling_with_scale(const float32x4x4_t &acc, const float quant_rescale, const float scale_pooling, const int32_t new_offset);

template <>
inline uint8x16_t vrequantize_pooling_with_scale(const float32x4x4_t &acc, const float quant_rescale, const float scale_pooling, const int32_t new_offset)
{
    const float new_scale = quant_rescale / scale_pooling;
    return vquantize(acc, UniformQuantizationInfo(new_scale, new_offset));
}

template <>
inline int8x16_t vrequantize_pooling_with_scale(const float32x4x4_t &acc, const float quant_rescale, const float scale_pooling, const int32_t new_offset)
{
    const float new_scale = quant_rescale / scale_pooling;
    return vquantize_signed(acc, UniformQuantizationInfo(new_scale, new_offset));
}

template <typename Tin, typename Tout>
inline Tout vrequantize_pooling(Tin vec1, Tin vec2, const UniformQuantizationInfo &requant_qinfo);

template <>
inline uint8x16_t vrequantize_pooling(uint8x8_t vec1, uint8x8_t vec2, const UniformQuantizationInfo &requant_qinfo)
{
    const float32x4x4_t acc =
    {
        {
            vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8((vec1))))),
            vcvtq_f32_u32(vmovl_u16(vget_high_u16(vmovl_u8((vec1))))),
            vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8((vec2))))),
            vcvtq_f32_u32(vmovl_u16(vget_high_u16(vmovl_u8((vec2))))),
        }
    };
    return vquantize(acc, requant_qinfo);
}

template <>
inline int8x16_t vrequantize_pooling(int8x8_t vec1, int8x8_t vec2, const UniformQuantizationInfo &requant_qinfo)
{
    const float32x4x4_t acc =
    {
        {
            vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8((vec1))))),
            vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8((vec1))))),
            vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8((vec2))))),
            vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8((vec2))))),
        }
    };
    return vquantize_signed(acc, requant_qinfo);
}

template <typename T>
inline T vrequantize_pooling(T &vec, const UniformQuantizationInfo &requant_qinfo);

template <>
inline uint8x8_t vrequantize_pooling(uint8x8_t &vec, const UniformQuantizationInfo &requant_qinfo)
{
    const float32x4x2_t acc =
    {
        {
            vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8((vec))))),
            vcvtq_f32_u32(vmovl_u16(vget_high_u16(vmovl_u8((vec))))),
        }
    };
    return vquantize(acc, requant_qinfo);
}

template <>
inline int8x8_t vrequantize_pooling(int8x8_t &vec, const UniformQuantizationInfo &requant_qinfo)
{
    const float32x4x2_t acc =
    {
        {
            vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8((vec))))),
            vcvtq_f32_s32(vmovl_s16(vget_high_s16(vmovl_s8((vec))))),
        }
    };
    return vquantize_signed(acc, requant_qinfo);
}

inline float calculate_avg_scale(bool exclude_padding, DataLayout data_layout, const Coordinates &id, const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h,
                                 const int pad_x, const int pad_y, const int stride_x, const int stride_y)
{
    const unsigned int idx_width  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const unsigned int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);

    int start_x = id[idx_width] * stride_x - pad_x;
    int start_y = id[idx_height] * stride_y - pad_y;

    const int end_x = std::min(start_x + pool_size_x, upper_bound_w);
    const int end_y = std::min(start_y + pool_size_y, upper_bound_h);
    if(exclude_padding)
    {
        start_x = std::max(0, start_x);
        start_y = std::max(0, start_y);
    }
    return 1.f / ((end_y - start_y) * (end_x - start_x));
}

template <typename T>
void poolingMxN_q8_neon_nhwc(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
    ARM_COMPUTE_UNUSED(dst1);

    const int window_start_x     = window.x().start();
    const int window_end_x       = window.x().end();
    const int window_step_x      = 16;
    const int window_half_step_x = window_step_x / 2;

    Window window_out = window;
    window_out.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator in(src, window_src);
    Iterator out(dst0, window_out);

    using q8x8_t  = typename wrapper::traits::neon_vector<T, 8>::type;
    using q8x16_t = typename wrapper::traits::neon_vector<T, 16>::type;
    using q16_t   = typename wrapper::traits::promote_t<T>;
    using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
    using q32_t   = typename wrapper::traits::promote_t<q16_t>;
    using q32x4_t = typename wrapper::traits::neon_vector<q32_t, 4>::type;

    const int pool_size_x     = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
    const int pool_size_y     = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
    const int pool_pad_right  = pool_info.pad_stride_info.pad_right();
    const int pool_pad_top    = pool_info.pad_stride_info.pad_top();
    const int pool_pad_left   = pool_info.pad_stride_info.pad_left();
    const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();

    int pool_stride_x = 0;
    int pool_stride_y = 0;
    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
    const int upper_bound_w = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_right);
    const int upper_bound_h = src->info()->dimension(2) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);

    const float32x4_t             half_scale_v = vdupq_n_f32(0.5f);
    const UniformQuantizationInfo src_qinfo    = src->info()->quantization_info().uniform();
    const UniformQuantizationInfo dst_qinfo    = dst0->info()->quantization_info().uniform();

    const float quant_rescale = dst_qinfo.scale / src_qinfo.scale;
    // "new_offset" doesn't have to consider the "half_scale_v" in its computation
    // With a requantization performed in a single step there won't be uncertainties introduced
    const int32_t new_offset = dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / quant_rescale);

    const float                   requant_scale  = dst_qinfo.scale / src_qinfo.scale;
    const int32_t                 requant_offset = dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / requant_scale);
    const UniformQuantizationInfo requant_qinfo  = UniformQuantizationInfo(requant_scale, requant_offset);

    execute_window_loop(window_out, [&](const Coordinates & id)
    {
        const int idx_width    = id.y() * pool_stride_x;
        const int idx_height   = id.z() * pool_stride_y;
        const int pool_limit_y = pool_pad_top - idx_height;
        const int pool_limit_x = pool_pad_left - idx_width;

        const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
        const int pool_end_y   = std::min(pool_size_y, window_src.z().end() + pool_limit_y);
        const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
        const int pool_end_x   = std::min(pool_size_x, window_src.y().end() + pool_limit_x);

        int x_off = window_start_x;
        for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
        {
            if(pool_info.pool_type != PoolingType::MAX)
            {
                q32x4_t vres1 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
                q32x4_t vres2 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
                q32x4_t vres3 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
                q32x4_t vres4 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});

                // Calculate scale
                const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
                                                        pool_stride_y);

                // Perform pooling
                for(int y = pool_start_y; y < pool_end_y; ++y)
                {
                    for(int x = pool_start_x; x < pool_end_x; ++x)
                    {
                        const q8x16_t data = wrapper::vloadq(reinterpret_cast<const T *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
                                                                                         (src->info()->strides_in_bytes().z())) + x_off);

                        const q16x8_t data_q16  = wrapper::vmovl(wrapper::vgetlow(data));
                        const q16x8_t data2_q16 = wrapper::vmovl(wrapper::vgethigh(data));
                        vres1                   = wrapper::vadd(vres1, wrapper::vmovl(wrapper::vgetlow(data_q16)));
                        vres2                   = wrapper::vadd(vres2, wrapper::vmovl(wrapper::vgethigh(data_q16)));
                        vres3                   = wrapper::vadd(vres3, wrapper::vmovl(wrapper::vgetlow(data2_q16)));
                        vres4                   = wrapper::vadd(vres4, wrapper::vmovl(wrapper::vgethigh(data2_q16)));
                    }
                }

                if(src_qinfo != dst_qinfo)
                {
                    const float32x4x4_t vres =
                    {
                        {
                            vcvtq_f32_q32(vres1),
                            vcvtq_f32_q32(vres2),
                            vcvtq_f32_q32(vres3),
                            vcvtq_f32_q32(vres4),
                        }
                    };
                    const auto requantized_dst = vrequantize_pooling_with_scale<q8x16_t>(vres, quant_rescale, scale, new_offset);
                    // Store result
                    wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off, wrapper::vgetlow(requantized_dst));
                    wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off + 8, wrapper::vgethigh(requantized_dst));
                }
                else
                {
                    const float32x4_t scale_v = vdupq_n_f32(scale);
                    // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
                    vres1 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres1), scale_v));
                    vres2 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres2), scale_v));
                    vres3 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres3), scale_v));
                    vres4 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres4), scale_v));

                    const q8x8_t res1 = wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres1), wrapper::vmovn(vres2)));
                    const q8x8_t res2 = wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres3), wrapper::vmovn(vres4)));
                    // Store result
                    wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off, res1);
                    wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off + 8, res2);
                }
            }
            else
            {
                q8x16_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_128_tag{});

                for(int y = pool_start_y; y < pool_end_y; ++y)
                {
                    for(int x = pool_start_x; x < pool_end_x; ++x)
                    {
                        const q8x16_t data = wrapper::vloadq(reinterpret_cast<const T *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
                                                                                         (src->info()->strides_in_bytes().z())) + x_off);
                        vres               = wrapper::vmax(vres, data);
                    }
                }

                // Store result
                wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off, (src_qinfo != dst_qinfo) ? vrequantize_pooling<q8x8_t, q8x16_t>(wrapper::vgetlow(vres), wrapper::vgethigh(vres),
                                requant_qinfo) :
                                vres);
            }
        }

        if(pool_info.pool_type == PoolingType::MAX)
        {
            for(; x_off <= (window_end_x - window_half_step_x); x_off += window_half_step_x)
            {
                q8x8_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_64_tag{});
                for(int y = pool_start_y; y < pool_end_y; ++y)
                {
                    for(int x = pool_start_x; x < pool_end_x; ++x)
                    {
                        const q8x8_t data = wrapper::vload(reinterpret_cast<const T *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
                                                                                       (src->info()->strides_in_bytes().z())) + x_off);
                        vres              = wrapper::vmax(vres, data);
                    }
                }

                // Store result
                wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off,
                                (src_qinfo != dst_qinfo) ? vrequantize_pooling<q8x8_t>(vres, requant_qinfo) : vres);
            }
        }

        // Left-overs loop
        for(; x_off < window_end_x; ++x_off)
        {
            if(pool_info.pool_type != PoolingType::MAX)
            {
                q32_t res = static_cast<q32_t>(0.f);

                // Calculate scale
                const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
                                                        pool_stride_y);

                // Perform pooling
                for(int y = pool_start_y; y < pool_end_y; ++y)
                {
                    for(int x = pool_start_x; x < pool_end_x; ++x)
                    {
                        const T data = *(reinterpret_cast<const T *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
                                                                     (src->info()->strides_in_bytes().z())) + x_off);
                        res += data;
                    }
                }

                if(src_qinfo != dst_qinfo)
                {
                    const float res_f           = static_cast<float>(res);
                    const float new_scale       = quant_rescale / scale;
                    const auto  requantized_dst = quantize<T>(res_f, UniformQuantizationInfo(new_scale, new_offset));

                    // Store result
                    *(reinterpret_cast<T *>(out.ptr()) + x_off) = requantized_dst;
                }
                else
                {
                    // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
                    res = static_cast<T>(0.5f + static_cast<float>(res) * scale);

                    // Store result
                    *(reinterpret_cast<T *>(out.ptr()) + x_off) = res;
                }
            }
            else
            {
                T res = std::numeric_limits<T>::min();

                for(int y = pool_start_y; y < pool_end_y; ++y)
                {
                    for(int x = pool_start_x; x < pool_end_x; ++x)
                    {
                        const T data = *(reinterpret_cast<const T *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) + (y - pool_pad_top) * static_cast<int>
                                                                     (src->info()->strides_in_bytes().z())) + x_off);
                        res          = std::max(res, data);
                    }
                }

                // Store result
                if(src_qinfo != dst_qinfo)
                {
                    const float res_f                           = static_cast<float>(res);
                    *(reinterpret_cast<T *>(out.ptr()) + x_off) = quantize<T>(res_f, requant_qinfo);
                }
                else
                {
                    *(reinterpret_cast<T *>(out.ptr()) + x_off) = res;
                }
            }
        }

    },
    in, out);
}

#if defined(ENABLE_NCHW_KERNELS)
template <typename T, typename TVec>
inline void scale_vector_q16x8(bool exclude_padding, TVec &v, const Coordinates &id, int id_offset, int step,
                               const int pool_size, const int upper_bound_w, const int upper_bound_h,
                               const int pad_x, const int pad_y, const int stride_x, const int stride_y)
{
    int       start_x = (id.x() + id_offset) * stride_x - pad_x;
    int       start_y = id.y() * stride_y - pad_y;
    const int end_y   = std::min(start_y + pool_size, upper_bound_h);
    if(exclude_padding)
    {
        start_y = std::max(0, start_y);
    }

    std::array<T, 8> elems =
    {
        {
            wrapper::vgetlane(v, 0),
            wrapper::vgetlane(v, 1),
            wrapper::vgetlane(v, 2),
            wrapper::vgetlane(v, 3),
            wrapper::vgetlane(v, 4),
            wrapper::vgetlane(v, 5),
            wrapper::vgetlane(v, 6),
            wrapper::vgetlane(v, 7),
        }
    };

    for(auto &el : elems)
    {
        int       c_start_x = start_x;
        const int end_x     = std::min(c_start_x + pool_size, upper_bound_w);
        if(exclude_padding)
        {
            c_start_x = std::max(0, c_start_x);
        }
        float scale = 1.f / ((end_y - start_y) * (end_x - c_start_x));
        el *= scale;
        start_x += step * stride_x;
    }

    v = wrapper::vsetlane(elems[0], v, 0);
    v = wrapper::vsetlane(elems[1], v, 1);
    v = wrapper::vsetlane(elems[2], v, 2);
    v = wrapper::vsetlane(elems[3], v, 3);
    v = wrapper::vsetlane(elems[4], v, 4);
    v = wrapper::vsetlane(elems[5], v, 5);
    v = wrapper::vsetlane(elems[6], v, 6);
    v = wrapper::vsetlane(elems[7], v, 7);
}

template <typename T>
void pooling2_quantized_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
    ARM_COMPUTE_UNUSED(dst1);
    Iterator in(src, window_src);
    Iterator out(dst0, window);

    /** Neon vector types */
    using q8x8_t    = typename wrapper::traits::neon_vector<T, 8>::type;
    using q8x16_t   = typename wrapper::traits::neon_vector<T, 16>::type;
    using q8x8x2_t  = typename std::conditional<std::is_same<T, uint8_t>::value, uint8x8x2_t, int8x8x2_t>::type;
    using q16_t     = typename wrapper::traits::promote_t<T>;
    using q16x4_t   = typename wrapper::traits::neon_vector<q16_t, 4>::type;
    using q16x8_t   = typename wrapper::traits::neon_vector<q16_t, 8>::type;
    using q16x8x2_t = typename wrapper::traits::neon_vector<q16_t, 16>::type;

    constexpr int pool_size       = 2;
    int           pool_stride_x   = 0;
    int           pool_stride_y   = 0;
    const int     pool_pad_right  = pool_info.pad_stride_info.pad_right();
    const int     pool_pad_top    = pool_info.pad_stride_info.pad_top();
    const int     pool_pad_left   = pool_info.pad_stride_info.pad_left();
    const int     pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
    const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
    const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);

    const T *const src_top_ptr    = reinterpret_cast<const T *>(src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top))));
    const T *const src_bottom_ptr = reinterpret_cast<const T *>(src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1)));

    const int scale_step_x = (pool_stride_x == 1) ? 2 : 1;

    const UniformQuantizationInfo src_qinfo            = src->info()->quantization_info().uniform();
    const UniformQuantizationInfo dst_qinfo            = dst0->info()->quantization_info().uniform();
    const bool                    have_different_qinfo = src_qinfo != dst_qinfo;

    const float                   requant_scale  = dst_qinfo.scale / src_qinfo.scale;
    const int32_t                 requant_offset = dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / requant_scale);
    const UniformQuantizationInfo requant_qinfo  = UniformQuantizationInfo(requant_scale, requant_offset);

    execute_window_loop(window, [&](const Coordinates & id)
    {
        const auto top_data    = wrapper::vloadq(src_top_ptr + in.offset());
        const auto bottom_data = wrapper::vloadq(src_bottom_ptr + in.offset());
        q8x8_t     lower_res   = {};
        q8x8_t     upper_res   = {};

        if(pool_info.pool_type != PoolingType::MAX)
        {
            const q16x8x2_t top_data_q16    = { { wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data)) } };
            const q16x8x2_t bottom_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data)) } };

            // Add rows
            const q16x8x2_t vrsum =
            {
                {
                    wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]),
                    wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]),
                }
            };

            // Pair-wise add row data
            const q16x4_t vpsum_1 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[0]), wrapper::vgethigh(vrsum.val[0]));
            const q16x4_t vpsum_2 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[1]), wrapper::vgethigh(vrsum.val[1]));

            q16x8_t res_lower = wrapper::vcombine(vpsum_1, vpsum_2);

            // Scale lower result
            scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, res_lower, id, 0, scale_step_x,
                                               pool_size, upper_bound_w, upper_bound_h,
                                               pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
            lower_res = wrapper::vmovn(res_lower);

            // Compute upper result for stride_x == 1
            if(pool_stride_x == 1)
            {
                // Shifted row sum
                const q16x8x2_t vrsum_shifted =
                {
                    {
                        wrapper::vext_1(vrsum.val[0], vrsum.val[1]),
                        wrapper::vext_1(vrsum.val[1], vrsum.val[1])
                    }
                };

                // Pair-wise add shifted row
                q16x8_t res_upper = wrapper::vcombine(
                                        wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[0]), wrapper::vgethigh(vrsum_shifted.val[0])),
                                        wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[1]), wrapper::vgethigh(vrsum_shifted.val[1])));

                // Scale upper result
                scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, res_upper, id, 1, 2,
                                                   pool_size, upper_bound_w, upper_bound_h,
                                                   pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
                upper_res = wrapper::vmovn(res_upper);
            }
        }
        else
        {
            const q8x16_t max_data = wrapper::vmax(top_data, bottom_data);
            lower_res              = wrapper::vpmax(wrapper::vgetlow(max_data), wrapper::vgethigh(max_data));
            if(pool_stride_x == 1)
            {
                const q8x16_t max_data_shifted = wrapper::vext_1(max_data, max_data);
                upper_res                      = wrapper::vpmax(wrapper::vgetlow(max_data_shifted), wrapper::vgethigh(max_data_shifted));
            }
        }

        if(have_different_qinfo)
        {
            const auto requantized_dst = vrequantize_pooling<q8x8_t, q8x16_t>(lower_res, upper_res, requant_qinfo);
            lower_res                  = wrapper::vgetlow(requantized_dst);
            upper_res                  = wrapper::vgethigh(requantized_dst);
        }

        // Store result
        if(pool_stride_x == 1)
        {
            const q8x8x2_t res = { { lower_res, upper_res } };
            wrapper::vstore(reinterpret_cast<T *>(out.ptr()), res);
        }
        else
        {
            wrapper::vstore(reinterpret_cast<T *>(out.ptr()), lower_res);
        }
    },
    in, out);
}

template <typename T>
void pooling3_quantized_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
    ARM_COMPUTE_UNUSED(dst1);
    Iterator in(src, window_src);
    Iterator out(dst0, window);

    /** Neon vector types */
    using q8x8_t    = typename wrapper::traits::neon_vector<T, 8>::type;
    using q8x16_t   = typename wrapper::traits::neon_vector<T, 16>::type;
    using q8x8x2_t  = typename std::conditional<std::is_same<T, uint8_t>::value, uint8x8x2_t, int8x8x2_t>::type;
    using q16_t     = typename wrapper::traits::promote_t<T>;
    using q16x8_t   = typename wrapper::traits::neon_vector<q16_t, 8>::type;
    using q16x8x2_t = typename wrapper::traits::neon_vector<q16_t, 16>::type;

    constexpr int pool_size       = 3;
    const int     pool_pad_right  = pool_info.pad_stride_info.pad_right();
    const int     pool_pad_top    = pool_info.pad_stride_info.pad_top();
    const int     pool_pad_left   = pool_info.pad_stride_info.pad_left();
    const int     pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
    int           pool_stride_x   = 0;
    int           pool_stride_y   = 0;
    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
    const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
    const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);

    const UniformQuantizationInfo &src_qinfo = src->info()->quantization_info().uniform();
    const UniformQuantizationInfo &dst_qinfo = dst0->info()->quantization_info().uniform();

    const float                   requant_scale  = dst_qinfo.scale / src_qinfo.scale;
    const int32_t                 requant_offset = dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / requant_scale);
    const UniformQuantizationInfo requant_qinfo  = UniformQuantizationInfo(requant_scale, requant_offset);

    const T *const src_top_ptr    = reinterpret_cast<const T *>(src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top))));
    const T *const src_middle_ptr = reinterpret_cast<const T *>(src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1)));
    const T *const src_bottom_ptr = reinterpret_cast<const T *>(src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2)));

    execute_window_loop(window, [&](const Coordinates & id)
    {
        const auto top_data    = wrapper::vloadq(src_top_ptr + in.offset());
        const auto middle_data = wrapper::vloadq(src_middle_ptr + in.offset());
        const auto bottom_data = wrapper::vloadq(src_bottom_ptr + in.offset());
        q8x8_t     fres        = {};
        q8x16_t    fqres       = {};

        if(pool_info.pool_type == PoolingType::AVG)
        {
            // Convert data to u16
            const q16x8x2_t top_data_q16    = { { wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data)) } };
            const q16x8x2_t middle_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(middle_data)), wrapper::vmovl(wrapper::vgethigh(middle_data)) } };
            const q16x8x2_t bottom_data_q16 = { { wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data)) } };

            // Calculate row sums
            const q16x8x2_t vrsum =
            {
                {
                    wrapper::vadd(wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]), middle_data_q16.val[0]),
                    wrapper::vadd(wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]), middle_data_q16.val[1]),
                }
            };
            const q16x8x2_t vrsum_shifted_1 =
            {
                {
                    wrapper::vext_1(vrsum.val[0], vrsum.val[1]),
                    wrapper::vext_1(vrsum.val[1], vrsum.val[1])
                }
            };
            const q16x8x2_t vrsum_shifted_2 =
            {
                {
                    wrapper::vext_2(vrsum.val[0], vrsum.val[1]),
                    wrapper::vext_2(vrsum.val[1], vrsum.val[1])
                }
            };
            // Calculate final sum
            q16x8x2_t final_sum =
            {
                {
                    wrapper::vadd(wrapper::vadd(vrsum.val[0], vrsum_shifted_1.val[0]), vrsum_shifted_2.val[0]),
                    wrapper::vadd(wrapper::vadd(vrsum.val[1], vrsum_shifted_1.val[1]), vrsum_shifted_2.val[1]),
                }
            };
            if(pool_stride_x == 2)
            {
                q16x8_t res =
                {
                    wrapper::vgetlane(final_sum.val[0], 0),
                    wrapper::vgetlane(final_sum.val[0], 2),
                    wrapper::vgetlane(final_sum.val[0], 4),
                    wrapper::vgetlane(final_sum.val[0], 6),
                    wrapper::vgetlane(final_sum.val[1], 0),
                    wrapper::vgetlane(final_sum.val[1], 2),
                    wrapper::vgetlane(final_sum.val[1], 4),
                    wrapper::vgetlane(final_sum.val[1], 6),
                };

                scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, res, id, 0, 1,
                                                   pool_size, upper_bound_w, upper_bound_h,
                                                   pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
                fres = wrapper::vmovn(res);
            }
            else
            {
                // Scale lower result
                scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, final_sum.val[0], id, 0, 1,
                                                   pool_size, upper_bound_w, upper_bound_h,
                                                   pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
                // Scale lower result
                scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, final_sum.val[1], id, 8, 1,
                                                   pool_size, upper_bound_w, upper_bound_h,
                                                   pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
                fqres = wrapper::vcombine(wrapper::vmovn(final_sum.val[0]), wrapper::vmovn(final_sum.val[1]));
            }
        }
        else
        {
            const q8x16_t max_data        = wrapper::vmax(wrapper::vmax(top_data, bottom_data), middle_data);
            const q8x16_t max_data_shift1 = wrapper::vext_1(max_data, max_data);
            const q8x16_t max_data_shift2 = wrapper::vext_2(max_data, max_data);
            const q8x16_t final_max       = wrapper::vmax(wrapper::vmax(max_data, max_data_shift1), max_data_shift2);

            if(pool_stride_x == 2)
            {
                const q8x8x2_t      table      = { { wrapper::vgetlow(final_max), wrapper::vgethigh(final_max) } };
                static const q8x8_t lookup_val = { 0, 2, 4, 6, 8, 10, 12, 14 };
                fres                           = wrapper::vtbl(table, lookup_val);
            }
            else
            {
                fqres = final_max;
            }
        }

        // Store result
        if(pool_stride_x == 1)
        {
            if(src_qinfo != dst_qinfo)
            {
                fqres = vrequantize_pooling<q8x8_t, q8x16_t>(wrapper::vgetlow(fqres), wrapper::vgethigh(fqres), requant_qinfo);
            }
            wrapper::vstore(reinterpret_cast<T *>(out.ptr()), fqres);
        }
        else
        {
            if(src_qinfo != dst_qinfo)
            {
                fres = vrequantize_pooling<q8x8_t>(fres, requant_qinfo);
            }
            wrapper::vstore(reinterpret_cast<T *>(out.ptr()), fres);
        }
    },
    in, out);
}

template <typename T>
void poolingMxN_quantized_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
{
    ARM_COMPUTE_UNUSED(dst1);
    Iterator in(src, window_src);
    Iterator out(dst0, window);

    /** Neon vector types */
    using q8x8_t  = typename wrapper::traits::neon_vector<T, 8>::type;
    using q16_t   = typename wrapper::traits::promote_t<T>;
    using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
    using q32_t   = typename wrapper::traits::promote_t<q16_t>;
    using q32x4_t = typename wrapper::traits::neon_vector<q32_t, 4>::type;

    const int pool_size_x     = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
    const int pool_size_y     = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
    const int pool_pad_right  = pool_info.pad_stride_info.pad_right();
    const int pool_pad_top    = pool_info.pad_stride_info.pad_top();
    const int pool_pad_left   = pool_info.pad_stride_info.pad_left();
    const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
    int       pool_stride_x   = 0;
    int       pool_stride_y   = 0;
    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
    const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
    const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);

    const UniformQuantizationInfo &src_qinfo = src->info()->quantization_info().uniform();
    const UniformQuantizationInfo &dst_qinfo = dst0->info()->quantization_info().uniform();

    execute_window_loop(window, [&](const Coordinates & id)
    {
        T res = std::numeric_limits<T>::min();

        if(pool_info.pool_type != PoolingType::MAX)
        {
            q32x4_t vres = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
            q32_t   sres = 0;

            // Calculate scale
            const float scale = calculate_avg_scale(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
                                                    pool_stride_y);

            // Perform pooling
            for(int y = 0; y < pool_size_y; ++y)
            {
                int x = 0;
                for(; x <= (pool_size_x - 8); x += 8)
                {
                    const q8x8_t data = wrapper::vload(reinterpret_cast<const T *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
                                                                                   (src->info()->strides_in_bytes().y())));

                    const q16x8_t data_q16 = wrapper::vmovl(data);
                    vres                   = wrapper::vadd(vres, wrapper::vaddl(wrapper::vgethigh(data_q16), wrapper::vgetlow(data_q16)));
                }

                // Leftover for loop
                for(; x < pool_size_x; ++x)
                {
                    T data = *(reinterpret_cast<const T *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
                                                           (src->info()->strides_in_bytes().y())));
                    sres += data;
                }
            }

            // Reduction
            const auto tmp = wrapper::vpadd(wrapper::vgethigh(vres), wrapper::vgetlow(vres));
            sres += wrapper::vgetlane(tmp, 0) + wrapper::vgetlane(tmp, 1);

            // Divide by scale
            res = static_cast<T>(support::cpp11::round(sres * scale));
        }
        else
        {
            q8x8_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_64_tag{});

            for(int y = 0; y < pool_size_y; ++y)
            {
                int x = 0;
                for(; x <= (pool_size_x - 8); x += 8)
                {
                    const q8x8_t data = wrapper::vload(reinterpret_cast<const T *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
                                                                                   (src->info()->strides_in_bytes().y())));
                    vres              = wrapper::vmax(vres, data);
                }
                // Leftover for loop
                for(; x < pool_size_x; ++x)
                {
                    const T data = *(reinterpret_cast<const T *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) + (y - pool_pad_top) * static_cast<int>
                                                                 (src->info()->strides_in_bytes().y())));
                    res          = std::max(res, data);
                }
            }

            // Reduce max
            vres = wrapper::vpmax(vres, vres);
            vres = wrapper::vpmax(vres, vres);
            vres = wrapper::vpmax(vres, vres);

            // Get max value
            res = std::max(res, wrapper::vgetlane(vres, 0));
        }
        // Store result
        res                                 = (src_qinfo != dst_qinfo) ? Qasymm8QuantizationHelper<T>::quantize(Qasymm8QuantizationHelper<T>::dequantize(res, src_qinfo), dst_qinfo) : res;
        *(reinterpret_cast<T *>(out.ptr())) = res;
    },
    in, out);
}
#endif /* defined(ENABLE_NCHW_KERNELS) */
} // namespace cpu
} // namespace arm_compute

#endif // SRC_CORE_NEON_KERNELS_QUANTIZED_H