aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/convolution/winograd/transforms/input_1x8_fp32.cpp
blob: e66300d39add3791a8c53dc6bc84f55235bcfbd3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/*
 * Copyright (c) 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "arm_compute/core/NEON/kernels/convolution/winograd/transforms/input.hpp"
#include "arm_compute/core/NEON/kernels/convolution/winograd/winograd_gemm.hpp"
#include "arm_compute/core/NEON/kernels/convolution/common/arm.hpp"

namespace
{

template <bool Specialized, int PadTop=0, int PadLeft=0, int PadBottom=0, int PadRight=0>
void winograd_input_transform_1x8_fp32_process_tile(
  int n_channels,
  const float* const input_base,
  const int input_row_stride,
  const int input_col_stride,
  float* const matrix_base,
  const int matrix_stride,
     const int _pad_top,
     const int _pad_left,
     const int _pad_bottom,
    const int _pad_right
)
{
  (void) input_row_stride;  // No rows over which to stride
 (void) _pad_top;  // Never any top padding
  (void) _pad_bottom;  // Never any bottom padding

  // Extract padding arguments
  const int pad_left = Specialized ? PadLeft : _pad_left;
  const int pad_right = Specialized ? PadRight : _pad_right;

  constexpr int inner_tile_cols = 8;
  const int cells_j = inner_tile_cols - pad_right;

  float *outptr = matrix_base;

  // Get pointers into the input tile
  const float *x_ptrs[inner_tile_cols];
  for (int j = pad_left, xj = 0; j < cells_j; j++, xj++)
  {
    x_ptrs[j] = input_base + xj*input_col_stride;
  }

  // Vectors used/computed in this kernel.
  float x[inner_tile_cols];
  float U[inner_tile_cols];

  for (int j = 0; j < inner_tile_cols; j++)
  {
    x[j] = 0.0f;
  }

  // Perform the Winograd input transformation for each channel in the input
  // tensor.
  int channels_remaining = n_channels;
#ifdef __arm_any__
  for (; channels_remaining >= 4; channels_remaining -= 4)
  {
    float32x4_t x[inner_tile_cols], U[inner_tile_cols];
    for (int j = 0; j < inner_tile_cols; j++)
    {
      x[j] = vdupq_n_f32(0.0f);
    }

    // Load x
    for (int j = pad_left; j < cells_j; j++)
    {
      x[j] = vld1q_f32(x_ptrs[j]);
      x_ptrs[j] += 4;
    }

    // Compute U = x . X
    U[0] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(x[6], 1), x[2], 49), x[4], -14), x[0], -36);
    U[1] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(x[6], 1), x[2], 36), x[3], 13), x[4], -13), x[1], -36), x[5], -1);
    U[2] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(x[6], 1), x[5], 1), x[2], 36), x[1], 36), x[4], -13), x[3], -13);
    U[3] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(x[6], 1), x[3], 20), x[2], 9), x[5], -2), x[4], -10), x[1], -18);
    U[4] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(x[6], 1), x[1], 18), x[2], 9), x[5], 2), x[4], -10), x[3], -20);
    U[5] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(x[6], 1), x[3], 15), x[2], 4), x[5], -3), x[4], -5), x[1], -12);
    U[6] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(x[6], 1), x[1], 12), x[2], 4), x[5], 3), x[4], -5), x[3], -15);
    U[7] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(x[7], 1), x[3], 49), x[5], -14), x[1], -36);

    // Store the transformed vector
    for (int j = 0; j < inner_tile_cols; j++)
    {
      vst1q_f32(outptr + j*matrix_stride, U[j]);
    }
    outptr += 4;
  }
  for (; channels_remaining >= 2; channels_remaining -= 2)
  {
    float32x2_t x[inner_tile_cols], U[inner_tile_cols];
    for (int j = 0; j < inner_tile_cols; j++)
    {
      x[j] = vdup_n_f32(0.0f);
    }

    // Load x
    for (int j = pad_left; j < cells_j; j++)
    {
      x[j] = vld1_f32(x_ptrs[j]);
      x_ptrs[j] += 2;
    }

    // Compute U = x . X
    U[0] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(x[6], 1), x[2], 49), x[4], -14), x[0], -36);
    U[1] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(x[6], 1), x[2], 36), x[3], 13), x[4], -13), x[1], -36), x[5], -1);
    U[2] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(x[6], 1), x[5], 1), x[2], 36), x[1], 36), x[4], -13), x[3], -13);
    U[3] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(x[6], 1), x[3], 20), x[2], 9), x[5], -2), x[4], -10), x[1], -18);
    U[4] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(x[6], 1), x[1], 18), x[2], 9), x[5], 2), x[4], -10), x[3], -20);
    U[5] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(x[6], 1), x[3], 15), x[2], 4), x[5], -3), x[4], -5), x[1], -12);
    U[6] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(x[6], 1), x[1], 12), x[2], 4), x[5], 3), x[4], -5), x[3], -15);
    U[7] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(x[7], 1), x[3], 49), x[5], -14), x[1], -36);

    // Store the transformed vector
    for (int j = 0; j < inner_tile_cols; j++)
    {
      vst1_f32(outptr + j*matrix_stride, U[j]);
    }
    outptr += 2;
  }
#endif  // __arm_any__
  for (; channels_remaining; channels_remaining--)
  {
    // Load x
    for (int j = pad_left; j < cells_j; j++)
    {
      x[j] = *(x_ptrs[j]++);
    }

    // Compute U = x . X
    U[0] = x[0]*-36 + x[4]*-14 + x[2]*49 + x[6]*1;
    U[1] = x[5]*-1 + x[1]*-36 + x[4]*-13 + x[3]*13 + x[2]*36 + x[6]*1;
    U[2] = x[3]*-13 + x[4]*-13 + x[1]*36 + x[2]*36 + x[5]*1 + x[6]*1;
    U[3] = x[1]*-18 + x[4]*-10 + x[5]*-2 + x[2]*9 + x[3]*20 + x[6]*1;
    U[4] = x[3]*-20 + x[4]*-10 + x[5]*2 + x[2]*9 + x[1]*18 + x[6]*1;
    U[5] = x[1]*-12 + x[4]*-5 + x[5]*-3 + x[2]*4 + x[3]*15 + x[6]*1;
    U[6] = x[3]*-15 + x[4]*-5 + x[5]*3 + x[2]*4 + x[1]*12 + x[6]*1;
    U[7] = x[1]*-36 + x[5]*-14 + x[3]*49 + x[7]*1;

    // Store the transformed vector
    for (int j = 0; j < inner_tile_cols; j++)
    {
      *(outptr + j*matrix_stride) = U[j];
    }
    outptr++;
  }
}

}

namespace winograd
{
template <int x>
using Tiles = InputTransformImplTiles<1, x, 1, 8, float>;

/*****************************************************************************/
// 1x3 specialisations
template <>
const Tiles<3>::TileFn Tiles<3>::tilefn_generic = winograd_input_transform_1x8_fp32_process_tile<false>;

template <>
const Tiles<3>::TileFn Tiles<3>::tilefn_unpadded = winograd_input_transform_1x8_fp32_process_tile<true>;

template <>
const Tiles<3>::TileFn Tiles<3>::tilefn_left_padded[n_pad_left] = {
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 1, 0, 0>,
};

template <>
const Tiles<3>::TileFn Tiles<3>::tilefn_right_padded[n_pad_right] = {
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 1>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 2>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 3>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 4>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 5>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 6>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 7>,
};
/*****************************************************************************/

/*****************************************************************************/
// 1x5 specialisations
template <>
const Tiles<5>::TileFn Tiles<5>::tilefn_generic = winograd_input_transform_1x8_fp32_process_tile<false>;

template <>
const Tiles<5>::TileFn Tiles<5>::tilefn_unpadded = winograd_input_transform_1x8_fp32_process_tile<true>;

template <>
const Tiles<5>::TileFn Tiles<5>::tilefn_left_padded[n_pad_left] = {
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 2, 0, 0>,
};

template <>
const Tiles<5>::TileFn Tiles<5>::tilefn_right_padded[n_pad_right] = {
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 1>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 2>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 3>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 4>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 5>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 6>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 7>,
};
/*****************************************************************************/

/*****************************************************************************/
// 1x7 specialisations
template <>
const Tiles<7>::TileFn Tiles<7>::tilefn_generic = winograd_input_transform_1x8_fp32_process_tile<false>;

template <>
const Tiles<7>::TileFn Tiles<7>::tilefn_unpadded = winograd_input_transform_1x8_fp32_process_tile<true>;

template <>
const Tiles<7>::TileFn Tiles<7>::tilefn_left_padded[n_pad_left] = {
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 1, 0, 0>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 3, 0, 0>,
};

template <>
const Tiles<7>::TileFn Tiles<7>::tilefn_right_padded[n_pad_right] = {
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 1>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 2>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 3>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 4>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 5>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 6>,
  winograd_input_transform_1x8_fp32_process_tile<true, 0, 0, 0, 7>,
};
/*****************************************************************************/


template class InputTransform<1, 3, 1, 8, float>;
template class InputTransform<3, 1, 8, 1, float>;
template class InputTransform<1, 5, 1, 8, float>;
template class InputTransform<5, 1, 8, 1, float>;
template class InputTransform<1, 7, 1, 8, float>;
template class InputTransform<7, 1, 8, 1, float>;
}  // namespace winograd