aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/arm_gemm/gemv_pretransposed.hpp
blob: 7f52ac5a1427be7be59cbf701c0960799dcd8e4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/*
 * Copyright (c) 2017-2020 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#pragma once

#include <stdio.h>

#include "arm_gemm.hpp"
#include "bias_adder.hpp"
#include "mergeresults.hpp"
#include "transform.hpp"

#ifdef CYCLE_PROFILING
#include "profiler.hpp"
#endif

namespace arm_gemm {

// Implementation of the GemmCommon abstract class.
//
// This is implementation is for GEMV with pretransposition.
//
// batches are not supported as a batched GEMV makes no sense (can be converted to a GEMM).
template<typename strategy, typename To, typename Tr>
class GemvPretransposed : public GemmCommon<To, Tr> {
    typedef typename strategy::operand_type Toi;
    typedef typename strategy::result_type Tri;

    const unsigned int _Nsize;
    const unsigned int _Ksize;

    const unsigned int _nmultis;

    const bool _trB;

    const Activation _act;

    const CPUInfo * const _ci;

    const unsigned int _buffer_per_multi;

    unsigned int m_block=0;
    unsigned int n_block=0;

    const Toi *_A_pretransposed = nullptr;

public:
    GemvPretransposed(GemvPretransposed &) = delete;
    GemvPretransposed & operator= (GemvPretransposed &) = delete;

    GemvPretransposed(const GemmArgs &args)
                      : _Nsize(args._Nsize), _Ksize(args._Ksize), _nmultis(args._nmulti), _trB(args._trB), _act(args._act), _ci(args._ci),
                        _buffer_per_multi(_Ksize * iceildiv(_Nsize, strategy::A_interleave()) * strategy::A_interleave()) {
        /* For now don't do any blocking. TODO: figure out if we should. */
        if (args._cfg && args._cfg->inner_block_size) {
            m_block = args._cfg->inner_block_size;
        } else {
            m_block = _Ksize;
        }

        if (args._cfg && args._cfg->outer_block_size) {
            n_block = args._cfg->outer_block_size;
        } else {
            n_block = _Nsize;
        }
    }

    // Window is number of out_width blocks, times number of multis.
    ndrange_t get_window_size() const override {
        return { iceildiv(_Nsize, strategy::out_width()) * _nmultis, 1u, 1u, 1u, 1u, 1u };
    }

    // Actually execute the GEMV.
    void execute_1d(unsigned int start, unsigned int end, int) {
#ifdef CYCLE_PROFILING
        profiler prof;
#endif
        strategy strat(_ci);

        /* Break the window values down into multis of interest... */
        const unsigned int window_per_multi = iceildiv(_Nsize, strategy::out_width());
        const unsigned int multi_0    = start / window_per_multi;
        const unsigned int multi_end  = end   / window_per_multi;

        /* ... and figure out where we start and end in the first and last multi. */
        const unsigned int n_0   = (start - (multi_0 * window_per_multi)) * strategy::out_width();
        const unsigned int n_max = (end - (multi_end * window_per_multi)) * strategy::out_width();

        static_assert(std::is_same<Tr, Tri>::value, "GemvPretransposed: Result types must be the same.");

        for (unsigned int multi=multi_0; multi<=multi_end; multi++) {
            const unsigned int n_start = (multi==multi_0) ? n_0 : 0;
            const unsigned int n_end = (multi==multi_end) ? n_max : _Nsize;

            if (n_end <= n_start)
                continue;

            for (unsigned int m0=0; m0<_Ksize; m0+=m_block) {
                unsigned int mmax = std::min(m0 + m_block, _Ksize);

                for (unsigned int n=n_start; n<n_end; n+=n_block) {
                    unsigned int nmax = std::min(n + n_block, n_end);
#ifdef CYCLE_PROFILING
                    auto p = prof.ScopedProfiler(PROFILE_KERNEL, (mmax-m0) * (nmax-n));
#endif
                    /* This assumes that the underlying call was a GEMM with M=1; for the N=1 case we would have to pick up this->_Bptr below instead */
                    strat.kernel(_A_pretransposed + (multi * _buffer_per_multi) + (n * _Ksize) + (m0 * strategy::A_interleave()),
                                 (_Ksize * strategy::A_interleave()),
                                 this->_Aptr + (multi * this->_A_multi_stride) + m0,
                                 this->_Cptr + (multi * this->_C_multi_stride) + n,
                                 static_cast<Tr>(0), (mmax-m0), (nmax-n));

                    // Handle activation separately for now
                    if (this->_bias) {
                        activator<true>(this->_Cptr + (multi * this->_C_multi_stride) + n, 0,
                                        this->_bias + (multi * this->_bias_multi_stride) + n,
                                        _act, 1, (nmax-n));
                    } else {
                        activator<false>(this->_Cptr + (multi * this->_C_multi_stride) + n, 0,
                                         static_cast<const Tr *>(nullptr),
                                         _act, 1, (nmax-n));
                    }
                }
            }
        }
    }

    // Execute
    void execute(const ndcoord_t& work_range, const ndcoord_t& thread_locator, int threadid) override {
        UNUSED(thread_locator);

        const auto start = work_range.get_position(0);
        const auto size  = work_range.get_size(0);
        const auto stop  = start + size;

        execute_1d(start, stop, threadid);
    }

    /* Pretransposed interface implementation */
    bool B_is_pretransposed() const override {
        return true;
    }

    bool B_pretranspose_required() const override {
        /* Transpose is required if _A_pretransposed is still nullptr */
        return (_A_pretransposed == nullptr);
    }

    size_t get_B_pretransposed_array_size() const override {
        return _buffer_per_multi * _nmultis * sizeof(To);
    }

    void pretranspose_B_array(void *buffer, const To *B, const int ldb, const int B_multi_stride) override {
        Toi *A_buffer = reinterpret_cast<Toi *>(buffer);

        for (unsigned int multi=0; multi<_nmultis; multi++) {
            /* Reverse sense here as we are dealing with B rather than A.  So if
             * strategy::A_transpose is false and _trB is false, we still
             * transpose.  */
            if (_trB ^ strategy::A_transpose()) {
                Transform<strategy::A_interleave(), strategy::A_block(), false>(A_buffer + (multi * _buffer_per_multi), B + (multi * B_multi_stride), ldb, 0, _Nsize, 0, _Ksize);
            } else {
                Transform<strategy::A_interleave(), strategy::A_block(), true>(A_buffer + (multi * _buffer_per_multi), B + (multi * B_multi_stride), ldb, 0, _Nsize, 0, _Ksize);
            }
        }

        _A_pretransposed = A_buffer;
    }

    void set_pretransposed_B_data(void *buffer) override {
        _A_pretransposed = reinterpret_cast<Toi *>(buffer);
    }
};

} // namespace arm_gemm