aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEScaleKernel.cpp
blob: fd2978de1cd245396c1b357d07d1594e8f54e940 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
/*
 * Copyright (c) 2016, 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEScaleKernel.h"

#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"

#include <arm_neon.h>
#include <cstddef>
#include <cstdint>

using namespace arm_compute;

NEScaleKernel::NEScaleKernel()
    : _func(nullptr), _offsets(nullptr), _dx(nullptr), _dy(nullptr), _input(nullptr), _output(nullptr)
{
}

BorderSize NEScaleKernel::border_size() const
{
    return BorderSize(1);
}

void NEScaleKernel::configure(const ITensor *input, const ITensor *dx, const ITensor *dy, const ITensor *offsets, ITensor *output, InterpolationPolicy policy, bool border_undefined)
{
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::S16);
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8, DataType::S16);

    if(policy == InterpolationPolicy::NEAREST_NEIGHBOR)
    {
        ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(offsets, 1, DataType::S32);
    }

    if(policy == InterpolationPolicy::BILINEAR)
    {
        ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(offsets, 1, DataType::S32);
        ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dx, 1, DataType::F32);
        ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dy, 1, DataType::F32);
    }

    ARM_COMPUTE_ERROR_ON(output->info()->dimension(0) == 0);
    ARM_COMPUTE_ERROR_ON(output->info()->dimension(1) == 0);

    for(size_t i = 2; i < Coordinates::num_max_dimensions; ++i)
    {
        ARM_COMPUTE_ERROR_ON(input->info()->dimension(i) != output->info()->dimension(i));
    }

    _input   = input;
    _output  = output;
    _offsets = offsets;
    _dx      = dx;
    _dy      = dy;

    switch(policy)
    {
        case InterpolationPolicy::NEAREST_NEIGHBOR:
        {
            _func = &NEScaleKernel::scale_nearest;
            break;
        }
        case InterpolationPolicy::BILINEAR:
        {
            ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(_dx, 1, DataType::F32);
            ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(_dy, 1, DataType::F32);

            _func = &NEScaleKernel::scale_bilinear;
            break;
        }
        case InterpolationPolicy::AREA:
        {
            _func = &NEScaleKernel::scale_area;
            break;
        }
        default:
            ARM_COMPUTE_ERROR("Unsupported interpolation mode");
    }

    constexpr unsigned int num_elems_processed_per_iteration = 16;
    const int              border_offset                     = (border_undefined) ? 0 : border_size().left;

    // Configure kernel window
    Window win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration));

    AccessWindowStatic     input_access(input->info(), -border_offset, -border_offset, input->info()->dimension(0) + border_offset, input->info()->dimension(1) + border_offset);
    AccessWindowHorizontal offsets_access(offsets->info(), 0, num_elems_processed_per_iteration);
    AccessWindowHorizontal dx_access(dx == nullptr ? nullptr : dx->info(), 0, num_elems_processed_per_iteration);
    AccessWindowHorizontal dy_access(dy == nullptr ? nullptr : dy->info(), 0, num_elems_processed_per_iteration);
    AccessWindowHorizontal output_access(output->info(), 0, num_elems_processed_per_iteration);

    update_window_and_padding(win,
                              input_access,
                              offsets_access,
                              dx_access,
                              dy_access,
                              output_access);

    output_access.set_valid_region(win, ValidRegion(Coordinates(), output->info()->tensor_shape()));

    INEKernel::configure(win);
}

void NEScaleKernel::scale_nearest(const Window &window)
{
    const size_t input_stride = _input->info()->strides_in_bytes()[1];

    // Compute the ratio between source height and destination height
    const auto hr = static_cast<float>(_input->info()->dimension(1)) / static_cast<float>(_output->info()->dimension(1));

    // Don't increment in X and Y direction for the input tensor
    // A pointer to the start of this plane is needed as base for the precomputed offsets
    Window win_in(window);
    win_in.set(Window::DimX, Window::Dimension(0, 0, 0));
    win_in.set(Window::DimY, Window::Dimension(0, 0, 0));

    Window win_off;
    win_off.set(Window::DimX, window[Window::DimX]);
    win_off.set(Window::DimY, window[Window::DimY]);

    for(size_t d = Window::DimZ; d < _offsets->info()->num_dimensions(); ++d)
    {
        win_off.set(d, Window::Dimension(0, 0, 0));
    }

    Iterator in(_input, win_in);
    Iterator out(_output, window);
    Iterator offsets(_offsets, win_off);

    switch(_input->info()->data_type())
    {
        case DataType::U8:
        {
            uint8x16_t tmp = vdupq_n_u8(0);

            execute_window_loop(window, [&](const Coordinates & id)
            {
                const auto           offsets_ptr = reinterpret_cast<const int32_t *>(offsets.ptr());
                const uint8_t *const in_ptr      = in.ptr();

                const size_t in_yi      = (id.y() + 0.5f) * hr;
                const size_t offset_row = in_yi * input_stride;

                tmp = vsetq_lane_u8(in_ptr[offsets_ptr[0] + offset_row], tmp, 0);
                tmp = vsetq_lane_u8(in_ptr[offsets_ptr[1] + offset_row], tmp, 1);
                tmp = vsetq_lane_u8(in_ptr[offsets_ptr[2] + offset_row], tmp, 2);
                tmp = vsetq_lane_u8(in_ptr[offsets_ptr[3] + offset_row], tmp, 3);
                tmp = vsetq_lane_u8(in_ptr[offsets_ptr[4] + offset_row], tmp, 4);
                tmp = vsetq_lane_u8(in_ptr[offsets_ptr[5] + offset_row], tmp, 5);
                tmp = vsetq_lane_u8(in_ptr[offsets_ptr[6] + offset_row], tmp, 6);
                tmp = vsetq_lane_u8(in_ptr[offsets_ptr[7] + offset_row], tmp, 7);
                tmp = vsetq_lane_u8(in_ptr[offsets_ptr[8] + offset_row], tmp, 8);
                tmp = vsetq_lane_u8(in_ptr[offsets_ptr[9] + offset_row], tmp, 9);
                tmp = vsetq_lane_u8(in_ptr[offsets_ptr[10] + offset_row], tmp, 10);
                tmp = vsetq_lane_u8(in_ptr[offsets_ptr[11] + offset_row], tmp, 11);
                tmp = vsetq_lane_u8(in_ptr[offsets_ptr[12] + offset_row], tmp, 12);
                tmp = vsetq_lane_u8(in_ptr[offsets_ptr[13] + offset_row], tmp, 13);
                tmp = vsetq_lane_u8(in_ptr[offsets_ptr[14] + offset_row], tmp, 14);
                tmp = vsetq_lane_u8(in_ptr[offsets_ptr[15] + offset_row], tmp, 15);

                vst1q_u8(out.ptr(), tmp);
            },
            in, offsets, out);
            break;
        }
        case DataType::S16:
        {
            int16x8x2_t tmp =
            {
                {
                    vdupq_n_s16(0),
                    vdupq_n_s16(0)
                }
            };

            execute_window_loop(window, [&](const Coordinates & id)
            {
                const auto offsets_ptr = reinterpret_cast<const int32_t *>(offsets.ptr());

                const size_t in_yi      = (id.y() + 0.5f) * hr;
                const size_t offset_row = in_yi * input_stride;

                tmp.val[0] = vsetq_lane_s16(*reinterpret_cast<const int16_t *>(in.ptr() + offsets_ptr[0] + offset_row), tmp.val[0], 0);
                tmp.val[0] = vsetq_lane_s16(*reinterpret_cast<const int16_t *>(in.ptr() + offsets_ptr[2] + offset_row), tmp.val[0], 1);
                tmp.val[0] = vsetq_lane_s16(*reinterpret_cast<const int16_t *>(in.ptr() + offsets_ptr[4] + offset_row), tmp.val[0], 2);
                tmp.val[0] = vsetq_lane_s16(*reinterpret_cast<const int16_t *>(in.ptr() + offsets_ptr[6] + offset_row), tmp.val[0], 3);
                tmp.val[0] = vsetq_lane_s16(*reinterpret_cast<const int16_t *>(in.ptr() + offsets_ptr[8] + offset_row), tmp.val[0], 4);
                tmp.val[0] = vsetq_lane_s16(*reinterpret_cast<const int16_t *>(in.ptr() + offsets_ptr[10] + offset_row), tmp.val[0], 5);
                tmp.val[0] = vsetq_lane_s16(*reinterpret_cast<const int16_t *>(in.ptr() + offsets_ptr[12] + offset_row), tmp.val[0], 6);
                tmp.val[0] = vsetq_lane_s16(*reinterpret_cast<const int16_t *>(in.ptr() + offsets_ptr[14] + offset_row), tmp.val[0], 7);

                tmp.val[1] = vsetq_lane_s16(*reinterpret_cast<const int16_t *>(in.ptr() + offsets_ptr[1] + offset_row), tmp.val[1], 0);
                tmp.val[1] = vsetq_lane_s16(*reinterpret_cast<const int16_t *>(in.ptr() + offsets_ptr[3] + offset_row), tmp.val[1], 1);
                tmp.val[1] = vsetq_lane_s16(*reinterpret_cast<const int16_t *>(in.ptr() + offsets_ptr[5] + offset_row), tmp.val[1], 2);
                tmp.val[1] = vsetq_lane_s16(*reinterpret_cast<const int16_t *>(in.ptr() + offsets_ptr[7] + offset_row), tmp.val[1], 3);
                tmp.val[1] = vsetq_lane_s16(*reinterpret_cast<const int16_t *>(in.ptr() + offsets_ptr[9] + offset_row), tmp.val[1], 4);
                tmp.val[1] = vsetq_lane_s16(*reinterpret_cast<const int16_t *>(in.ptr() + offsets_ptr[11] + offset_row), tmp.val[1], 5);
                tmp.val[1] = vsetq_lane_s16(*reinterpret_cast<const int16_t *>(in.ptr() + offsets_ptr[13] + offset_row), tmp.val[1], 6);
                tmp.val[1] = vsetq_lane_s16(*reinterpret_cast<const int16_t *>(in.ptr() + offsets_ptr[15] + offset_row), tmp.val[1], 7);

                vst2q_s16(reinterpret_cast<int16_t *>(out.ptr()), tmp);
            },
            in, offsets, out);
            break;
        }
        default:
            ARM_COMPUTE_ERROR("Not supported");
            break;
    }
}

void NEScaleKernel::scale_bilinear(const Window &window)
{
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(_input, 1, DataType::U8);

    // Compute the ratio between source height and destination height
    const auto hr = static_cast<float>(_input->info()->dimension(1)) / static_cast<float>(_output->info()->dimension(1));

    // Don't increment in X and Y direction for the input tensor
    // A pointer to the start of this plane is needed as base for the precomputed offsets
    Window win_in(window);
    win_in.set(Window::DimX, Window::Dimension(0, 0, 0));
    win_in.set(Window::DimY, Window::Dimension(0, 0, 0));

    Window win_off;
    win_off.set(Window::DimX, window.x());
    win_off.set(Window::DimY, window.y());

    for(size_t d = Window::DimZ; d < _offsets->info()->num_dimensions(); ++d)
    {
        win_off.set(d, Window::Dimension(0, 0, 0));
    }

    Iterator in(_input, win_in);
    Iterator out(_output, window);
    Iterator offsets(_offsets, win_off);
    Iterator dx(_dx, win_off);
    Iterator dy(_dy, win_off);

    /* Input image stride */
    const size_t in_stride = _input->info()->strides_in_bytes()[1];

    execute_window_loop(window, [&](const Coordinates & id)
    {
        const auto offsets_ptr = reinterpret_cast<const int32_t *>(offsets.ptr());
        const auto dx_ptr      = reinterpret_cast<const float *>(dx.ptr());
        const auto dy_ptr      = reinterpret_cast<const float *>(dy.ptr());
        const auto in_ptr      = reinterpret_cast<const uint8_t *>(in.ptr());

        const size_t in_yi      = std::floor((id.y() + 0.5f) * hr - 0.5f);
        const size_t offset_row = in_yi * in_stride;

        uint8x8_t tmp0 = vdup_n_u8(0);
        tmp0           = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[0] + offset_row], in_stride, dx_ptr[0], dy_ptr[0]), tmp0, 0);
        tmp0           = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[1] + offset_row], in_stride, dx_ptr[1], dy_ptr[1]), tmp0, 1);
        tmp0           = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[2] + offset_row], in_stride, dx_ptr[2], dy_ptr[2]), tmp0, 2);
        tmp0           = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[3] + offset_row], in_stride, dx_ptr[3], dy_ptr[3]), tmp0, 3);
        tmp0           = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[4] + offset_row], in_stride, dx_ptr[4], dy_ptr[4]), tmp0, 4);
        tmp0           = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[5] + offset_row], in_stride, dx_ptr[5], dy_ptr[5]), tmp0, 5);
        tmp0           = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[6] + offset_row], in_stride, dx_ptr[6], dy_ptr[6]), tmp0, 6);
        tmp0           = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[7] + offset_row], in_stride, dx_ptr[7], dy_ptr[7]), tmp0, 7);

        uint8x8_t tmp1 = vdup_n_u8(0);
        tmp1           = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[8] + offset_row], in_stride, dx_ptr[8], dy_ptr[8]), tmp1, 0);
        tmp1           = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[9] + offset_row], in_stride, dx_ptr[9], dy_ptr[9]), tmp1, 1);
        tmp1           = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[10] + offset_row], in_stride, dx_ptr[10], dy_ptr[10]), tmp1, 2);
        tmp1           = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[11] + offset_row], in_stride, dx_ptr[11], dy_ptr[11]), tmp1, 3);
        tmp1           = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[12] + offset_row], in_stride, dx_ptr[12], dy_ptr[12]), tmp1, 4);
        tmp1           = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[13] + offset_row], in_stride, dx_ptr[13], dy_ptr[13]), tmp1, 5);
        tmp1           = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[14] + offset_row], in_stride, dx_ptr[14], dy_ptr[14]), tmp1, 6);
        tmp1           = vset_lane_u8(delta_bilinear_c1u8(&in_ptr[offsets_ptr[15] + offset_row], in_stride, dx_ptr[15], dy_ptr[15]), tmp1, 7);

        vst1q_u8(out.ptr(), vcombine_u8(tmp0, tmp1));
    },
    in, offsets, dx, dy, out);
}

void NEScaleKernel::scale_area(const Window &window)
{
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(_input, 1, DataType::U8);

    // Don't increment in X and Y direction for the input tensor
    // A pointer to the start of this plane is needed as base for the precomputed offsets
    Window win_in(window);
    win_in.set(Window::DimX, Window::Dimension(0, 0, 0));
    win_in.set(Window::DimY, Window::Dimension(0, 0, 0));

    Iterator in(_input, win_in);
    Iterator out(_output, window);

    const auto   wr        = static_cast<float>(_input->info()->dimension(0)) / static_cast<float>(_output->info()->dimension(0));
    const auto   hr        = static_cast<float>(_input->info()->dimension(1)) / static_cast<float>(_output->info()->dimension(1));
    const auto   w         = _input->info()->dimension(0);
    const auto   h         = _input->info()->dimension(1);
    const size_t in_stride = _input->info()->strides_in_bytes()[1];

    execute_window_loop(window, [&](const Coordinates & id)
    {
        const auto in_ptr = reinterpret_cast<const uint8_t *>(in.ptr());

        uint8x8_t tmp0 = vdup_n_u8(0);
        tmp0           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x(), id.y()), tmp0, 0);
        tmp0           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 1, id.y()), tmp0, 1);
        tmp0           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 2, id.y()), tmp0, 2);
        tmp0           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 3, id.y()), tmp0, 3);
        tmp0           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 4, id.y()), tmp0, 4);
        tmp0           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 5, id.y()), tmp0, 5);
        tmp0           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 6, id.y()), tmp0, 6);
        tmp0           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 7, id.y()), tmp0, 7);

        uint8x8_t tmp1 = vdup_n_u8(0);
        tmp1           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 8, id.y()), tmp1, 0);
        tmp1           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 9, id.y()), tmp1, 1);
        tmp1           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 10, id.y()), tmp1, 2);
        tmp1           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 11, id.y()), tmp1, 3);
        tmp1           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 12, id.y()), tmp1, 4);
        tmp1           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 13, id.y()), tmp1, 5);
        tmp1           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 14, id.y()), tmp1, 6);
        tmp1           = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 15, id.y()), tmp1, 7);

        vst1q_u8(out.ptr(), vcombine_u8(tmp0, tmp1));
    },
    in, out);
}

void NEScaleKernel::run(const Window &window)
{
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
    ARM_COMPUTE_ERROR_ON(_func == nullptr);

    (this->*_func)(window);
}