aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEPoolingLayerKernel.cpp
blob: 30b67b64b96c8fa0b6640a2eb00772ea9ebecaf7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/*
 * Copyright (c) 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEPoolingLayerKernel.h"

#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/FixedPoint.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"

#include <algorithm>
#include <arm_neon.h>
#include <limits>
#include <string>
#include <tuple>

using namespace arm_compute;

namespace
{
inline float calculate_avg_scale(const Coordinates &id, const int pool_size, const int upper_bound_w, const int upper_bound_h,
                                 const int pad_x, const int pad_y, const int stride_x, const int stride_y)
{
    int start_x = id.x() * stride_x - pad_x;
    int start_y = id.y() * stride_y - pad_y;
    int end_x   = std::min(start_x + pool_size, upper_bound_w);
    int end_y   = std::min(start_y + pool_size, upper_bound_h);
    return 1.f / ((end_y - start_y) * (end_x - start_x));
}

inline qint8_t calculate_avg_scale_q8(const Coordinates &id, int pool_size, int upper_bound_w, int upper_bound_h,
                                      int pad_x, int pad_y, int stride_x, int stride_y, int fixed_point_position)
{
    static std::array<qint8_t, 10> scale_values_q8 =
    { { 0x0, 0x0, 0x40, 0x2A, 0x20, 0x19, 0x15, 0x12, 0x10, 0xE } };
    const int start_x = id.x() * stride_x - pad_x;
    const int start_y = id.y() * stride_y - pad_y;
    const int end_x   = std::min(start_x + pool_size, upper_bound_w);
    const int end_y   = std::min(start_y + pool_size, upper_bound_h);
    const int val     = ((end_y - start_y) * (end_x - start_x));
    return scale_values_q8[val] >> (7 - fixed_point_position);
}
} // namespace

NEPoolingLayerKernel::NEPoolingLayerKernel()
    : _func(nullptr), _input(nullptr), _output(nullptr), _pool_info(), _num_elems_processed_per_iteration(0), _border_size(0)
{
}

BorderSize NEPoolingLayerKernel::border_size() const
{
    return _border_size;
}

void NEPoolingLayerKernel::configure(const ITensor *input, ITensor *output, const PoolingLayerInfo &pool_info)
{
    int                   pool_pad_x      = 0;
    int                   pool_pad_y      = 0;
    int                   pool_stride_x   = 0;
    int                   pool_stride_y   = 0;
    unsigned int          pooled_w        = 0;
    unsigned int          pooled_h        = 0;
    PoolingType           pool_type       = pool_info.pool_type();
    int                   pool_size       = pool_info.pool_size();
    const PadStrideInfo   pad_stride_info = pool_info.pad_stride_info();
    DimensionRoundingType pool_round      = pad_stride_info.round();
    std::tie(pool_pad_x, pool_pad_y)       = pad_stride_info.pad();
    std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();

    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::F32);
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QS8, DataType::F32);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, output);
    ARM_COMPUTE_ERROR_ON(2 != pool_size && 3 != pool_size);
    ARM_COMPUTE_ERROR_ON(pool_pad_x >= pool_size || pool_pad_y >= pool_size);
    ARM_COMPUTE_ERROR_ON(input->info()->data_type() == DataType::QS8 && pool_type == PoolingType::AVG && input->info()->fixed_point_position() > 6);
    ARM_COMPUTE_ERROR_ON(input->info()->data_type() == DataType::QS8 && pool_stride_x > 2);

    // Check output dimensions
    std::tie(pooled_w, pooled_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1),
                                                     pool_size, pool_stride_x, pool_stride_y,
                                                     pool_pad_x, pool_pad_y, pool_round);
    ARM_COMPUTE_UNUSED(pooled_w);
    ARM_COMPUTE_UNUSED(pooled_h);
    ARM_COMPUTE_ERROR_ON((output->info()->dimension(0) != pooled_w) || (output->info()->dimension(1) != pooled_h));

    unsigned int num_elems_read_per_iteration      = 0;
    unsigned int num_elems_processed_per_iteration = 0;
    unsigned int num_elems_horizontal_window       = 0;

    // Select element size
    switch(input->info()->data_type())
    {
        case DataType::QS8:
            num_elems_read_per_iteration      = 16;
            num_elems_processed_per_iteration = (pool_size == 2) ? 8 : 7;
            num_elems_horizontal_window       = 8;
            break;
        case DataType::F32:
            num_elems_read_per_iteration      = (pool_size == 2) ? 2 : 4; // We use vload4 for pooling3
            num_elems_processed_per_iteration = 1;
            num_elems_horizontal_window       = 1;
            break;
        default:
            ARM_COMPUTE_ERROR("Element size not supported");
            break;
    }

    _num_elems_processed_per_iteration = num_elems_processed_per_iteration;
    const int input_width              = input->info()->dimension(0);
    const int input_height             = input->info()->dimension(1);
    const int upper_bound_w            = ((pooled_w - 1) * pool_stride_x - pool_pad_x + num_elems_read_per_iteration) - input_width;
    const int upper_bound_h            = ((pooled_h - 1) * pool_stride_y - pool_pad_y + pool_size) - input_height;

    // Set instance variables
    _input              = input;
    _output             = output;
    _pool_info          = pool_info;
    _border_size        = BorderSize(pool_pad_y, pool_pad_x);
    _border_size.right  = std::max(upper_bound_w, pool_pad_x);
    _border_size.bottom = std::max(upper_bound_h, pool_pad_y);

    // Select appropriate function
    switch(pool_size)
    {
        case 2:
            if(input->info()->data_type() == DataType::QS8)
            {
                _func = (PoolingType::AVG == pool_type) ? &NEPoolingLayerKernel::pooling2_q8<PoolingType::AVG> : &NEPoolingLayerKernel::pooling2_q8<PoolingType::MAX>;
            }
            else if(input->info()->data_type() == DataType::F32)
            {
                _func = (PoolingType::AVG == pool_type) ? &NEPoolingLayerKernel::pooling2_f32<PoolingType::AVG> : &NEPoolingLayerKernel::pooling2_f32<PoolingType::MAX>;
            }
            break;
        case 3:
            if(input->info()->data_type() == DataType::QS8)
            {
                _func = (PoolingType::AVG == pool_type) ? &NEPoolingLayerKernel::pooling3_q8<PoolingType::AVG> : &NEPoolingLayerKernel::pooling3_q8<PoolingType::MAX>;
            }
            else if(input->info()->data_type() == DataType::F32)
            {
                _func = (PoolingType::AVG == pool_type) ? &NEPoolingLayerKernel::pooling3_f32<PoolingType::AVG> : &NEPoolingLayerKernel::pooling3_f32<PoolingType::MAX>;
            }
            break;
        default:
            ARM_COMPUTE_ERROR("Unsupported pooling size");
            break;
    }

    // Configure kernel window
    Window                 win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration));
    AccessWindowStatic     input_access(input->info(), -pool_pad_x, -pool_pad_y, input_width + _border_size.right, input_height + _border_size.bottom);
    AccessWindowHorizontal output_access(output->info(), 0, num_elems_horizontal_window);
    update_window_and_padding(win, input_access, output_access);
    output_access.set_valid_region(win, ValidRegion(Coordinates(), output->info()->tensor_shape()));
    INEKernel::configure(win);
}

template <PoolingType pooling_type>
void NEPoolingLayerKernel::pooling2_q8(const Window &window_input, const Window &window)
{
    Iterator input(_input, window_input);
    Iterator output(_output, window);

    const int     fixed_point_position = _input->info()->fixed_point_position();
    constexpr int pool_size            = 2;
    int           pool_pad_x           = 0;
    int           pool_pad_y           = 0;
    int           pool_stride_x        = 0;
    int           pool_stride_y        = 0;
    std::tie(pool_pad_x, pool_pad_y)       = _pool_info.pad_stride_info().pad();
    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
    const int upper_bound_w = _input->info()->dimension(0) + pool_pad_x;
    const int upper_bound_h = _input->info()->dimension(1) + pool_pad_y;

    const uint8_t *const input_top_ptr    = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_x), -static_cast<int>(pool_pad_y)));
    const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_x), -static_cast<int>(pool_pad_y) + 1));

    execute_window_loop(window, [&](const Coordinates & id)
    {
        const auto top_data    = vld1q_qs8(reinterpret_cast<const qint8_t *>(input_top_ptr + input.offset()));
        const auto bottom_data = vld1q_qs8(reinterpret_cast<const qint8_t *>(input_bottom_ptr + input.offset()));
        qint8x8_t  res         = {};
        if(pooling_type == PoolingType::AVG)
        {
            // Calculate scale
            const qint8_t   scale     = calculate_avg_scale_q8(id, pool_size, upper_bound_w, upper_bound_h, pool_pad_x, pool_pad_y, pool_stride_x, pool_stride_y, fixed_point_position);
            const qint8x8_t scale_vec = vdup_n_qs8(scale);

            // Perform pooling
            const qint8x16_t sum_data = vqaddq_qs8(top_data, bottom_data);
            res                       = vqmul_qs8(vpadd_s8(vget_low_s8(sum_data), vget_high_s8(sum_data)), scale_vec, fixed_point_position);
        }
        else
        {
            const qint8x16_t max_data = vmaxq_s8(top_data, bottom_data);
            res                       = vpmax_s8(vget_low_s8(max_data), vget_high_s8(max_data));
        }
        vst1_qs8(reinterpret_cast<qint8_t *>(output.ptr()), res);
    },
    input, output);
}

template <PoolingType pooling_type>
void NEPoolingLayerKernel::pooling2_f32(const Window &window_input, const Window &window)
{
    Iterator input(_input, window_input);
    Iterator output(_output, window);

    constexpr int pool_size = 2;
    int           pool_pad_x, pool_pad_y, pool_stride_x, pool_stride_y = 0;
    std::tie(pool_pad_x, pool_pad_y)       = _pool_info.pad_stride_info().pad();
    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
    const int upper_bound_w = _input->info()->dimension(0) + pool_pad_x;
    const int upper_bound_h = _input->info()->dimension(1) + pool_pad_y;

    const unsigned char *const input_top_ptr    = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_x), -static_cast<int>(pool_pad_y)));
    const unsigned char *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_x), -static_cast<int>(pool_pad_y) + 1));

    execute_window_loop(window, [&](const Coordinates & id)
    {
        const float32x2_t top_data    = vld1_f32(reinterpret_cast<const float *>(input_top_ptr + input.offset()));
        const float32x2_t bottom_data = vld1_f32(reinterpret_cast<const float *>(input_bottom_ptr + input.offset()));
        float32x2_t       res         = {};
        if(pooling_type == PoolingType::AVG)
        {
            // Calculate scale
            float             scale   = calculate_avg_scale(id, pool_size, upper_bound_w, upper_bound_h, pool_pad_x, pool_pad_y, pool_stride_x, pool_stride_y);
            const float32x2_t scale_v = vdup_n_f32(scale);

            // Perform pooling
            const float32x2_t sum_data = vadd_f32(top_data, bottom_data);
            res                        = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v);
        }
        else
        {
            const float32x2_t max_data = vmax_f32(top_data, bottom_data);
            res                        = vpmax_f32(max_data, max_data);
        }
        *(reinterpret_cast<float *>(output.ptr())) = vget_lane_f32(res, 0);
    },
    input, output);
}

template <PoolingType pooling_type>
void NEPoolingLayerKernel::pooling3_q8(const Window &window_input, const Window &window)
{
    Iterator input(_input, window_input);
    Iterator output(_output, window);

    const int     fixed_point_position = _input->info()->fixed_point_position();
    constexpr int pool_size            = 3;
    int           pool_pad_x           = 0;
    int           pool_pad_y           = 0;
    int           pool_stride_x        = 0;
    int           pool_stride_y        = 0;
    std::tie(pool_pad_x, pool_pad_y)       = _pool_info.pad_stride_info().pad();
    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
    const int upper_bound_w = _input->info()->dimension(0) + pool_pad_x;
    const int upper_bound_h = _input->info()->dimension(1) + pool_pad_y;

    const uint8_t *const input_top_ptr    = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_x), -static_cast<int>(pool_pad_y)));
    const uint8_t *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_x), -static_cast<int>(pool_pad_y) + 1));
    const uint8_t *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_x), -static_cast<int>(pool_pad_y) + 2));

    execute_window_loop(window, [&](const Coordinates & id)
    {
        const auto top_data    = vld1q_qs8(reinterpret_cast<const qint8_t *>(input_top_ptr + input.offset()));
        const auto middle_data = vld1q_qs8(reinterpret_cast<const qint8_t *>(input_middle_ptr + input.offset()));
        const auto bottom_data = vld1q_qs8(reinterpret_cast<const qint8_t *>(input_bottom_ptr + input.offset()));
        qint8x8_t  res         = {};
        if(pooling_type == PoolingType::AVG)
        {
            // Calculate scale
            const qint8_t   scale     = calculate_avg_scale_q8(id, pool_size, upper_bound_w, upper_bound_h, pool_pad_x, pool_pad_y, pool_stride_x, pool_stride_y, fixed_point_position);
            const qint8x8_t scale_vec = vdup_n_qs8(scale);

            // Perform pooling for stride 2
            const qint8x16_t sum_data  = vqaddq_qs8(vqaddq_qs8(top_data, bottom_data), middle_data);
            const qint8x16_t sum_data2 = vextq_s8(sum_data, sum_data, 1);
            const qint8x16_t sum_data3 = vextq_s8(sum_data, sum_data, 2);
            const qint8x16_t final_sum = vqaddq_qs8(vqaddq_qs8(sum_data, sum_data2), sum_data3);
            if(pool_stride_x == 2)
            {
                const qint8x8x2_t      table      = { { vget_low_s8(final_sum), vget_high_s8(final_sum) } };
                static const qint8x8_t lookup_val = { 0, 2, 4, 6, 8, 10, 12, 14 };
                res                               = vtbl2_s8(table, lookup_val);
            }
            else
            {
                res = vget_low_s8(final_sum);
            }
            res = vqmul_qs8(res, scale_vec, fixed_point_position);
        }
        else
        {
            const qint8x16_t max_data  = vmaxq_s8(vmaxq_s8(top_data, bottom_data), middle_data);
            const qint8x16_t max_data2 = vextq_s8(max_data, max_data, 1);
            const qint8x16_t max_data3 = vextq_s8(max_data, max_data, 2);
            const qint8x16_t final_max = vmaxq_s8(vmaxq_s8(max_data, max_data2), max_data3);

            if(pool_stride_x == 2)
            {
                const qint8x8x2_t      table      = { { vget_low_s8(final_max), vget_high_s8(final_max) } };
                static const qint8x8_t lookup_val = { 0, 2, 4, 6, 8, 10, 12, 14 };
                res                               = vtbl2_s8(table, lookup_val);
            }
            else
            {
                res = vget_low_s8(final_max);
            }
        }
        vst1_qs8(reinterpret_cast<qint8_t *>(output.ptr()), res);
    },
    input, output);
}

template <PoolingType pooling_type>
void NEPoolingLayerKernel::pooling3_f32(const Window &window_input, const Window &window)
{
    Iterator input(_input, window_input);
    Iterator output(_output, window);

    constexpr const int pool_size = 3;
    int                 pool_pad_x, pool_pad_y, pool_stride_x, pool_stride_y = 0;
    std::tie(pool_pad_x, pool_pad_y)       = _pool_info.pad_stride_info().pad();
    std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride();
    const int upper_bound_w = _input->info()->dimension(0) + pool_pad_x;
    const int upper_bound_h = _input->info()->dimension(1) + pool_pad_y;

    const unsigned char *const input_top_ptr    = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_x), -static_cast<int>(pool_pad_y)));
    const unsigned char *const input_middle_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_x), -static_cast<int>(pool_pad_y) + 1));
    const unsigned char *const input_bottom_ptr = _input->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_x), -static_cast<int>(pool_pad_y) + 2));

    execute_window_loop(window, [&](const Coordinates & id)
    {
        const float32x4_t top_data    = vld1q_f32(reinterpret_cast<const float *>(input_top_ptr + input.offset()));
        const float32x4_t middle_data = vld1q_f32(reinterpret_cast<const float *>(input_middle_ptr + input.offset()));
        const float32x4_t bottom_data = vld1q_f32(reinterpret_cast<const float *>(input_bottom_ptr + input.offset()));
        float32x2_t       res         = {};
        if(pooling_type == PoolingType::AVG)
        {
            // Calculate scale
            float             scale   = calculate_avg_scale(id, pool_size, upper_bound_w, upper_bound_h, pool_pad_x, pool_pad_y, pool_stride_x, pool_stride_y);
            const float32x2_t scale_v = vdup_n_f32(scale);

            // Perform pooling
            const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data);
            res                        = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data));
            res                        = vmul_f32(vpadd_f32(res, res), scale_v);
        }
        else
        {
            const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data);
            res                        = vpmax_f32(vget_high_f32(vsetq_lane_f32(-std::numeric_limits<float>::max(), max_data, 3)), vget_low_f32(max_data));
            res                        = vpmax_f32(res, res);
        }
        *(reinterpret_cast<float *>(output.ptr())) = vget_lane_f32(res, 0);
    },
    input, output);
}

void NEPoolingLayerKernel::run(const Window &window)
{
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
    ARM_COMPUTE_ERROR_ON(_func == nullptr);

    unsigned int pool_stride_x, pool_stride_y = 0;
    std::tie(pool_stride_x, pool_stride_y)    = _pool_info.pad_stride_info().stride();

    // Set step for input in x and y direction for the input
    Window       window_input(window);
    unsigned int window_x_inc = 0;
    if(_input->info()->data_type() == DataType::QS8)
    {
        window_x_inc = (pool_stride_x == 2) ? _num_elems_processed_per_iteration * 2 : _num_elems_processed_per_iteration;
    }
    else
    {
        window_x_inc = pool_stride_x;
    }
    window_input.set(Window::DimX, Window::Dimension(window.x().start() * pool_stride_x, window.x().end() * pool_stride_x, window_x_inc));
    window_input.set(Window::DimY, Window::Dimension(window.y().start() * pool_stride_y, window.y().end() * pool_stride_y, pool_stride_y));

    // Run function
    (this->*_func)(window_input, window);
}