aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEFFTRadixStageKernel.cpp
blob: b2645907913ae3151a56a98cbff3d52be567d031 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
/*
 * Copyright (c) 2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEFFTRadixStageKernel.h"

#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/wrapper/traits.h"
#include "arm_compute/core/NEON/wrapper/wrapper.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Window.h"

#include <arm_neon.h>
#include <cmath>
#include <complex>

namespace arm_compute
{
namespace
{
constexpr float PI = 3.141592653589793f;

float32x2_t c_mul_neon(float32x2_t a, float32x2_t b)
{
    float32x2_t tmp = wrapper::vmul(a, b);

    const float P1 = wrapper::vgetlane(tmp, 0);
    const float P2 = wrapper::vgetlane(tmp, 1);

    const float a_r = wrapper::vgetlane(a, 0);
    const float a_i = wrapper::vgetlane(a, 1);
    const float b_r = wrapper::vgetlane(b, 0);
    const float b_i = wrapper::vgetlane(b, 1);

    const float P3  = (a_r + a_i) * (b_r + b_i);
    float32x2_t out = { P1 - P2, P3 - P2 - P1 };
    return out;
}

float32x2_t c_mul_neon_img(float32x2_t a, float img_constant)
{
    const float a_r = wrapper::vgetlane(a, 0);
    const float a_i = wrapper::vgetlane(a, 1);

    const auto out = wrapper::vmul(float32x2_t{ -a_i, a_r }, float32x2_t{ img_constant, img_constant });
    return out;
}

float32x2_t reduce_sum_5(float32x2_t a, float32x2_t b, float32x2_t c, float32x2_t d, float32x2_t e)
{
    const auto t0 = wrapper::vadd(a, b);
    const auto t1 = wrapper::vadd(c, d);
    const auto t2 = wrapper::vadd(t0, t1);
    return wrapper::vadd(t2, e);
}

float32x2_t reduce_sum_7(float32x2_t x1, float32x2_t x2, float32x2_t x3, float32x2_t x4, float32x2_t x5, float32x2_t x6, float32x2_t x7)
{
    const auto t0  = wrapper::vadd(x1, x2);
    const auto t1  = wrapper::vadd(x3, x4);
    const auto t2  = wrapper::vadd(x5, x6);
    const auto t00 = wrapper::vadd(t0, t1);
    const auto t01 = wrapper::vadd(t2, x7);

    return wrapper::vadd(t00, t01);
}

float32x2_t reduce_sum_8(float32x2_t x1, float32x2_t x2, float32x2_t x3, float32x2_t x4, float32x2_t x5, float32x2_t x6, float32x2_t x7, float32x2_t x8)
{
    const auto t0  = wrapper::vadd(x1, x2);
    const auto t1  = wrapper::vadd(x3, x4);
    const auto t2  = wrapper::vadd(x5, x6);
    const auto t3  = wrapper::vadd(x7, x8);
    const auto t00 = wrapper::vadd(t0, t1);
    const auto t01 = wrapper::vadd(t2, t3);

    return wrapper::vadd(t00, t01);
}

void fft_2(float32x2_t &x, float32x2_t &y, float32x2_t &w)
{
    float32x2_t a = x;
    float32x2_t b = c_mul_neon(w, y);

    x = wrapper::vadd(a, b);
    y = wrapper::vsub(a, b);
}

constexpr float sqrt3div2 = 0.866025403784438;
void fft_3(float32x2_t &x, float32x2_t &y, float32x2_t &z, const float32x2_t &w, const float32x2_t &w2)
{
    float32x2_t a = x;
    float32x2_t b = c_mul_neon(w, y);
    float32x2_t c = c_mul_neon(w2, z);

    x = wrapper::vadd(a, b);
    x = wrapper::vadd(x, c);

    const auto v1 = wrapper::vmul(float32x2_t{ 0.5f, 0.5 }, wrapper::vadd(b, c));
    const auto v2 = c_mul_neon(float32x2_t{ 0.f, -sqrt3div2 }, wrapper::vsub(b, c));

    y = z = wrapper::vsub(a, v1);
    y     = wrapper::vadd(y, v2);
    z     = wrapper::vsub(z, v2);
}

void fft_4(float32x2_t &x1, float32x2_t &x2, float32x2_t &x3, float32x2_t &x4, const float32x2_t &w, const float32x2_t &w2, const float32x2_t &w3)
{
    float32x2_t a = x1;
    float32x2_t b = c_mul_neon(w, x2);
    float32x2_t c = c_mul_neon(w2, x3);
    float32x2_t d = c_mul_neon(w3, x4);

    const auto x11 = wrapper::vadd(a, b);
    const auto x12 = wrapper::vadd(c, d);
    x1             = wrapper::vadd(x11, x12);

    const auto x21 = wrapper::vadd(a, c_mul_neon_img(b, -1));
    const auto x22 = wrapper::vadd(wrapper::vneg(c), c_mul_neon_img(d, 1.f));
    x2             = wrapper::vadd(x21, x22);

    const auto x31 = wrapper::vadd(a, wrapper::vneg(b));
    const auto x32 = wrapper::vadd(c, wrapper::vneg(d));
    x3             = wrapper::vadd(x31, x32);

    const auto x41 = wrapper::vadd(a, c_mul_neon_img(b, 1));
    const auto x42 = wrapper::vadd(wrapper::vneg(c), c_mul_neon_img(d, -1));
    x4             = wrapper::vadd(x41, x42);
}

constexpr float W5_0 = 0.30901699437494f;
constexpr float W5_1 = 0.95105651629515f;
constexpr float W5_2 = 0.80901699437494f;
constexpr float W5_3 = 0.58778525229247f;
void fft_5(float32x2_t &x1, float32x2_t &x2, float32x2_t &x3, float32x2_t &x4, float32x2_t &x5, const float32x2_t &w, const float32x2_t &w2, const float32x2_t &w3, const float32x2_t &w4)
{
    const auto a = x1;
    const auto b = c_mul_neon(w, x2);
    const auto c = c_mul_neon(w2, x3);
    const auto d = c_mul_neon(w3, x4);
    const auto e = c_mul_neon(w4, x5);

    const auto b0 = c_mul_neon(float32x2_t{ W5_0, -W5_1 }, b);
    const auto b1 = c_mul_neon(float32x2_t{ -W5_2, -W5_3 }, b);
    const auto b2 = c_mul_neon(float32x2_t{ -W5_2, W5_3 }, b);
    const auto b3 = c_mul_neon(float32x2_t{ W5_0, W5_1 }, b);

    const auto c0 = c_mul_neon(float32x2_t{ -W5_2, -W5_3 }, c);
    const auto c1 = c_mul_neon(float32x2_t{ W5_0, W5_1 }, c);
    const auto c2 = c_mul_neon(float32x2_t{ W5_0, -W5_1 }, c);
    const auto c3 = c_mul_neon(float32x2_t{ -W5_2, W5_3 }, c);

    const auto d0 = c_mul_neon(float32x2_t{ -W5_2, W5_3 }, d);
    const auto d1 = c_mul_neon(float32x2_t{ W5_0, -W5_1 }, d);
    const auto d2 = c_mul_neon(float32x2_t{ W5_0, W5_1 }, d);
    const auto d3 = c_mul_neon(float32x2_t{ -W5_2, -W5_3 }, d);

    const auto e0 = c_mul_neon(float32x2_t{ W5_0, W5_1 }, e);
    const auto e1 = c_mul_neon(float32x2_t{ -W5_2, W5_3 }, e);
    const auto e2 = c_mul_neon(float32x2_t{ -W5_2, -W5_3 }, e);
    const auto e3 = c_mul_neon(float32x2_t{ W5_0, -W5_1 }, e);

    x1 = reduce_sum_5(a, b, c, d, e);
    x2 = reduce_sum_5(a, b0, c0, d0, e0);
    x3 = reduce_sum_5(a, b1, c1, d1, e1);
    x4 = reduce_sum_5(a, b2, c2, d2, e2);
    x5 = reduce_sum_5(a, b3, c3, d3, e3);
}

constexpr float W7_0 = 0.62348980185873f;
constexpr float W7_1 = 0.78183148246802f;
constexpr float W7_2 = 0.22252093395631f;
constexpr float W7_3 = 0.97492791218182f;
constexpr float W7_4 = 0.90096886790241f;
constexpr float W7_5 = 0.43388373911755f;
void fft_7(float32x2_t &x1, float32x2_t &x2, float32x2_t &x3, float32x2_t &x4, float32x2_t &x5, float32x2_t &x6, float32x2_t &x7, const float32x2_t &w, const float32x2_t &w2, const float32x2_t &w3,
           const float32x2_t &w4,
           const float32x2_t &w5, const float32x2_t &w6)
{
    const auto a = x1;
    const auto b = c_mul_neon(w, x2);
    const auto c = c_mul_neon(w2, x3);
    const auto d = c_mul_neon(w3, x4);
    const auto e = c_mul_neon(w4, x5);
    const auto f = c_mul_neon(w5, x6);
    const auto g = c_mul_neon(w6, x7);

    const auto b0 = c_mul_neon(float32x2_t{ W7_0, -W7_1 }, b);
    const auto b1 = c_mul_neon(float32x2_t{ -W7_2, -W7_3 }, b);
    const auto b2 = c_mul_neon(float32x2_t{ -W7_4, -W7_5 }, b);
    const auto b3 = c_mul_neon(float32x2_t{ -W7_4, W7_5 }, b);
    const auto b4 = c_mul_neon(float32x2_t{ -W7_2, W7_3 }, b);
    const auto b5 = c_mul_neon(float32x2_t{ W7_0, W7_1 }, b);

    const auto c0 = c_mul_neon(float32x2_t{ -W7_2, -W7_3 }, c);
    const auto c1 = c_mul_neon(float32x2_t{ -W7_4, W7_5 }, c);
    const auto c2 = c_mul_neon(float32x2_t{ W7_0, W7_1 }, c);
    const auto c3 = c_mul_neon(float32x2_t{ W7_0, -W7_1 }, c);
    const auto c4 = c_mul_neon(float32x2_t{ -W7_4, -W7_5 }, c);
    const auto c5 = c_mul_neon(float32x2_t{ -W7_2, W7_3 }, c);

    const auto d0 = c_mul_neon(float32x2_t{ -W7_4, -W7_5 }, d);
    const auto d1 = c_mul_neon(float32x2_t{ W7_0, W7_1 }, d);
    const auto d2 = c_mul_neon(float32x2_t{ -W7_2, -W7_3 }, d);
    const auto d3 = c_mul_neon(float32x2_t{ -W7_2, +W7_3 }, d);
    const auto d4 = c_mul_neon(float32x2_t{ W7_0, -W7_1 }, d);
    const auto d5 = c_mul_neon(float32x2_t{ -W7_4, W7_5 }, d);

    const auto e0 = c_mul_neon(float32x2_t{ -W7_4, W7_5 }, e);
    const auto e1 = c_mul_neon(float32x2_t{ W7_0, -W7_1 }, e);
    const auto e2 = c_mul_neon(float32x2_t{ -W7_2, W7_3 }, e);
    const auto e3 = c_mul_neon(float32x2_t{ -W7_2, -W7_3 }, e);
    const auto e4 = c_mul_neon(float32x2_t{ W7_0, W7_1 }, e);
    const auto e5 = c_mul_neon(float32x2_t{ -W7_4, -W7_5 }, e);

    const auto f0 = c_mul_neon(float32x2_t{ -W7_2, W7_3 }, f);
    const auto f1 = c_mul_neon(float32x2_t{ -W7_4, -W7_5 }, f);
    const auto f2 = c_mul_neon(float32x2_t{ W7_0, -W7_1 }, f);
    const auto f3 = c_mul_neon(float32x2_t{ W7_0, W7_1 }, f);
    const auto f4 = c_mul_neon(float32x2_t{ -W7_4, W7_5 }, f);
    const auto f5 = c_mul_neon(float32x2_t{ -W7_2, -W7_3 }, f);

    const auto g0 = c_mul_neon(float32x2_t{ W7_0, W7_1 }, g);
    const auto g1 = c_mul_neon(float32x2_t{ -W7_2, W7_3 }, g);
    const auto g2 = c_mul_neon(float32x2_t{ -W7_4, W7_5 }, g);
    const auto g3 = c_mul_neon(float32x2_t{ -W7_4, -W7_5 }, g);
    const auto g4 = c_mul_neon(float32x2_t{ -W7_2, -W7_3 }, g);
    const auto g5 = c_mul_neon(float32x2_t{ W7_0, -W7_1 }, g);

    x1 = reduce_sum_7(a, b, c, d, e, f, g);
    x2 = reduce_sum_7(a, b0, c0, d0, e0, f0, g0);
    x3 = reduce_sum_7(a, b1, c1, d1, e1, f1, g1);
    x4 = reduce_sum_7(a, b2, c2, d2, e2, f2, g2);
    x5 = reduce_sum_7(a, b3, c3, d3, e3, f3, g3);
    x6 = reduce_sum_7(a, b4, c4, d4, e4, f4, g4);
    x7 = reduce_sum_7(a, b5, c5, d5, e5, f5, g5);
}

constexpr float sqrt2div2 = 0.707106781186548;
void fft_8(float32x2_t &x1, float32x2_t &x2, float32x2_t &x3, float32x2_t &x4, float32x2_t &x5, float32x2_t &x6, float32x2_t &x7, float32x2_t &x8, const float32x2_t &w, const float32x2_t &w2,
           const float32x2_t &w3,
           const float32x2_t &w4, const float32x2_t &w5, const float32x2_t &w6,
           const float32x2_t &w7)
{
    const auto a = x1;
    const auto b = c_mul_neon(w, x2);
    const auto c = c_mul_neon(w2, x3);
    const auto d = c_mul_neon(w3, x4);
    const auto e = c_mul_neon(w4, x5);
    const auto f = c_mul_neon(w5, x6);
    const auto g = c_mul_neon(w6, x7);
    const auto h = c_mul_neon(w7, x8);

    const auto b0 = c_mul_neon(float32x2_t{ sqrt2div2, -sqrt2div2 }, b);
    const auto b1 = c_mul_neon(float32x2_t{ 0, -1 }, b);
    const auto b2 = c_mul_neon(float32x2_t{ -sqrt2div2, -sqrt2div2 }, b);
    const auto b3 = c_mul_neon(float32x2_t{ -1, 0 }, b);
    const auto b4 = c_mul_neon(float32x2_t{ -sqrt2div2, sqrt2div2 }, b);
    const auto b5 = c_mul_neon(float32x2_t{ 0, 1 }, b);
    const auto b6 = c_mul_neon(float32x2_t{ sqrt2div2, sqrt2div2 }, b);

    const auto c0 = c_mul_neon(float32x2_t{ 0, -1 }, c);
    const auto c1 = c_mul_neon(float32x2_t{ -1, 0 }, c);
    const auto c2 = c_mul_neon(float32x2_t{ 0, 1 }, c);
    const auto c3 = c_mul_neon(float32x2_t{ 1, 0 }, c);
    const auto c4 = c_mul_neon(float32x2_t{ 0, -1 }, c);
    const auto c5 = c_mul_neon(float32x2_t{ -1, 0 }, c);
    const auto c6 = c_mul_neon(float32x2_t{ 0, 1 }, c);

    const auto d0 = c_mul_neon(float32x2_t{ -sqrt2div2, -sqrt2div2 }, d);
    const auto d1 = c_mul_neon(float32x2_t{ 0, 1 }, d);
    const auto d2 = c_mul_neon(float32x2_t{ sqrt2div2, -sqrt2div2 }, d);
    const auto d3 = c_mul_neon(float32x2_t{ -1, 0 }, d);
    const auto d4 = c_mul_neon(float32x2_t{ sqrt2div2, sqrt2div2 }, d);
    const auto d5 = c_mul_neon(float32x2_t{ 0, -1 }, d);
    const auto d6 = c_mul_neon(float32x2_t{ -sqrt2div2, sqrt2div2 }, d);

    const auto e0 = c_mul_neon(float32x2_t{ -1, 0 }, e);
    const auto e1 = c_mul_neon(float32x2_t{ 1, 0 }, e);
    const auto e2 = c_mul_neon(float32x2_t{ -1, 0 }, e);
    const auto e3 = c_mul_neon(float32x2_t{ 1, 0 }, e);
    const auto e4 = c_mul_neon(float32x2_t{ -1, 0 }, e);
    const auto e5 = c_mul_neon(float32x2_t{ 1, 0 }, e);
    const auto e6 = c_mul_neon(float32x2_t{ -1, 0 }, e);

    const auto f0 = c_mul_neon(float32x2_t{ -sqrt2div2, sqrt2div2 }, f);
    const auto f1 = c_mul_neon(float32x2_t{ 0, -1 }, f);
    const auto f2 = c_mul_neon(float32x2_t{ sqrt2div2, sqrt2div2 }, f);
    const auto f3 = c_mul_neon(float32x2_t{ -1, 0 }, f);
    const auto f4 = c_mul_neon(float32x2_t{ sqrt2div2, -sqrt2div2 }, f);
    const auto f5 = c_mul_neon(float32x2_t{ 0, 1 }, f);
    const auto f6 = c_mul_neon(float32x2_t{ -sqrt2div2, -sqrt2div2 }, f);

    const auto g0 = c_mul_neon(float32x2_t{ 0, 1 }, g);
    const auto g1 = c_mul_neon(float32x2_t{ -1, 0 }, g);
    const auto g2 = c_mul_neon(float32x2_t{ 0, -1 }, g);
    const auto g3 = c_mul_neon(float32x2_t{ 1, 0 }, g);
    const auto g4 = c_mul_neon(float32x2_t{ 0, 1 }, g);
    const auto g5 = c_mul_neon(float32x2_t{ -1, 0 }, g);
    const auto g6 = c_mul_neon(float32x2_t{ 0, -1 }, g);

    const auto h0 = c_mul_neon(float32x2_t{ sqrt2div2, sqrt2div2 }, h);
    const auto h1 = c_mul_neon(float32x2_t{ 0, 1 }, h);
    const auto h2 = c_mul_neon(float32x2_t{ -sqrt2div2, sqrt2div2 }, h);
    const auto h3 = c_mul_neon(float32x2_t{ -1, 0 }, h);
    const auto h4 = c_mul_neon(float32x2_t{ -sqrt2div2, -sqrt2div2 }, h);
    const auto h5 = c_mul_neon(float32x2_t{ 0, -1 }, h);
    const auto h6 = c_mul_neon(float32x2_t{ sqrt2div2, -sqrt2div2 }, h);

    x1 = reduce_sum_8(a, b, c, d, e, f, g, h);
    x2 = reduce_sum_8(a, b0, c0, d0, e0, f0, g0, h0);
    x3 = reduce_sum_8(a, b1, c1, d1, e1, f1, g1, h1);
    x4 = reduce_sum_8(a, b2, c2, d2, e2, f2, g2, h2);
    x5 = reduce_sum_8(a, b3, c3, d3, e3, f3, g3, h3);
    x6 = reduce_sum_8(a, b4, c4, d4, e4, f4, g4, h4);
    x7 = reduce_sum_8(a, b5, c5, d5, e5, f5, g5, h5);
    x8 = reduce_sum_8(a, b6, c6, d6, e6, f6, g6, h6);
}

template <bool first_stage>
void fft_radix_2_axes_0(float *X, float *x, unsigned int Nx, unsigned int N)
{
    unsigned int Nx2   = 2 * Nx;
    float        alpha = 2 * PI / Nx2;

    float32x2_t       w{ 1, 0 };
    const float32x2_t w_m{ cosf(alpha), -sinf(alpha) };

    for(unsigned int j = 0; j < Nx; j++)
    {
        for(unsigned int k = 2 * j; k < 2 * N; k += 2 * Nx2)
        {
            auto a = float32x2_t{ 0, 0 };
            auto b = float32x2_t{ 0, 0 };

            // Load inputs
            if(first_stage)
            {
                const auto ab = wrapper::vloadq(x + k);
                a             = wrapper::vgetlow(ab);
                b             = wrapper::vgethigh(ab);
            }
            else
            {
                a = wrapper::vload(x + k);
                b = wrapper::vload(x + k + 2 * Nx);
            }

            // Base-case prime transform
            fft_2(a, b, w);

            // Write outputs
            if(first_stage)
            {
                wrapper::vstore(X + k, wrapper::vcombine(a, b));
            }
            else
            {
                wrapper::vstore(X + k, a);
                wrapper::vstore(X + k + 2 * Nx, b);
            }
        }

        w = c_mul_neon(w, w_m);
    }
}

template <bool first_stage>
void fft_radix_3_axes_0(float *X, float *x, unsigned int Nx, unsigned int N)
{
    const unsigned int Nx3   = 3 * Nx;
    const float        alpha = 2 * PI / float(Nx3);
    float32x2_t        w{ 1, 0 };
    const float32x2_t  w_m{ cosf(alpha), -sinf(alpha) };

    for(unsigned int j = 0; j < Nx; j++)
    {
        const auto w2 = c_mul_neon(w, w);

        for(unsigned int k = 2 * j; k < 2 * N; k += 2 * Nx3)
        {
            // Load inputs
            float32x2_t a = { 0, 0 };
            float32x2_t b = { 0, 0 };
            float32x2_t c = { 0, 0 };
            if(first_stage)
            {
                const auto ab = wrapper::vloadq(x + k);
                a             = wrapper::vgetlow(ab);
                b             = wrapper::vgethigh(ab);
            }
            else
            {
                a = wrapper::vload(x + k);
                b = wrapper::vload(x + k + 2 * Nx);
            }
            c = wrapper::vload(x + k + 4 * Nx);

            // Base-case prime transform
            fft_3(a, b, c, w, w2);

            if(first_stage)
            {
                wrapper::vstore(X + k, wrapper::vcombine(a, b));
            }
            else
            {
                wrapper::vstore(X + k, a);
                wrapper::vstore(X + k + 2 * Nx, b);
            }
            wrapper::vstore(X + k + 4 * Nx, c);
        }
        w = c_mul_neon(w, w_m);
    }
}

template <bool first_stage>
void fft_radix_4_axes_0(float *X, float *x, unsigned int Nx, unsigned int N)
{
    unsigned int Nx4   = 4 * Nx;
    const float  alpha = 2 * PI / float(Nx4);

    float32x2_t w{ 1, 0 };
    float32x2_t w_m{ cosf(alpha), -sinf(alpha) };

    for(unsigned int j = 0; j < Nx; j++)
    {
        const auto w2 = c_mul_neon(w, w);
        const auto w3 = c_mul_neon(w2, w);

        for(unsigned int k = 2 * j; k < 2 * N; k += 2 * Nx4)
        {
            float32x2_t a = { 0, 0 };
            float32x2_t b = { 0, 0 };
            float32x2_t c = { 0, 0 };
            float32x2_t d = { 0, 0 };
            if(first_stage)
            {
                const auto ab = wrapper::vloadq(x + k);
                const auto cd = wrapper::vloadq(x + k + 4 * Nx);
                a             = wrapper::vgetlow(ab);
                b             = wrapper::vgethigh(ab);
                c             = wrapper::vgetlow(cd);
                d             = wrapper::vgethigh(cd);
            }
            else
            {
                // Load inputs
                a = wrapper::vload(x + k);
                b = wrapper::vload(x + k + 2 * Nx);
                c = wrapper::vload(x + k + 4 * Nx);
                d = wrapper::vload(x + k + 6 * Nx);
            }

            // Base-case prime transform
            fft_4(a, b, c, d, w, w2, w3);

            if(first_stage)
            {
                wrapper::vstore(X + k, wrapper::vcombine(a, b));
                wrapper::vstore(X + k + 4 * Nx, wrapper::vcombine(c, d));
            }
            else
            {
                wrapper::vstore(X + k, a);
                wrapper::vstore(X + k + 2 * Nx, b);
                wrapper::vstore(X + k + 4 * Nx, c);
                wrapper::vstore(X + k + 6 * Nx, d);
            }
        }

        w = c_mul_neon(w, w_m);
    }
}

template <bool first_stage>
void fft_radix_5_axes_0(float *X, float *x, unsigned int Nx, unsigned int N)
{
    unsigned int Nx5   = 5 * Nx;
    const float  alpha = 2 * PI / float(Nx5);

    float32x2_t w{ 1, 0 };
    float32x2_t w_m{ cosf(alpha), -sinf(alpha) };

    for(unsigned int j = 0; j < Nx; j++)
    {
        const float32x2_t w2 = c_mul_neon(w, w);
        const float32x2_t w3 = c_mul_neon(w2, w);
        const float32x2_t w4 = c_mul_neon(w3, w);

        for(unsigned int k = 2 * j; k < 2 * N; k += 2 * Nx5)
        {
            float32x2_t a = { 0, 0 };
            float32x2_t b = { 0, 0 };
            float32x2_t c = { 0, 0 };
            float32x2_t d = { 0, 0 };
            float32x2_t e = { 0, 0 };

            // Load inputs
            if(first_stage)
            {
                const auto ab = wrapper::vloadq(x + k);
                const auto cd = wrapper::vloadq(x + k + 4 * Nx);

                a = wrapper::vgetlow(ab);
                b = wrapper::vgethigh(ab);
                c = wrapper::vgetlow(cd);
                d = wrapper::vgethigh(cd);
            }
            else
            {
                a = wrapper::vload(x + k);
                b = wrapper::vload(x + k + 2 * Nx);
                c = wrapper::vload(x + k + 4 * Nx);
                d = wrapper::vload(x + k + 6 * Nx);
            }
            e = wrapper::vload(x + k + 8 * Nx);

            // Base-case prime transform
            fft_5(a, b, c, d, e, w, w2, w3, w4);

            // Store outputs
            if(first_stage)
            {
                wrapper::vstore(X + k, wrapper::vcombine(a, b));
                wrapper::vstore(X + k + 4 * Nx, wrapper::vcombine(c, d));
            }
            else
            {
                wrapper::vstore(X + k, a);
                wrapper::vstore(X + k + 2 * Nx, b);
                wrapper::vstore(X + k + 4 * Nx, c);
                wrapper::vstore(X + k + 6 * Nx, d);
            }
            wrapper::vstore(X + k + 8 * Nx, e);
        }

        w = c_mul_neon(w, w_m);
    }
}

template <bool first_stage>
void fft_radix_7_axes_0(float *X, float *x, unsigned int Nx, unsigned int N)
{
    unsigned int Nx7   = 7 * Nx;
    const float  alpha = 2 * PI / float(Nx7);

    float32x2_t w{ 1, 0 };
    float32x2_t w_m{ cosf(alpha), -sinf(alpha) };

    for(unsigned int j = 0; j < Nx; j++)
    {
        const float32x2_t w2 = c_mul_neon(w, w);
        const float32x2_t w3 = c_mul_neon(w2, w);
        const float32x2_t w4 = c_mul_neon(w3, w);
        const float32x2_t w5 = c_mul_neon(w4, w);
        const float32x2_t w6 = c_mul_neon(w5, w);

        for(unsigned int k = 2 * j; k < 2 * N; k += 2 * Nx7)
        {
            float32x2_t a = { 0, 0 };
            float32x2_t b = { 0, 0 };
            float32x2_t c = { 0, 0 };
            float32x2_t d = { 0, 0 };
            float32x2_t e = { 0, 0 };
            float32x2_t f = { 0, 0 };
            float32x2_t g = { 0, 0 };

            // Load inputs
            if(first_stage)
            {
                const auto ab = wrapper::vloadq(x + k);
                const auto cd = wrapper::vloadq(x + k + 4 * Nx);
                const auto ef = wrapper::vloadq(x + k + 8 * Nx);

                a = wrapper::vgetlow(ab);
                b = wrapper::vgethigh(ab);
                c = wrapper::vgetlow(cd);
                d = wrapper::vgethigh(cd);
                e = wrapper::vgetlow(ef);
                f = wrapper::vgethigh(ef);
            }
            else
            {
                a = wrapper::vload(x + k);
                b = wrapper::vload(x + k + 2 * Nx);
                c = wrapper::vload(x + k + 4 * Nx);
                d = wrapper::vload(x + k + 6 * Nx);
                e = wrapper::vload(x + k + 8 * Nx);
                f = wrapper::vload(x + k + 10 * Nx);
            }
            g = wrapper::vload(x + k + 12 * Nx);

            // Base-case prime transform
            fft_7(a, b, c, d, e, f, g, w, w2, w3, w4, w5, w6);

            if(first_stage)
            {
                wrapper::vstore(X + k, wrapper::vcombine(a, b));
                wrapper::vstore(X + k + 4 * Nx, wrapper::vcombine(c, d));
                wrapper::vstore(X + k + 8 * Nx, wrapper::vcombine(e, f));
            }
            else
            {
                wrapper::vstore(X + k, a);
                wrapper::vstore(X + k + 2 * Nx, b);
                wrapper::vstore(X + k + 4 * Nx, c);
                wrapper::vstore(X + k + 6 * Nx, d);
                wrapper::vstore(X + k + 8 * Nx, e);
                wrapper::vstore(X + k + 10 * Nx, f);
            }
            wrapper::vstore(X + k + 12 * Nx, g);
        }

        w = c_mul_neon(w, w_m);
    }
}

template <bool first_stage>
void fft_radix_8_axes_0(float *X, float *x, unsigned int Nx, unsigned int N)
{
    unsigned int Nx8   = 8 * Nx;
    const float  alpha = 2 * PI / float(Nx8);

    float32x2_t       w{ 1, 0 };
    const float32x2_t w_m{ cosf(alpha), -sinf(alpha) };

    for(unsigned int j = 0; j < Nx; j++)
    {
        const float32x2_t w2 = c_mul_neon(w, w);
        const float32x2_t w3 = c_mul_neon(w2, w);
        const float32x2_t w4 = c_mul_neon(w3, w);
        const float32x2_t w5 = c_mul_neon(w4, w);
        const float32x2_t w6 = c_mul_neon(w5, w);
        const float32x2_t w7 = c_mul_neon(w6, w);

        for(unsigned int k = 2 * j; k < 2 * N; k += 2 * Nx8)
        {
            // Load inputs
            float32x2_t a = { 0, 0 };
            float32x2_t b = { 0, 0 };
            float32x2_t c = { 0, 0 };
            float32x2_t d = { 0, 0 };
            float32x2_t e = { 0, 0 };
            float32x2_t f = { 0, 0 };
            float32x2_t g = { 0, 0 };
            float32x2_t h = { 0, 0 };

            // Base-case prime transform
            if(first_stage)
            {
                const auto ab = wrapper::vloadq(x + k);
                const auto cd = wrapper::vloadq(x + k + 4 * Nx);
                const auto ef = wrapper::vloadq(x + k + 8 * Nx);
                const auto gh = wrapper::vloadq(x + k + 12 * Nx);

                a = wrapper::vgetlow(ab);
                b = wrapper::vgethigh(ab);
                c = wrapper::vgetlow(cd);
                d = wrapper::vgethigh(cd);
                e = wrapper::vgetlow(ef);
                f = wrapper::vgethigh(ef);
                g = wrapper::vgetlow(gh);
                h = wrapper::vgethigh(gh);
            }
            else
            {
                a = wrapper::vload(x + k);
                b = wrapper::vload(x + k + 2 * Nx);
                c = wrapper::vload(x + k + 4 * Nx);
                d = wrapper::vload(x + k + 6 * Nx);
                e = wrapper::vload(x + k + 8 * Nx);
                f = wrapper::vload(x + k + 10 * Nx);
                g = wrapper::vload(x + k + 12 * Nx);
                h = wrapper::vload(x + k + 14 * Nx);
            }

            // Apply twiddle factors
            fft_8(a, b, c, d, e, f, g, h, w, w2, w3, w4, w5, w6, w7);

            // Store outputs
            if(first_stage)
            {
                wrapper::vstore(X + k, wrapper::vcombine(a, b));
                wrapper::vstore(X + k + 4 * Nx, wrapper::vcombine(c, d));
                wrapper::vstore(X + k + 8 * Nx, wrapper::vcombine(e, f));
                wrapper::vstore(X + k + 12 * Nx, wrapper::vcombine(g, h));
            }
            else
            {
                wrapper::vstore(X + k, a);
                wrapper::vstore(X + k + 2 * Nx, b);
                wrapper::vstore(X + k + 4 * Nx, c);
                wrapper::vstore(X + k + 6 * Nx, d);
                wrapper::vstore(X + k + 8 * Nx, e);
                wrapper::vstore(X + k + 10 * Nx, f);
                wrapper::vstore(X + k + 12 * Nx, g);
                wrapper::vstore(X + k + 14 * Nx, h);
            }
        }

        w = c_mul_neon(w, w_m);
    }
}

Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const FFTRadixStageKernelInfo &config)
{
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 2, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON(config.axis != 0);
    ARM_COMPUTE_RETURN_ERROR_ON(NEFFTRadixStageKernel::supported_radix().count(config.radix) == 0);

    // Checks performed when output is configured
    if((output != nullptr) && (output->total_size() != 0))
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
    }

    return Status{};
}

std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, const FFTRadixStageKernelInfo &config)
{
    if(output != nullptr)
    {
        auto_init_if_empty(*output, *input);
    }

    Window win = calculate_max_window(*input, Steps(config.radix));
    if(output != nullptr)
    {
        output->set_valid_region(ValidRegion(Coordinates(), output->tensor_shape()));
    }

    return std::make_pair(Status{}, win);
}
} // namespace

NEFFTRadixStageKernel::NEFFTRadixStageKernel()
    : _input(nullptr), _output(nullptr), _run_in_place(false), _Nx(0), _func()
{
}

template <bool first_stage>
void NEFFTRadixStageKernel::set_radix_stage_fun(unsigned int radix)
{
    switch(radix)
    {
        case 2:
            _func = &fft_radix_2_axes_0<first_stage>;
            break;
        case 3:
            _func = &fft_radix_3_axes_0<first_stage>;
            break;
        case 4:
            _func = &fft_radix_4_axes_0<first_stage>;
            break;
        case 5:
            _func = &fft_radix_5_axes_0<first_stage>;
            break;
        case 7:
            _func = &fft_radix_7_axes_0<first_stage>;
            break;
        case 8:
            _func = &fft_radix_8_axes_0<first_stage>;
            break;
        default:
            ARM_COMPUTE_ERROR("Radix not supported");
    }
}

void NEFFTRadixStageKernel::configure(ITensor *input, ITensor *output, const FFTRadixStageKernelInfo &config)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input);

    // Output auto inizialitation if not yet initialized
    if(output != nullptr)
    {
        auto_init_if_empty(*output->info(), *input->info()->clone());
    }

    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (output != nullptr) ? output->info() : nullptr, config));

    _input        = input;
    _output       = output;
    _run_in_place = (output == nullptr) || (output == input);
    _Nx           = config.Nx;

    if(config.is_first_stage)
    {
        set_radix_stage_fun<true>(config.radix);
    }
    else
    {
        set_radix_stage_fun<false>(config.radix);
    }

    // Configure kernel window
    auto win_config = validate_and_configure_window(input->info(), (_run_in_place) ? nullptr : output->info(), config);
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    INEKernel::configure(win_config.second);
}

Status NEFFTRadixStageKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const FFTRadixStageKernelInfo &config)
{
    const bool run_in_place = (output == nullptr) || (output == input);
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, config));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(),
                                                              (run_in_place) ? nullptr : output->clone().get(),
                                                              config)
                                .first);

    return Status{};
}

std::set<unsigned int> NEFFTRadixStageKernel::supported_radix()
{
    return std::set<unsigned int> { 2, 3, 4, 5, 7, 8 };
}

void NEFFTRadixStageKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);

    Window input_window = window;
    input_window.set(Window::DimX, 0);

    unsigned int N = _input->info()->dimension(0);

    Iterator in(_input, input_window);
    Iterator out(_run_in_place ? _input : _output, input_window);

    execute_window_loop(input_window, [&](const Coordinates &)
    {
        _func(reinterpret_cast<float *>(out.ptr()), reinterpret_cast<float *>(in.ptr()), _Nx, N);
    },
    in, out);

    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
}
} // namespace arm_compute