aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEFFTDigitReverseKernel.cpp
blob: cf77345da704699b6521f2377af7ae89100361c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/*
 * Copyright (c) 2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEFFTDigitReverseKernel.h"

#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"

#include <set>

namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *idx, const FFTDigitReverseKernelInfo &config)
{
    ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() != DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON(input->num_channels() > 2);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(idx, 1, DataType::U32);
    ARM_COMPUTE_RETURN_ERROR_ON(std::set<unsigned int>({ 0, 1 }).count(config.axis) == 0);
    ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape()[config.axis] != idx->tensor_shape().x());

    // Checks performed when output is configured
    if((output != nullptr) && (output->total_size() != 0))
    {
        ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() != 2);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
    }

    return Status{};
}

std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, ITensorInfo *idx, const FFTDigitReverseKernelInfo &config)
{
    ARM_COMPUTE_UNUSED(idx, config);

    auto_init_if_empty(*output, input->clone()->set_num_channels(2));

    Window win = calculate_max_window(*input, Steps());
    input->set_valid_region(ValidRegion(Coordinates(), input->tensor_shape()));

    return std::make_pair(Status{}, win);
}
} // namespace

NEFFTDigitReverseKernel::NEFFTDigitReverseKernel()
    : _func(nullptr), _input(nullptr), _output(nullptr), _idx(nullptr)
{
}

void NEFFTDigitReverseKernel::configure(const ITensor *input, ITensor *output, const ITensor *idx, const FFTDigitReverseKernelInfo &config)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, idx);
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), idx->info(), config));

    _input  = input;
    _output = output;
    _idx    = idx;

    const size_t axis             = config.axis;
    const bool   is_conj          = config.conjugate;
    const bool   is_input_complex = (input->info()->num_channels() == 2);

    // Configure kernel window
    auto win_config = validate_and_configure_window(input->info(), output->info(), idx->info(), config);
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    INEKernel::configure(win_config.second);

    if(axis == 0)
    {
        if(is_input_complex)
        {
            if(is_conj)
            {
                _func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_0<true, true>;
            }
            else
            {
                _func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_0<true, false>;
            }
        }
        else
        {
            _func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_0<false, false>;
        }
    }
    else if(axis == 1)
    {
        if(is_input_complex)
        {
            if(is_conj)
            {
                _func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_1<true, true>;
            }
            else
            {
                _func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_1<true, false>;
            }
        }
        else
        {
            _func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_1<false, false>;
        }
    }
    else
    {
        ARM_COMPUTE_ERROR("Not supported");
    }
}

Status NEFFTDigitReverseKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *idx, const FFTDigitReverseKernelInfo &config)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, idx, config));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), idx->clone().get(), config).first);
    return Status{};
}

template <bool is_input_complex, bool is_conj>
void NEFFTDigitReverseKernel::digit_reverse_kernel_axis_0(const Window &window)
{
    const size_t N = _input->info()->dimension(0);

    // Copy the look-up buffer to a local array
    std::vector<unsigned int> buffer_idx(N);
    std::copy_n(reinterpret_cast<unsigned int *>(_idx->buffer()), N, buffer_idx.data());

    // Input/output iterators
    Window slice = window;
    slice.set(0, Window::DimX);
    Iterator in(_input, slice);
    Iterator out(_output, slice);

    // Row buffers
    std::vector<float> buffer_row_out(2 * N);
    std::vector<float> buffer_row_in(2 * N);

    execute_window_loop(slice, [&](const Coordinates &)
    {
        if(is_input_complex)
        {
            // Load
            memcpy(buffer_row_in.data(), reinterpret_cast<float *>(in.ptr()), 2 * N * sizeof(float));

            // Shuffle
            for(size_t x = 0; x < 2 * N; x += 2)
            {
                size_t idx            = buffer_idx[x / 2];
                buffer_row_out[x]     = buffer_row_in[2 * idx];
                buffer_row_out[x + 1] = (is_conj ? -buffer_row_in[2 * idx + 1] : buffer_row_in[2 * idx + 1]);
            }
        }
        else
        {
            // Load
            memcpy(buffer_row_in.data(), reinterpret_cast<float *>(in.ptr()), N * sizeof(float));

            // Shuffle
            for(size_t x = 0; x < N; ++x)
            {
                size_t idx            = buffer_idx[x];
                buffer_row_out[2 * x] = buffer_row_in[idx];
            }
        }

        // Copy back
        memcpy(reinterpret_cast<float *>(out.ptr()), buffer_row_out.data(), 2 * N * sizeof(float));
    },
    in, out);
}

template <bool is_input_complex, bool is_conj>
void NEFFTDigitReverseKernel::digit_reverse_kernel_axis_1(const Window &window)
{
    const size_t Nx = _input->info()->dimension(0);
    const size_t Ny = _input->info()->dimension(1);

    // Copy the look-up buffer to a local array
    std::vector<unsigned int> buffer_idx(Ny);
    std::copy_n(reinterpret_cast<unsigned int *>(_idx->buffer()), Ny, buffer_idx.data());

    // Output iterator
    Window slice = window;
    slice.set(0, Window::DimX);
    Iterator out(_output, slice);

    // Row buffer
    std::vector<float> buffer_row(Nx);

    // Strides
    const size_t stride_z = _input->info()->strides_in_bytes()[2];
    const size_t stride_w = _input->info()->strides_in_bytes()[3];

    execute_window_loop(slice, [&](const Coordinates & id)
    {
        auto        *out_ptr    = reinterpret_cast<float *>(out.ptr());
        auto        *in_ptr     = reinterpret_cast<float *>(_input->buffer() + id.z() * stride_z + id[3] * stride_w);
        const size_t y_shuffled = buffer_idx[id.y()];

        if(is_input_complex)
        {
            // Shuffle the entire row into the output
            memcpy(out_ptr, in_ptr + 2 * Nx * y_shuffled, 2 * Nx * sizeof(float));

            // Conjugate if necessary
            if(is_conj)
            {
                for(size_t x = 0; x < 2 * Nx; x += 2)
                {
                    out_ptr[x + 1] = -out_ptr[x + 1];
                }
            }
        }
        else
        {
            // Shuffle the entire row into the buffer
            memcpy(buffer_row.data(), in_ptr + Nx * y_shuffled, Nx * sizeof(float));

            // Copy the buffer to the output, with a zero imaginary part
            for(size_t x = 0; x < 2 * Nx; x += 2)
            {
                out_ptr[x] = buffer_row[x / 2];
            }
        }
    },
    out);
}

void NEFFTDigitReverseKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
    ARM_COMPUTE_UNUSED(info);
    (this->*_func)(window);
}

} // namespace arm_compute